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Abstract: Assessing dominance and additive effects of casein complex single-nucleotide
polymorphisms (SNPs) (αS1, αS2, β, and κ casein), and their epistatic relationships may maximize our
knowledge on the genetic regulation of profitable traits. Contextually, new genomic selection
perspectives may translate this higher efficiency into higher accuracies for milk yield and
components’ genetic parameters and breeding values. A total of 2594 lactation records were
collected from 159 Murciano-Granadina goats (2005–2018), genotyped for 48 casein loci-located
SNPs. Bonferroni-corrected nonparametric tests, categorical principal component analysis (CATPCA),
and nonlinear canonical correlations were performed to quantify additive, dominance, and interSNP
epistatic effects and evaluate the outcomes of their inclusion in quantitative and qualitative milk
production traits’ genetic models (yield, protein, fat, solids, and lactose contents and somatic
cells count). Milk yield, lactose, and somatic cell count heritabilities increased considerably when
the model including genetic effects was considered (0.46, 0.30, 0.43, respectively). Components
standard prediction errors decreased, and accuracies and reliabilities increased when genetic effects
were considered. Conclusively, including genetic effects and relationships among these heritable
biomarkers may improve model efficiency, genetic parameters, and breeding values for milk yield
and composition, optimizing selection practices profitability for components whose technological
application may be especially relevant for the cheese-making dairy sector.
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1. Introduction

The Murciano-Granadina goat is one of the main dairy goat breeds in Spain. This special relevance
has been achieved through its census, geographical distribution, and its milk quality and production,
which on the whole, is well-suited for the dairy industry [1].

The demands for goat milk have increased in recent decades, hence selection programs have
faced the need to adapt through new technological and methodological advances to more suitably and
appropriately respond to them. Contextually, the optimization of genetic evaluations has become an
important point to consider these days, as the success or failure of any potential selection strategy for a
certain trait fundamentally depends on the accuracy with which we are able to evaluate it.

The production of milk and its components is regulated by complex inheritance mechanisms and is
influenced by many pairs of genes whose expression depends on the interaction with the environment
in which the animals are located. One of the most relevant sets of genes involved in the regulation of the
expression of milk quantity and quality is the casein complex. The genetic variants for caseins (αS1, αS2,
β, and κ casein) influence the traits related to the components of milk and its profitability [2]. In this
sense, the estimation of genetic parameters and breeding values for milk production characteristics
and components in dairy goats is necessary, as these parameters are the indicators of the genetic
progress that can be achieved when a good selection and mating program in this species has been
implemented [3]. Knowledge of these parameters will help in the selection of superior individuals
for these characteristics [4], allowing to increase the average performance of animals and in this way,
establishing a constant expansion of the goat milk industry and its derivatives [5].

The obtaining of accurate estimates of heritability, variance components, and correlations is
necessary to predict the expected selection response and predicted breeding values. Traits related to
production, conformation, reproduction, production of milk, and its components are already considered
in dairy cattle breeding programs in many countries [6]. Dairy goat breeds are characterized by a
standardized uniform and stable selection criteria, which is always directed towards the common
objective of identifying animals able to maximize production while minimizing resource costs.

Including environmental effects and genetic factors facilitates the design of more efficient and
accurate models, whose prediction abilities improve the determination ability for future features and
productive potential of resulting products. This not only helps to cover market demands earlier in the
production chain but also at a lower cost, thus maximizing profitability.

The use of multivariate techniques, such as categorical principal components and nonlinear
canonical correlations [7], could be used to find the genetic (single-nucleotide polymorphisms,
SNP, combinations) or environmental factors that explain the greatest variability for a certain trait.
This provides a tool that enables building relationships that allow grouping animals according to
their similar productive traits, basing on the underlying genetic correlations across the different
traits considered.

Once the groups of animals with desirable traits have been identified, these individuals
constitute the basis for breeding programs aimed at improving traits such as productivity or
fertility, among others [8–10]. Once superior individuals have been detected, identifying the genetic
associations (dominance and additive effects) and the epistatic genetic relationships between traits
of economic importance is essential as it may optimize the profitability of selection policies. In this
context, multivariate analysis would allow us to address the decisions that may define the highest
average-performing offspring in relation to the values of previous generations of heterosis and the
increase in variability of the population [10,11].

