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Abstract: Germline variants in DNA repair genes are associated with aggressive prostate cancer 
(PrCa). The aim of this study was to characterize germline variants in DNA repair genes associated 
with lethal PrCa in Finnish and Swedish populations. Whole-exome sequencing was performed for 
122 lethal and 60 unselected PrCa cases. Among the lethal cases, a total of 16 potentially damaging 
protein-truncating variants in DNA repair genes were identified in 15 men (12.3%). Mutations were 
found in six genes with CHEK2 (4.1%) and ATM (3.3%) being most frequently mutated. Overall, the 
carrier rate of truncating variants in DNA repair genes among men with lethal PrCa significantly 
exceeded the carrier rate of 0% in 60 unselected PrCa cases (p = 0.030), and the prevalence of 1.6% (p 
< 0.001) and 5.4% (p = 0.040) in Swedish and Finnish population controls from the Exome 
Aggregation Consortium. No significant difference in carrier rate of potentially damaging 
nonsynonymous single nucleotide variants between lethal and unselected PrCa cases was observed 
(p = 0.123). We confirm that DNA repair genes are strongly associated with lethal PrCa in Sweden 
and Finland and highlight the importance of population-specific assessment of variants 
contributing to PrCa aggressiveness. 
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1. Introduction 

Prostate cancer (PrCa), the most common male cancer worldwide, has a wide spectrum of 
clinical behavior that ranges from decades of indolence to rapid metastatic progression and lethality 
[1]. PrCa is also among the most heritable human cancers, with 57% of the interindividual variation 
in risk attributed to genetic factors [2]. Genome-wide association studies (GWAS) have thus far 
confirmed ~170 susceptibility loci that account for over 30% of the familial relative risk [3]. However, 
the risk variants identified using case-control designs show little or no ability to discriminate between 
indolent and fatal forms of this disease [4]. Therefore, studies contrasting patients with more and less 
aggressive disease and those exploring associations with disease progression and prognosis should 
be more effective at detecting genetic risk factors for aggressive PrCa with prognostic potential. 

Inherited and acquired defects in DNA repair genes are a common hallmark of cancer and, to 
date, numerous inherited DNA repair gene mutations that increase cancer risk has been identified 
[5]. In particular, mutations in BRCA1 and BRCA2 genes, both associated with several DNA repair 
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pathways, confer a strikingly increased risk of breast and ovarian cancer [6]. In addition, it is now 
recognized that the downregulation of DNA repair response is necessary for tumor progression into 
a more aggressive phenotype [5]. Accumulating evidence suggests that pathogenic germline variants 
in known cancer-predisposing genes such as BRCA2 can increase the risk of developing PrCa, 
especially the more aggressive form of the disease [7]. Likewise, several other genes that were initially 
implicated as high-risk genes in cancers other than PrCa, such as CHEK2 and BRIP1, have 
subsequently been shown to increase the risk of PrCa as well [8–10]. Recent studies have reported a 
high carrier rate of inherited DNA repair gene mutations among men with metastatic PrCa (11.8%), 
significantly exceeding the prevalence (4.6%) among men with localized PrCa [11]. 

In this study, we evaluated germline variants of DNA repair genes in men who died of PrCa. 
The aim of our study was to identify and investigate the frequency of pathogenic germline variants 
in men with the lethal form of the disease. 

2. Materials and Methods 

2.1. Study Subjects 

Genomic DNA from a total of 122 lethal PrCa patients was collected from an ongoing collection 
of Finnish PrCa patients (TAMPERE, n = 47) and the Swedish Cancer of Prostate in Sweden (CAPS, 
n = 75) study. To create an extremely aggressive phenotype, the inclusion criterion for lethal PrCa 
cases was that the patient should have died due to PrCa before the age of 65. All of the Finnish 
patients were recruited in the Pirkanmaa Hospital District as part of a hereditary PrCa family 
collection or through collection of sporadic cases treated at the regional hospital [12]. The Swedish 
CAPS study is a population-based case-control study that enrolled participants between 2001 and 
2003 [13]. An additional 70 PrCa patients from the TAMPERE population, not selected for disease 
aggressiveness or young age at death (hereby denoted unselected cases), with whole-exome 
sequencing data available were also included to contrast against the lethal cases. Clinical information, 
such as clinical stage, pathologic grade, nodal or distant metastases, and diagnostic serum levels of 
PSA and vital status, including cause of death, was obtained through medical records and national 
cancer registries. All samples were collected with written and signed informed consent. The project 
was approved by the research ethics committee at Pirkanmaa Hospital District (R03203), the Finnish 
National Supervisory Authority of Welfare and Health (5569/32/300/05) and by the ethics committees 
at the Karolinska Institutet (04-449/4 and 06-381/32). 

2.2. Sample Preparation, Sequencing and Genotyping 

Genomic DNA was extracted from whole blood by standard methods. For the 122 lethal cases, 
exome capture was performed using Agilent SureSelect Human All Exon 50 M kit (Agilent 
Technologies, Inc., Santa Clara, CA, USA) according to standard protocol and sequenced at the 
Science for Life laboratory (Stockholm, Sweden). Of the 70 unselected cases 25 samples were 
sequenced by BGI Tech Solutions (Hong Kong, China) with exome capture performed by the 
SureSelect Human All Exon 50 M kit while the remaining 45 unselected cases were sequenced at 
Mayo Clinic, Rochester, MN, USA with exome capture performed using Agilent SureSelect Human 
All Exon 50Mb or V4+UTR kits. At each site samples were sequenced using the Illumina Hiseq 
(Illumina, Inc, San Diego, CA, USA). 

2.3. Sample Quality Control and Variant Calling 

The reads were aligned against the hg19 genome build retrieved from UCSC using BWA [14]. 
BEDtools [15] was used to calculate the genome-wide coverage for each sample where samples with 
less than 30% of bases covered by at least 20 reads were excluded. The PCR duplicates were marked 
using PICARD [16], and the base score recalibration was performed using GATK [17]. Subsequently, 
GATK was used to call the variants and genotypes following the GATK best practices protocol for 
germline exome-sequencing data [18,19]. The candidate false-positive variants were initially filtered 
using the variant quality score recalibration procedure using the tranche threshold 99.0. Furthermore, 
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variants having an allele fraction of less than 0.3 or a coverage of less than 12 were filtered out. Finally, 
variants with a readPosRankSum less than or equal to −1.7 were discarded. The variants were 
annotated using ANNOVAR [20]. 

2.4. Variant Prioritization 

Variants found in 175 DNA repair genes [21–23] were selected for further analysis. To prioritize 
variants for validation, we utilized a similar approach to that introduced by Mijuskovic and 
coworkers [7]. The intergenic and common (minor allele frequency > 0.01) variants were filtered out. 
The remaining rare variants were classified into two categories: potentially damaging and neutral. 
The potentially damaging variants were further classified into two categories (Tier 1 and Tier 2) based 
on their impact. The classification was performed utilizing a database of reported associations of 
variants to clinical phenotypes (ClinVar) provided by ANNOVAR and two tools for pathogenicity 
prediction, CADD [24] and REVEL [25], of which the latter is specifically designed for discovery of 
rare deleterious variants. Moreover, the known protein domains from the UniProt [26] database were 
utilized to assess the pathogenicity of protein truncating variants. 

Those variants that are reported as likely benign or benign in ClinVar were classified as neutral. 
Protein truncating variants (stopgain, frameshift indels or splicing site altering variants) were 
classified as Tier 1 variants if they had a CADD phred score ≥ 20. Furthermore, the variants were 
required to be reported to be pathogenic or likely pathogenic by the ClinVar database or alternatively 
known to affect a protein domain reported in Uniprot (e.g., occurring before or within a protein 
domain). All nonsynonymous single nucleotide variants (missense variants) reported to be 
pathogenic or likely pathogenic by ClinVar or had a CADD phred score ≥ 20 and REVEL score ≥ 0.75 
were classified as Tier 2 variants. The same prioritization criteria were applied to both case cohorts. 
The full workflow including details of the sequencing data analysis is illustrated in Figure 1. 
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Figure 1. Flow chart describing processing of whole exome sequencing, quality control, variant calling 
and annotation, and variant prioritizing. PRCA: prostate cancer; ClinVar: database of reported 
associations of variants to clinical phenotypes; CADD: combined annotation dependent depletion; 
Revel: rare exome variant ensemble learner. 