For these reasons, the objective of this study was to evaluate and quantify the genetic repercussions
of the inclusion of the additive and dominance components of SNP biomarkers clustered in principal
component dimensions for the genes in the casein complex and of the epistatic relationships among
such heritable units in predictive models on the estimation of genetic parameters (heritabilities
and variance components), breeding values, and their accuracies for milk yield and components in
Murciano-Granadina goats.
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2. Materials and Methods

2.1. Milk Yield Standardization and Composition Analysis

The productive management of Murciano-Granadina, as a polyestric breed is characterized by
two annual kidding periods, with lactations lasting longer than 210-240 days [1]. Milk yield and
components were estimated until 210 days of lactation and expressed in Kg [12]. Each goat’s real milk
production (RPj) was computed through the equation described in Pizarro Inostroza et al. [7]. Official
control policies are stated by the Royal Decree-Law 368/2005, on 8th April 2005, regulating official
milk yield controls for the genetic evaluation in the bovine, ovine, and caprine species of the Spanish
Ministry of Agriculture (2005). Milking policies varied across farms depending on whether milking
was performed every 4 or 6 weeks, during the morning or afternoon (AT4, AT4T, AT4M, A6, AT6M,
and AT6T). First control (d1) and the last (d2) were assessed individually for every goat computing the
days between the day the animal was born (BD) and the date of the first control (FC), and the days
between the penultimate control (PC) and the last control (LC), respectively using the formulas in
Pizarro Inostroza et al. [7]. To save interindividual differences that could be ascribed to differences in
milking period among other factors, birthdate information, and the date on which several controls were
performed until 210 lactation days were included to normalize milk yield for each goat. An average of
approximately five controls was performed per goat. Standardized yield to 210 days per goat was
calculated using the formula and model described in Pizarro Inostroza, et al. [7]. Milk sampling was
carried out monthly and officially analyzed at the Milk Quality Laboratory, in Cordoba (Spain) to
quantify protein, fat, solids, lactose content, and somatic cells count with a MilkoScan™ analyzer FT1.

2.2. Animals

Given the costs involved in genotyping, a selection process of goats that had been considered
for milk yield standardization and composition analysis was implemented. This sample selection
process aimed at genotyping a representative sample of animals for 48 SNPs in the casein complex from
which complete records for several lactations existed. Hence, animals present in the herdbook of the
National Association of Breeders of Goats of Murciano-Granadina breed (CAPRIGRAN) were ranked
considering the most recent and updated official breeding values for milk yield and composition
reported for all the animals published in 2015. Provided multiple traits are considered, we developed
combined selection index (ICO) procedures following the premises in Van Vleck [13] to summarize
the value of each individual comprising each of its partial values for milk yield and composition and
these were computed for each animal using MatLab r2015a [14]. We decided not to include solids
in the ICO, as redundancies may occur deriving from the relationship of this trait and fat or protein
content. To determine the weights to apply to each trait, we considered the phenotypic relationship
across milk yield and composition traits (except for solids), scoring their relevance as selection criteria
when the breeding goal was milk yield and quality. In matrix notation, the weights to be applied on
the selection index combining the partial scores of each modality were obtained as, b = P−1g, where
b is the vector of weights to be applied to each production or content trait, P is the phenotypic (co)
variance matrix, and g is the vector of genetic (co)variances of every trait with each other. As a result,
and considering the market demands, the weights for milk yield, fat, protein, and lactose followed the
proportion of 1:1:1:1, respectively. The combined index used (ICO) was as follows:

ICO =
PBVmilkyieldW1

µmilkyield
+

PBV f atW2

µ f at
+

PBVproteinW3

µprotein
+

PBVlactoseW4

µlactose
, (1)

where PBV is the predicted breeding value for each of the traits and animals included in the matrix;
W1 is the weight for milk yield, W2 for fat, W3 for protein, and W4 for lactose in kg and standardized
to 210 days; and µ the mean for each of the traits included in the ICO computed in Kg and at 210 days.
After ICO was computed for each of the animals included in the matrix, we sorted a total of 200 animals
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from the whole routine milk recording of Murciano-Granadina goat breed in a ranking considering
their ICO value obtained at the previous genetic evaluation. Animals with extreme PBVs may be less
efficient and less balanced than we could expect at first. Furthermore, not all traits are affected to the
same degree by selection for these extremes. For these reasons, initially, 200 animals were randomly
selected and ranked as follows: 67 females presenting the lowest ICO values in the rank, 66 females
with values around percentile 50, and 67 females presenting the highest ICO values in the rank,
respectively. This sample selection process was performed to ensure that we worked on an adjusted
representative sampling of the genotype distribution in the population. Out of these 200 animals
initially considered, we discarded those whose phenotype registries were missing or incomplete. As a
result, the final sample set for genotyping consisted of 2594 direct records of 159 studbook registered
goats from which blood samples were taken for genotyping. Direct records were collected from
28 Southern Spanish farms in random periods, from 2005 to 2018. The age of the animals in the sample
ranged from 1 to 9.15 years (1.57±1.11 years, mean ± sd).

2.3. Genotyping

DNA isolation was performed through a modification of the procedure of Miller et al. [15].
We selected sixteen samples from Murciano-Granadina herdbook’s nonrelated individuals at random.
Supplementary Table S1 shows oligonucleotide sequences and SNPs promoters, UTRH3’ regions,
and polymorphic exons. Polymorphic regions amplification was performed using Platinium High
Fidelity (LifeTechnology, Carlsbad, CA, USA) PCR kit. MACROGEN sequencing service (Macrogen
Inc., Seoul, Korea) was used to sequence the PCR product. MEGA7 software was used to analyze
pherograms and Ensembl Genome Browser 97 database was used to evaluate polymorphic regions’
previous annotations for SNP information on markers assessed regarding minor and major allelic
frequencies, location, among others [16]. We identified 48 SNPs in the individuals sampled. Genotyping
was performed using the KASP assay (LGC Limited, Fordham, UK), analyzing raw allele calls with
KlusterCaller software (LGC Limited, Fordham, UK). Heterozygosity values of around 40%, suggested
the number of SNPs to be used as genomic controls was sufficient [17] to avoid effects derived from
the stratification of the population.

2.4. Single-Nucleotide Polymorphisms (SNPs) Additive and Dominance Genetic Effects Identification and
Codification and Dimensionality Reduction Using Linkage Disequilibrium (LD) and Categorical Principal
Component Analysis (CATPCA)

Additive and dominance effects for each SNP were determined and encoded, as described in
Pizarro Inostroza et al. [7]. Normal parametrization encoding was not used as it may potentially
presume an ordinal relationship among the levels of each factor (every possibility within each SNPs
in our case) with dominant homozygous being encoded as -1, heterozygous being encoded as 0,
and recessive homozygous being encoded as 1 for additive genetic component and so on. Nonetheless,
this assumption may be erroneous when the levels of these factors present in fact a nominal nature.
Mistakenly presuming an ordinal distribution among the levels within a certain factor, which indeed is
nominal, may condition sample properties and the interpretation of the outcomes derived from the
analyses performed.

Linkage disequilibrium (LD) and Categorical Principal Component Analysis (CATPCA) results
were evaluated to select the minimum number of SNPs capturing the highest genetic variability of
a given trait. The number of SNPs depends on the distribution of SNP allele frequencies and the
existence of inter SNP LD. Minor allele frequency (MAF) enables differentiating between populations’
common and rare variants (MAF < 0.05). MAF was calculated using default settings for all SNPs by
PLINK v1.90 [18]. Casein complex SNPs’ Linkage disequilibrium extent (LD) was calculated using
HaploView software [19], scoring LD through D’ (normalized linkage disequilibrium coefficient) and
r2 (linkage disequilibrium coefficient of determination). The total length of casein loci and distances
between adjacent loci were determined following the premises presented by Dagnachew et al. [20].
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Using a unique test to evaluate genotype-phenotype association, we lost the ability to control for
confounding factors such as those derived from the structure of the population, genomic stratification,
genetic environment, and gene interaction (epistatic relationships). Contextually, CATPCA can
determine the variability explained by a certain set of factors that can derive from genome-wide
analyses (single-nucleotide polymorphisms (SNP). This way, potential redundancies can be reduced
through a rather, hence, more effective comparison space between SNPs [20,21]. This way, CATPCA,
and particularly Bonferroni correction corrects for the bias derived from the inclusion of a large number
of factors (increased likelihood of false positives), maximizing the variability explanatory power
of factors combinations identifying and ruling out potential misinterpretations of SNP/phenotype
associations [20,22]. Horne and Camp [23] proposed that principal component analysis (PCA)
can evaluate SNP correlations determining clusters in LD (LD-clusters), setting an optimal set of
group-tagging SNPs (gtSNPs) determining intra-genic diversity more efficiently and minimizing
the necessary requirements for the evaluation of informative association. Unlike haplotype block
(HB) and haplotype-tagging SNP (htSNP) methods based on Linkage Disequilibrium Analysis (LD),
PCA technique (also applicable to CATPCA) does not require SNPs to be in Hardy-Weinberg’s
equilibrium [24]. Furthermore LD-groups of SNPs do not need to be located in close DNA fragments.
This way, there is a fraction of diversity variance, that of fragments located at different fragment being
related, which would be lost and which can be computed through CATPCA [24,25]. Kaiser Varimax
Rotation was used as well, as it corrects the bias derived from high correlations among factors and a
small number of variables and zero correlations in the rest.