2.5. Population Frequencies 

To explore the expected population allele frequencies of pathogenic variants in the discovered 
DNA repair genes, we extracted data from two subsets of the Exome Aggregation Consortium 
(ExAC) browser [27], one set comprising 6192 Swedish population controls and one set comprising 
3307 Finnish individuals unselected for cancer history. Full details of the data processing, variant 
calling and resources have been described previously [27]. Variant prioritization among these 
population controls was performed by the same filtering algorithm as described above for the PrCa 
cases. 
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2.6. Statistical Analysis 

Baseline characteristics were described using the median (interquartile range [IQR]) for 
continuous variables and absolute and relative frequencies for categorical variables. The frequency 
of potentially damaging DNA repair gene mutation carriers among the lethal PrCa patients was 
compared to the frequency in unselected PrCa patients and the two control populations with the use 
of a two-sided Fisher’s exact test. For the control populations, the frequency of mutation carriers in a 
specific gene was calculated on the basis of the total number of persons for whom sequence coverage 
was adequate for the given allele, under the assumption that each individual carried at most one 
deleterious mutation in the explored gene. This assumption may have introduced a slight 
overestimation in the carrier frequency in the control populations. In all analyses, Tier 1 and Tier 2 
mutations were assessed separately. No adjustment was made for multiple testing, and p values less 
than 0.05 were considered to indicate statistical significance.  

3. Results 

We performed a comprehensive genetic assessment of DNA repair genes in 122 PrCa cases 
selected for very aggressive disease and 70 PrCa cases unselected for disease aggressiveness. After 
exclusion of 10 samples due to insufficient sequencing coverage, 122 lethal cases and 60 unselected 
cases remained for analysis (Figure 1)—see Table 1 for the clinical characteristics of case cohorts.  

Table 1. Clinical characteristics of patients. 

 Lethal PrCa  
(n = 122) 

Unselected  
PrCa (n = 60) 

Age at diagnosis, median (IQR) 57.0 (55.1–58.2) 66.5 (57.8–73.8) 
Diagnostic PSA level (ng/mL), median (IQR) 56.2 (17.9–247.2) 10.8 (7.0–18.8) 

Clinical T-stage, n (%)   

TX 2 (1.8) 0 (0.0) 
T1 8 (7.3) 20 (38.5) 
T2 18 (16.4) 15 (28.8) 
T3 61 (55.5) 15 (28.8) 
T4 21 (19.1) 2 (3.8) 

NA 12 8 
Clinical N-stage, n (%)   

NX 86 (78.2) 52 (100.0) 
N0 9 (8.2) 0 (0.0) 
N1 15 (13.6) 0 (0.0) 
NA 12 8 

Clinical M-stage, n (%)   

MX 11 (10.0) 14 (26.9) 
M0 45 (40.9) 32 (61.5) 
M1 54 (49.1) 6 (11.5) 
NA 12 8 

Gleason score, n (%)   

2–6 11 (10.5) 16 (47.1) 
7 36 (34.3) 7 (20.6) 

8–10 58 (55.2) 11 (32.4) 
NA 17 26 

Death due to PrCa, n (%) 122 (100.0) 15 (25.0) 
Age at death, median (IQR) 60.0 (57.9–62.9) 79.5 (69.5–84.5) 

PrCa: prostate cancer; PSA: prostate-specific antigen; NA: not available. 
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In total, 22,850,167 variants were discovered and variant prioritization yielded 31 potentially 
damaging variants distributed across 17 DNA repair genes among the cases (Table 2).  