2.5. Study of OVERALs/Nonlinear Canonical Correlations (NLCC) to Identify and Encode Epistatic Effects

After identifying clustered dimensions from CATPCA analysis, the evaluation of the relationships
established among such dimensions, using nonlinear canonical correlations (NLCC), can quantify
the epistatic relationships that exist between SNPs that act as a single unit. NLCC can help identify
similarities between SNP clusters. Despite several methods being available to infer the study of epistasis,
such as standard linear canonical correlation (CCA) and Artificial Neural Network analysis (ANN), these
normally fail in two aspects, namely the issues of local minima and overfitting [26]. The background
supporting the methods to identify genetic interactions lies in the likelihood that the variability in the
expression of a certain trait differs under the effects of such interaction (epistasis) [27,28]. Not only
NLCC provide information on the relationship among SNPs clusters (identified by CATPCA), but also
the degree at which they may affect productive traits variability. SNPs with component loadings of
over |0.5| [29], were the most effective ones to identify relationships among SNP clusters because they
were positioned farther from the mean [30].

Additionally, NLCC can be used to validate whether a presumed ordinal or nominal condition for
the factors analyzed was in fact correctly assigned. Hence, if we consider the different possibilities
(levels) within the same factor as nominal, either using normal parametrization, that is, encoding the
dominant homozygous possibility as -1, the heterozygous possibility as 0, and dominant recessive
possibility as 1 or alternatively encoding the dominant homozygous possibility as 1, the heterozygous
possibility as 2 and the dominant recessive possibility as 3, the interrelationship across possibilities
remains the same. Moreover, at the same time we prevented the problems arising from the use of
negative numbers as a nominal category (level) occurring with many statistical programs. In this
context, NLCC validation stems from the fact that this technique permits to classify factors into
two or more sets and scale them as multiple nominal, single nominal, ordinal, or numerical. Then,
the interpretation of their direction is obtained from the position of projected centroids which can be
used as a validation for the encoding pattern used.

Explicitly, considering a variable as ordinal implies that the order of the levels (categories) within
each factor must be preserved. Then, if actual and projected centroids are not separated, a presumable
ordinal relationship does not exist, and ordinal variables should have been considered as nominal as in
our study.
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The bidimensional solution for noncanonical linear correlation analysis explained 79.65% of the
total variance in the phenotypic traits evaluated across SNP groups (57.56% of the variance for the first
dimension and 42.43% for the second dimension). Out of the 48 SNPs evaluated, SNP18 was the most
frequent (component loading >|0.5|, for dimension 2) and one of the most relevant when explaining
intergroup epistatic variability for milk yield and components.

2.6. Preliminary Statistical Assumption Testing

Milk yield and components have commonly been assumed to be normally distributed according
to historical research. However, data obtained from the field often challenge researchers, as the
methodology implemented or study conditions promote data to violate regular parametric assumptions.
In this context, new alternatives for the assessment of such data offer new opportunities to fit the
tools used to the characteristics of the data to be assessed [31]. Walsh’s Outlier non-parametric test
was used to detect multiple outliers in the data set. Although this test requires a large sample size
(n>220 for a significance level α of 0.05), it may be used whenever the data are not normally distributed.
Data was purged and animals whose records fell outside the ranges reported for the breed in the
bibliography were discarded. Parametric assumptions of normality, homoscedasticity, sphericity,
and multicollinearity were tested on complete historical records in the official dairy control of the
Murciano-Granadina breed up to 2018 (n = 2,359,479 records of 151,997 goats) for milk yield, content
(fat, protein, solids, and lactose) and somatic cells count. The Shapiro-Wilks Francia normality routine
of the test and distribution graphics package of the Stata Version 15.0 software test was used to test the
normality (Supplementary Table S1). The rest of the parametric assumptions (Levene’s test to evaluate
homoscedasticity and Mauchly’s W test to evaluate sphericity and Tolerance and Variance Inflation
Factor to test for multicollinearity, respectively) were performed using SPSS Statistics for Windows
statistical software, Version 25.0.

Parametric assumptions can be violated as a result of distribution irregularities or bias occurring
during the selection process of research samples. However, despite parametric assumptions could
have been violated by Murciano-Granadina historical records of milk yield and composition, data for
milk performance and composition from the goats at the same lactational stage has been reported
to presumably follow a normal distribution [7,12,32], which may support the implementation of
parametric approaches. Hence, parametric assumptions were tested again, clustering the records from
goats at the same lactation, to detect potentially occurring biases in the distribution of our data, as a
way to reinforce our decision on whether to implement parametric or nonparametric approaches.

2.7. Non-Genetic and Genetic Fixed Effect Statistical Analysis

As stated by Bidanel [33], increasingly sophisticated genetic evaluation models may undoubtedly
contribute to increasing the efficiency of animal breeding plans. In these regards, the same author
suggested the need to adequately describe the structure of dispersion parameters, hence, the need to
consider realistic genetic models. However, careful model checking and validation is a necessary prior
step to ensure that the proposed model is fully justified. Additionally, Andonov et al. [34] reported the
likelihood-ratio test, Akaike information criterion, and mean-squared error of prediction favor more
complex models. In this context, models fitting animals’ additive genetic merit as the only genetic
effect, enable the approximation of second derivatives of the likelihood function to provide appropriate
estimates of sampling covariances between estimates. However, models containing other genetic
effects, either these are non-additive genetic or maternal genetic effects, often report large negative
sampling correlations between estimates, which results in a shape of the likelihood surface which in
general does not allow second derivatives to be approximated by numerical differentiation [35]. Thus,
particular consideration must be provided to the statistical selection process of fixed effects.

Following these premises and the preliminary analyses performed, parametric assumptions
were also tested on our field data. As preliminary tests and our study data had violated parametric
assumptions, a nonparametric approach was suggested. The Kruskal–Wallis H test was performed
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to identify differences in the distribution of the data for milk yield (Kg), fat, protein, solids, lactose
content (%), and somatic cell count (cs/mL) across the levels of the same factor (genetic factors whether
they are additive or not (dominance and epistasis) and nongenetic factors). Out of all possible level
comparison pairs, only statistically significant pairwise comparisons were considered by Dunn Test.
Then, Bonferroni correction was applied to reduce the likelihood of an increased Type I error potentially
deriving from redundancies resulting from the inclusion of an excessive number of factors considering
the relatively limited sample of our study. Then, partial eta square (ηp2) was computed as it expresses
inter category differences and their associated error variance as a percentage. Afterwards, univariate
tests must be carried to isolate the pairs of categories of each factor between which a significant
difference in the mean value for the independent variable exist. Past research suggests ηp2 may be
more appropriate than eta square (η2) after performing a multifactorial design, as ηp2 provides a
score for the association strength between independent factors and dependent variables, excluding the
variance produced by the rest of factors considered in the model as suggested by Brown [36].

When parametric assumptions are not fulfilled, the Kruskal–Wallis test is an alternative to
MANOVA (Multivariate ANOVA). Kruskal–Wallis H statistic is based upon a single independent factor
accounting for the variance explained of a dependent variable with no additional factor contributing to
the explanation of such variance at the same time, a particular situation which makes ηp2 be equal
to η2. Contextually, this may be of remarkable importance when we consider non-possibly overlapping
empirical variables as suggested in Pizarro et al. [32]. A complete description of the statistical analyses
carried out on the nongenetic and genetic fixed effects included in the genetic model can be found in
Pizarro et al. [32].

The analysis of the relationship between factors such as Days in Milk (DIM), Days to first control
(DFPC), and Days from last control to drying (DLD), number of kids born alive and number of kids
born dead and milk yield (kg) and component variables was performed using Pearson product-moment
correlation coefficient. Kruskal–Wallis H test, Dunn test, and Bonferroni’s correction and Pearson
Product-Moment correlation analysis were carried out with SPSS Statistics software for Windows,
version 25.0 was used to perform statistical tests.

2.8. Genetic Model Comparison, Phenotypic and Genetic Parameter Estimation

Genetic analyses were performed using the data provided by the Murciano-Granadina Breeders
Association, derived from the actions implemented within the scope of its breeding program. Overall,
the pedigree included records of 244,046 animals with indirect or direct records related through
at least one known ancestor (232,804 does and 11,242 bucks), while the phenotype field database
comprised 2594 direct records of 159 goats evaluated from 2005 to 2018 that have been genotyped.
Therefore, a multitrait animal mixed model with repeated measures was used to estimate (co) variance
components, and heritability, repeatability, phenotypic and genetic correlations and standard errors of
such correlations. In matrix notation, the following multitrait animal model with repeated measures
was used:

Yyfpdmlsc = µ+ Fara + Pyeb + Pmonc + Psed + Bnume + Cyef + Cmong + Cseh + Nci

+Mroutj + Btyk + Dyel + Dmonm + Dsen + DIMo + DFPC + DLDq + Alnr + Dens + PC1t

+PC2u + PC3v + PC4w + PC5x + PC6y + PC7z + NLCCaa + b1Aab + b2
2Aab + Animalac

+PEad + εyfpdmlsc,

(2)