Table 2. Potentially damaging mutations identified in men with lethal prostate cancer. 

Gene RSID Type Ref Alt Protein Change ClinVar CADD/ 
REVEL MAF Tier 

ATM rs758081262 stopgain C T Q852X 5 35/- 2,5E−05 1 

ATM rs761486324 frameshift ins - TG H1082fs - -/- - 1 

ATM rs767099464 frameshift del C - H1083fs - -/- - 1 

ATM rs769142993 missense G C A2524P 4 31/0,89 2,5E−05 2 

ATM - frameshift del AGTAG - S2611fs - -/- - 1 

ATM rs753961188 frameshift ins - T L2885fs 5,4 -/- 4,2E−05 1 

ATM rs376676328 missense A G R2912G 3 29/0,88 3,0E−04 2 

BRCA1 rs41293459 missense C T R1699Q 5,4,3 35/0,79 2,5E−05 2 

CHEK2 rs555607708 frameshift del G - T367fs 5 -/- 1,8E−03 1 

CHEK2 rs137853007 missense G A R145W 5,4 33/0,81 3,3E−05 2 

CHEK2 rs730881700 frameshift ins - T E457fs 5,4 -/- 5,0E−05 1 

CHEK2 rs28909982 missense T C R117G 5,4 27/0,93 1,0E−04 2 

ERCC3 rs753182861 frameshift del T - Q586fs - -/- 2,0E−04 1 

ERCC3 rs145267069 missense A G F297S - 30/0,82 2,5E−05 2 

FAN1 rs778927800 missense G A R749Q - 34/0,89 8,3E−06 2 

FANCM rs147021911 stopgain C T Q1701X 4 35/0,12 1,3E−03 1 

HLTF rs184046773 missense C T G1886A - 33/0,81 2,0E−04 2 

MRE11A rs372000848 missense G A R305W 4,3 33/0,85 5,0E−05 2 

MUTYH rs34126013 missense G A R238W 5,4 33/0,79 9,2E−05 2 

NEIL1 rs5745906 missense G A G169D - 27/0,86 1,3E−03 2 

NTHL1 rs150766139 stopgain G A Q90X 5,3 35/- 1,5E−03 1 

POLG rs761584617 missense G A A1115V - 23/0,80 2,5E−05 2 

POLG rs113994097 missense C G W748S 5,3 33/0,91 8,0E−04 2 

POLG rs113994096 missense G A P587L 5,3 28/0,80 1,7E−03 2 

POLG rs121918052 missense C G Q497H 5,3 26/0,71 2,0E−04 2 

POLL rs139871590 missense C T G356S - 34/0,83 1,0E−03 2 

RAD18 rs138830303 stopgain T A K197X - 36/- 1,0E−04 1 

RECQL rs149937760 missense C T C414Y - 33/0,84 2,0E−04 2 

RECQL5 rs768705080 missense T G Y362S - 32/0,76 8,2E−06 2 

TP53 rs876660754 missense C T V173M 5,4 28/0,89 - 2 

TP53 rs779000871 missense G A T170M 3 24/0,87 8,2E−05 2 

Note: ClinVar clinical significance score defines as: 5 = pathogenic, 4 = likely pathogenic, 3 = uncertain 
significance. Minor allele frequency of variants derived from the Exome Aggregation Consortium. 
Ref: reference allele; Alt: alternative allele; ClinVar: database of reported associations of variants to 
clinical phenotypes; CADD: combined annotation dependent depletion; REVEL: rare exome variant 
ensemble learner; MAF: minor allele frequency; ins: insertion; del: deletion. 

Screening of those 17 genes among the population controls revealed 157 potentially damaging 
variants (Supplementary Table S1) of which 137 were only discovered in the control populations, 
giving a total of 168 potentially damaging variants. In total, 79 of these variants were known to be 
pathogenic or likely pathogenic according to ClinVar, while the remaining variants were considered 
potentially damaging due to their truncating effects on protein domains or by having a REVEL score 
≥ 0.75 and a CADD score ≥ 20. Of the 168 potentially damaging variants, 47 were classified as Tier 1 
variants and 121 as Tier 2 variants. In total, 21 of the 47 Tier 1 variants were stopgain, 16 were 
frameshift indels, and 10 were splicing site altering variants. 
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In exploring the final 168 variants among the 122 lethal cases, 15 men (12.3%) carried at least one 
potentially damaging Tier 1 germline mutation in a DNA repair gene (one man carried two different 
Tier 1 mutations in the ATM gene), which was significantly higher than that observed in unselected 
cases (0%, p = 0.003, Table 3).  

Table 3. Carrier rates of potentially damaging mutations, stratified by Tier 1 and Tier 2 classification, 
in men with lethal prostate cancer, unselected prostate cancer, and population controls. 

 Lethal PrCa 
(n = 122) 

Unselected PrCa 
(n = 60) p Value Finnish Controls 

(n = 3307) p Value Swedish Controls 
 (n = 6192) p Value 

Tier 1        

ERCC3, n (%) 1 (0.82) 0 1.000 0 0.036 3 (0.05) 0.075 
RAD18, n (%) 1 (0.82) 0 1.000 0 0.036 0 0.019 
ATM, n (%) 4 (3.28) 0 0.304 4 (0.12) <0.001 10 (0.16) <0.001 

FANCM, n (%) 2 (1.64) 0 1.000 89 (2.69) 0.772 44 (0.71) 0.223 
NTHL1, n (%) 2 (1.64) 0 1.000 24 (0.73) 0.236 39 (0.63) 0.187 
CHEK2, n (%) 5 (4.10) 0 0.173 60 (1.81) 0.080 5 (0.08) <0.001 

All, n (%) 15 (12.30) 0 0.003 177 (5.35) 0.004 101 (1.63) <0.001 
Tier 2        

MUTYH, n (%) 0 1 (1.67) 0.330 34 (1.03) 0.633 75 (1.21) 0.406 
ERCC3, n (%) 1 (0.82) 1 (1.67) 0.552 5 (0.15) 0.195 4 (0.06) 0.093 
HLTF, n (%) 1 (0.82) 0 1.000 20 (0.60) 0.534 9 (0.15) 0.177 
POLL, n (%) 1 (0.82) 0 1.000 15 (0.45) 0.441 28 (0.45) 0.433 

MRE11A, n (%) 1 (0.82) 0 1.000 0 0.036 0 0.019 
ATM, n (%) 2 (1.64) 0 1.000 13 (0.39) 0.098 28 (0.45) 0.114 

RECQL, n (%) 1 (0.82) 0 1.000 0 0.036 13 (0.21) 0.239 
FAN1, n (%) 1 (0.82) 0 1.000 2 (0.06) 0.103 16 (0.26) 0.283 
NEIL1, n (%) 1 (0.82) 0 1.000 3 (0.09) 0.135 16 (0.26) 0.283 
POLG, n (%) 5 (4.10) 0 0.173 197 (5.96) 0.555 190 (3.07) 0.429 
TP53, n (%) 2 (1.64) 0 1.000 3 (0.09) 0.012 7 (0.11) 0.012 

BRCA1, n (%) 1 (0.82) 0 1.000 2 (0.06) 0.103 5 (0.08) 0.111 
RECQL5, n (%) 1 (0.82) 0 1.000 3 (0.09) 0.135 1 (0.02) 0.038 
CHEK2, n (%) 1 (0.82) 1 (1.67) 0.552 2 (0.06) 0.103 28 (0.45) 0.433 

All, n (%) 16 (13.11) 3 (5.00) 0.123 299 (9.04) 0.148 420 (6.78) 0.011 

PrCa: prostate cancer. P value: the frequency of potentially damaging DNA repair gene mutation 
carriers among the lethal PrCa patients was compared to the frequency in unselected PrCa patients 
and the two control populations with the use of a two-sided Fisher’s exact test. 