where Yyfpdmlsc is the separate score of milk yield (y) and components (fat (f), protein (p), solids (dm),
lactose (l) in kg and somatic cells (sc) count cs/mL) for a given animal; µ is the overall mean; Fara is the
fixed effect of the ath farm/owner (a = 28 farms); Pyeb is the fixed effect of the bth year of parturition
(b = 2005–2018); Pmonc is the fixed effect of the cth month of parturition (c = January to December);
Psed is the fixed effect of the dth season of evaluation (d = Autumn, Winter, Summer, and Spring);
Bnume is the fixed effect of the eth birth number (e = 1-9 Birth); Cyef is the fixed effect of the fth control
year (f = 2005–2018); Cmong is the fixed effect of the gth control month (g = January to December);
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Cseh is the fixed effect of the hth control season (h=Autumn, Winter, Summer, and Spring); Nci is the
fixed effect of the ith number of control (i=1-31 controls); Mroutj is the fixed effect of the jth milking
routine (j = A4, AT4T, AT4M, A6, AT6M, AT6T); Btyk is the fixed effect of the kth birth type (k = Simple,
Double, Triple, abortion in lactation); Dyel is the fixed effect of the lth drying year (l = 2005–2018);
Dmonm is the fixed effect of the mth drying month (m = January to December); Dsen is the fixed effect
of the nth drying season (n = Autumn, Winter, Summer, and Spring); DIMo is the fixed effect of the
oth number of days in milk (o = 1-183 days); DFPC is the fixed effect of the pth number of days to
first control (p = 1-226 days); DLDq is the fixed effect of the qth number of days from last control
to drying (q = 1-61 days); Alnr is the fixed effect of the rth number of kids born alive (r = 0-5 kids);
Dens is the fixed effect of the sth number of kids born death ( s= 0-3 kids); PC1t is the fixed effect of
the tth additive and dominance effect of SNPs in PC1 (t = 1-17); PC2u is the fixed effect of the uth
additive and dominance effect of SNPs in PC2 (u = 1-6); PC3v is the fixed effect of the vth additive and
dominance effect of SNPs in PC3 (v = 1-17); PC4w is the fixed effect of the wth additive and dominance
effect of SNPs in PC4 (w = 1-20); PC5x is the fixed effect of the xth additive and dominance effect
of SNPs in PC5(x = 1-15); PC6y is the fixed effect of the yth additive and dominance effect of SNPs
in PC6 (y = 1-14); PC7z is the fixed effect of the zth additive and dominance effect in PC7 (z = 1-12);
NLCCaa is the fixed effect of the aath epistatic nonlinear canonical correlation between SNPs (NLCC)
(aa = 1-10); age in months was considered a linear and quadratic covariate, hence b1 and b2

2 are the
linear and quadratic regression coefficients on the age of evaluation (Aab), Animalac is the random
additive genetic effect of the acth goat, PEad is its permanent environmental effect of each goat, and
εyfpdmlsc is the random residual effect.

Afterward, genetic factors (additive and non-additive, dominance and epistasis) were then
excluded from the model to isolate their potential effects on the traits measured. The rest of the terms
included in the model were the same as those defined above. In matrix notation, the multitrait animal
model with repeated measures excluding genetic factors was as follows:

Yyfpdmlsc = µ+ Fara + Pyeb + Pmonc + Psed + Bnume + Cyef + Cmong + Cseh + Nci

+Mroutj + Btyk + Dyel + Dmonm + Dsen + DIMo + DFCp + DLDq + Alnr + Dens + b1At

+b2
2At + Animalu + PEv + εyfpdmlsc,

(3)

MTDFREML software package [34] was used to carry out restricted maximum likelihood-based
univariate analyses to calculate estimates for heritabilities and variance components. Afterward,
bivariate analyses to estimate covariates and genetic and phenotypic correlations. The iteration process
used sought a convergence criterion level of 10−12. Link functions and their mathematical development
is shown in Boldman et al. [37]

2.9. Non-Genetic Best Linear Unbiased Estimators (BLUE) for Fixed Effects and Covariates and Best Linear
Unbiased Predictors/Breeding Value Prediction (BLUP, PBVs)

After reaching convergence, best linear unbiased estimators for non-genetic fixed effects and
covariates (BLUE) and best linear unbiased predictors for random effects, i.e., predicted breeding values
(BLUP, PBVs), were directly estimated with MTDFREML software [34]. Accuracies and reliabilities for
milk yield, fat, protein, and solids for each animal in the matrix using the same software.

2.10. Predicted Breeding Values (PBV), Standard Error of Prediction (SEP), Accuracies (RTi), and Reliability
(Rap) Comparison

The genetic evaluation performed in the present study was undertaken using BLUP, restricted
maximum likelihood methodology and a deep pedigree of 244,046 animals that ranged from zero
to six complete generations or zero to fifteen maximum generations in length (depending on the
individual). Pearson product-moment correlation analysis between the predicted breeding values (PBV)
for milk yield, protein, fat, and solids (expressed in kg) obtained using both the model including the
αS1-casein genotype and the one excluding it for all the animals included in the pedigree (n = 244,046)
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of Murciano-Granadina breed goats was carried out to check for the replicability of the results
across models.

2.11. Ethics Approval and Consent to Participate

The present study works with records provided by the National Association of Breeders of
Murciano-Granadina breed Goats (CAPRIGRAN) rather than live animals directly, hence no special
permission was compulsory.