No significant difference in the Tier 1 mutation carrier rate was observed between Swedish 
(13.3%) and Finnish (10.6%, p = 0.781) lethal cases. The two most frequently mutated genes were 
CHEK2 (4.1%) and ATM (3.3%, Table 3, Figure 2). The observed carrier rate of Tier 1 mutations was 
significantly higher in the lethal cases compared to the prevalence in the Swedish (1.6%, p < 0.001) 
and the Finnish (5.4%, p = 0.040) population controls. 
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Figure 2. Potentially damaging variants found in the CHEK2 and ATM genes. Locations of variants 
are shown as lollipop structures. The variants found in the Finnish/Swedish lethal or unselected cases 
are indicated by circles, and variants found in selected previous studies [7,11,18,28] are indicated by 
triangles. The variant type is indicated by the color. 

The observed carrier rate of potentially damaging Tier 2 germline mutations was higher in the 
lethal cases (13.1%) compared to that of the unselected cases (5.0%); however, the difference was not 
statistically significant (p = 0.123, Table 3). Compared to Swedish controls (6.8%, p = 0.011), a higher 
mutation rate was observed among the lethal cases; however, there was no statistically significant 
difference in the carrier rate of Tier 2 mutations between the lethal cases and the Finnish population 
controls (9.0%, p = 0.148). No significant difference in the Tier 2 mutation carrier rate was observed 
between Swedish and Finnish lethal cases (p = 0.102).  

No potentially damaging variants, neither Tier 1 nor Tier 2, were observed in the BRCA2 gene 
in any of the PrCa cases. In the population controls, we observed a carrier rate of Tier 1 BRCA2 
mutations of 0.68% and 0.64% in Sweden and Finland, respectively. 
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4. Discussion 

In this study, we characterized the germline variants occurring in the DNA repair pathway from 
122 lethal and 60 unselected PrCa patients. In total, 16 potentially damaging protein truncating 
variants (Tier 1) were identified in 15 men (12.3%) among the lethal cases significantly exceeding the 
carrier rate of 0% in the unselected cases as well as the population prevalence of 1.6% and 5.4% in 
Swedish and Finnish population controls. In contrast, the frequency of potentially damaging 
nonsynonymous single nucleotide variants (Tier 2) showed similar frequencies among lethal cases, 
unselected cases and population controls.  

Previous studies focusing on aggressive and metastatic PrCa cases have found higher 
frequencies of deleterious germline variants in BRCA2 than in any other DNA repair gene and thus 
considered it to be the major contributor among DNA repair genes to the aggressive phenotype 
[7,11,29]. However, we observed a frequency of zero pathogenic BRCA2 variants in our lethal cases, 
suggesting that BRCA2 does not play a major role in aggressive and lethal PrCa in the Swedish and 
Finnish populations. This agrees with earlier studies in which BRCA1 and BRCA2 were not found to 
have a significant contribution to PrCa susceptibility or aggressiveness in Finland or Sweden [30,31]. 
In a recent study by Mayrhofer and coworkers, sequencing of 217 metastatic PrCa cases from Sweden 
revealed only two pathogenic BRCA2 mutation carriers (0.93% carrier rate, [31]). Assuming the same 
carrier rate among our lethal cases, we would expect to find, on average, 1.1 carriers of BRCA2 
mutations in our study, and our null finding is therefore not surprising. In general, the frequencies 
of established prostate cancer susceptibility variants deviate from population to population. One such 
case is the known cancer susceptibility variant G84E in HOXB13, which has been shown to have a 
mutation frequency approximately three-fold higher in Sweden and Finland compared to the 
mutation frequency in North America [32–34]. 

ATM and its role in pancreatic cancer was recently reviewed [35] and germline mutations in 
ATM have been associated with predisposition for several cancer forms [36] including PrCa [3]. 
Several studies have particularly reported potentially damaging variants in ATM in aggressive PrCa 
cases [7,9,29,31]. We also found high frequencies of potentially damaging variants in our lethal cohort 
(3.28% and 1.64% for Tier 1 and 2 variants, respectively), while in the unselected cases, the frequencies 
of these variants were found to be very low, similar to those of the population controls. These data 
support the evidence that deleterious variants in ATM are associated with the lethal phenotype of the 
disease. ATM is known to have a predominant role in the DNA damage response, but it also plays a 
role in maintaining the overall functionality of the cell [37]. ATM mutations that cause its inactivation 
or deficiency have shown a variety of pathological manifestations, including oxidative stress, 
metabolic syndrome, mitochondrial dysfunction and neurodegeneration. Recently ATM deficiency 
was shown to promote the progression of castration-resistant PrCa by enhancing the Warburg effect, 
suggesting that ATM mutation contributes through a metabolic—in addition to DNA repair—
mechanism [38]. 

CHEK2 variants have been associated with PrCa predisposition in several studies [9,10], and we 
found that this gene was the most frequently mutated Tier 1 gene in our study (4.1%). In a recent 
study of 217 metastatic PrCa patients from Sweden [31], CHEK2 was also the most frequently mutated 
DNA repair gene (3.8%), highlighting the importance of CHEK2 mutations for aggressive PrCa in the 
Nordic population. Of note, in both the present study and the study by Mayrhofer and coworkers 
[31], c.1100delC was the most commonly observed mutation in CHEK2 (3.2% and 1.9%, respectively). 
Wu and coworkers also assessed the frequencies of potentially damaging CHEK2 variants in lethal 
cases and in cases with localized low-risk PrCa from the US [39]. Overall, no association was found 
between CHEK2 mutation status and lethal disease, but one variant, c.1100delC, was found to have a 
significantly higher frequency in the lethal cases (1.3%) compared to that of the low-risk PrCa patients 
(0.2%, p = 0.004), supporting the importance of this mutation for lethal PrCa. The c.1100delC has been 
shown to trigger nonsense-mediated mRNA decay, and subsequent protein analyses suggested that 
the truncated protein is likely highly unstable [40]. No mechanistic data are available for PrCa, but 
patients with CHEK2 mutations are among those showing a high response rate to treatment with the 
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poly-ADP ribose polymerase inhibitor Olaparib when cancers were no longer responding to standard 
treatments [41]. 

Of note, only heterozygous carriers of protein-truncating variants were observed in our study 
conforming to the classical two-hit model for tumor suppressor genes [42,43]. No novel candidate 
genes within the DNA repair pathway were found in our study. The lack of novel findings is not 
surprising considering the limited sample size of the study. Moreover, we applied a relatively strict 
approach for prioritizing variants, which may have led us to underestimate the role of some genes or 
even to completely miss potential candidate genes. 

We pooled Finnish and Swedish lethal cases to improve the statistical power of the association 
analysis. No adjustment for possible confounding, for example by population stratification, PSA 
screening history or family history of PrCa, was performed. Population stratification is always of 
importance in genetic association studies. However, genotypes from genome-wide single nucleotide 
polymorphisms were not available for all cases and we were therefore not able to adjust for possible 
population stratification through principal components in the current study. PSA screening is known 
to decrease PrCa-specific mortality [44,45] and it is possible that screening history may have 
confounded our analysis. However, for this to be the case PSA screening history must be associated 
with carrying pathogenic mutations in DNA repair genes which we find unlikely. Finally, Pritchard 
and coworkers [11] reported that deleterious mutation frequencies of DNA repair genes did not differ 
according to whether a family history of PrCa was present among 692 men with metastatic PrCa. 
Therefore, we argue that confounding by family history is of limited concern in our study. 

5. Conclusions 

In conclusion, germline variants in DNA repair genes have been shown to be associated with 
the aggressive form of PrCa—a finding that is supported by our study. Unlike previous studies, we 
did not observe high numbers of potentially damaging germline variants in BRCA2. Instead, 
mutations in ATM and CHEK2 were found to be most frequent among the lethal cases, highlighting 
the importance of the population-specific assessment of the variants contributing to the 
aggressiveness of PrCa. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/11/3/314/s1, Table 
S1: Potentially damaging variants discovered in control populations. 
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