3. Results

3.1. SNPs Dimensionality Reduction Using Linkage Disequilibrium and CATPCA

Once the additive and dominance effects have been encoded for each of the 48 SNPs, LD and
Categorical Principal Components (CATPC) were studied to select which SNPs may capture the highest
genetic variability in milk yield and its components. As suggested by Pizarro Inostroza et al. [7], we can
infer that CATPCA method overcomes existing htSNP methods, as it proposes the optimal number of
SNPs to choose while it simultaneously maximizes the amount of genetic variation explained by a
candidate gene or a group of candidate genes, such as the casein complex in our study, using a minimal
number of SNPs [23].

Seven dimensions were identified at a Cronbach’s alpha level of over 0.803 (as described in Pizarro
Inostroza et al. [7]), which is over the minimum level to support reasonable internal consistency of the
elements (SNPs) selected, hence, the reliability is acceptable after redundant SNPs are removed. These
clustering dimensions were encoded and included in the genetic model to quantify for additive and
dominance effects. Dagnachew and Ådnøy [38] reported the occurrence of high component loadings
in the same categorical principal component dimension to be a sign of higher correlations among the
SNPs loading over |0.5| for that particular dimension or what is the same of LD-groups of SNPs.

Out of the 48 SNPs studied, a total of 40 SNPs contributed to the seven-dimensional model in a
meaningful way (factor loadings>|0.5| for CATPCA), then the different components (PC1, PC2, PC3,
PC4, PC5, PC6, and PC7) were best described by the SNPs highlighted included in the red rectangle in
Figure 1. SNP7, 9, 11, 21, 27, 30, 33, and were discarded given they did not participate in any of the
dimensions identified (confounding or variance explaining redundant SNPs).

3.2. Study of OVERALs/Nonlinear Canonical Linear Correlations (NLCC) to Identify and Encode
Epistatic Effects

The analysis of nonlinear canonical correlations identified two highly loaded dimensions (0.917
and 0.676 eigenvalues for dimensions 1 and 2, respectively). Average loss (2-1.593 = 0.407). Hence,
a bidimensional solution was chosen, so 1.593/2 = 79.65% of the variation was explained by the SNPs
highly loading (component loading>|0.5|) for both dimensions. 0.917/1.593 = 57.56% of the actual fit
was calculated by the first dimension and 0.676/1.593 = 42.43% by the second dimension was not high.
Supplementary Table S2 shows a summary of the results of the epistatic relationship through NLCC,
SNPs explaining intergroup variability and reinforcing epistatic interaction (multiple fit>0.1), alleles
for each SNP, their relative frequency and dominance ratios.

3.3. Non-Genetic and Genetic Fixed Effect Analysis

Supplementary Table S3 presents a summary of the results for the Kruskal–Wallis H test and
partial eta squared coefficient (ηp2), and Pearson Product-Moment Correlation Coefficient (ρ) providing
information regarding the existence of differences in the distribution across levels within the same
factor and the variance explanatory power of these independent variables factors.
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Figure 1. Categorical principal component analysis (CATPCA). Rotated component loadings for
each dimension included in the rotated model using the Varimax method with Kaiser normalization
(Red rectangle marks all single-nucleotide polymorphisms (SNPs) significantly loading (≥|0.5|) across
the seven PC dimensions, hence, contributing to the explained variance). Accessed from Pizarro
Inostroza et al. [7].
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3.4. Genetic Model Comparison, Phenotypic and Genetic Parameters Estimation

The estimates for heritability, genetic, phenotypic, and permanent environmental variance obtained
through restricted maximum likelihood methods for models including and excluding the additive
and dominance effects for SNPs in Principal Components from 1 to 7 and the epistatic nonlinear
canonical correlation between SNPs as fixed effects are shown in Table 1. The estimated results for the
production of milk, fat, protein, solids, lactose (%), and somatic cells (cs/mL) when additive, dominance,
and epistatic interactions of the SNPs of the genes in the casein complex (CSN1S1, CSN2S2, CSN2,
CSN3) considered as a fixed effect were 0.46; 0.22; 0.25; 0.21; 0.30, and 0.43, respectively. Somehow,
comparatively, when these factors were excluded, heritabilities were, 0.21; 0.24; 0.24; 0.24; 0.22, and 0.20,
respectively (Table 1). Genetic (rG) and phenotypic (rP) correlations [39] are shown in Table 2.

Table 1. Estimated components of variance, heritability (h2), and standard error (SE) for milk yield
(kg), protein (kg), fat (kg), solids (kg), lactose (kg), and cells somatic (cs/mL) obtained from multivariate
analyses through REML methods in goat milk including and excluding αS1-Casein, αS2-Casein,
β-casein, and κ-casein additive, dominance, epistatic factors as a fixed effect.

Model/Genetic Effects
as a Fixed Effect Trait (Kg) σ2

a σ2
p σ2

pe σ2
e h2

±SE

Including genetic effects
as a fixed effect.

Milk yield 0.75450 1.63632 0.140011 0.74180 0.46±0.05
Fat 0.37663 1.72151 0.204217 1.14066 0.22±0.01

Protein 0.06216 0.24909 0.0276599 0.15927 0.25±0.01
Solids 0.53164 2.58194 0.285996 1.76430 0.21±0.05

Lactose 0.03361 0.11198 0.0213750 0.05699 0.30±0.01
Somatic cells 1,450,503.8674 3,373,095.25 36,251.9 1,886,339.4833 0.43±0.07

Excluding genetic
effects as a fixed effect.

Milk yield 0.34930 1.65896 0.172186 1.13747 0.21±0.01
Fat 0.42176 1.72965 0.177331 1.13056 0.24±0.01

Protein 0.06541 0.26935 0.0286661 0.17527 0.24±0.02
Solids 0.67591 2.80513 0.291377 1.83785 0.24±0.01

Lactose 0.02505 0.11168 0.0114023 0.07523 0.22±0.01
Somatic cells 483,509.3208 2,368,170.87 244,535. 1,640,126.5503 0.20±0.05

Table 2. Estimated heritabilities (h2) (diagonal), phenotypic (rP) (above diagonal), and genetic (rG)
(below diagonal) correlations for milk yield (kg), protein (kg), fat (kg), solids (kg), lactose (kg), and
somatic cells (cs/mL) obtained in bivariate analyses through REML methods in goat milk including and
excluding αS1-Casein, αS2-Casein, β-casein, and κ-casein additive, dominance, epistatic factors as a
fixed effect.

Model/Genotype
as a Fixed Effect Trait Milk

Yield Fat Protein Solids Lactose Somatic Cells
Count

Including genotype
as a fixed effect

Milk yield 0.46 −0.41 −0.48 −0.46 0.12 −0.24
Fat −0.42 0.22 0.56 0.96 −0.10 0.16

Protein 0.09 0.43 0.25 0.71 −0.29 0.29
Dry mater 0.08 0.85 0.60 0.21 −0.03 0.15

Lactose −0.07 0.05 −0.20 0.03 0.30 −0.38
Cells somatic −0.27 0.18 0.18 0.16 −0.22 0.43

Excluding genotype
as a fixed effect

Milk yield 0.21 −0.33 −0.41 −0.38 0.09 −0.25
Fat −0.29 0.24 0.46 0.95 −0.10 0.16

Protein −0.33 0.39 0.24 0.66 −0.28 0.28
Dry mater −0.34 0.73 0.51 0.24 0.03 0.14

Lactose 0.08 −0.08 −0.16 0.02 0.22 −0.36
Cells somatic −0.18 0.13 0.24 0.12 −0.32 0.20

a h2
± SE; b rP ± SE;

crG ± SE.

3.5. Predicted Breeding Values (PBV), Standard Error of Prediction (SEP), Accuracies (RTi), and Reliability
(Rap) Comparison

The comparison of predicted breeding values did not report significant differences in regard to
whether genetic effects (additive, dominant or epistatic effects) were included or not. Contrastingly,
Table 3 reports descriptive statistics for standard error of prediction (SEP) and accuracies (RTi) between
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models when genetic effects (additive, dominance or epistatic effects) were included or excluded.
Simultaneously, Table 4 shows significant correlations were found when predicted breeding values
were compared between the model which considered genetic effects (additive, dominance, and epistatic
relationship) and the one which did not, for milk yield, composition traits, and somatic cells counts.

Table 3. Summary of the descriptive statistics for standard error of prediction (SEP) and accuracies
(RTi) between models when genetic effects (additive, dominance, or epistatic effects) were included
or excluded.

Model Including Additive, Dominance and
Epistatic Genetic Effects

Excluding Additive, Dominance and
Epistatic Genetic Effects

Descriptive
Min Max Mean SD Min Max Mean SDParameters

Milk yield (Kg) SEP 0.59 0.69 0.59 0.01 0.87 1.02 0.87 0.01
Rti 0.00 0.66 0.01 0.03 0.00 0.02 0.00 0.00

Fat (Kg) SEP 0.00 0.76 0.65 0.01 0.61 0.72 0.61 0.01
Rti 0.00 0.96 0.01 0.05 0.00 0.02 0.00 0.00

Protein (Kg) SEP 0.17 0.30 0.26 0.00 0.25 0.29 0.25 0.00
Rti 0.00 0.76 0.01 0.04 0.00 0.02 0.00 0.00

Solids (Kg) SEP 0.00 0.96 0.82 0.02 0.73 0.85 0.73 0.01
Rti 0.00 0.96 0.02 0.06 0.00 0.02 0.00 0.00

Lactose (Kg) SEP 0.13 0.19 0.16 0.00 0.18 0.21 0.18 0.00
Rti 0.00 0.61 0.01 0.03 0.00 0.02 0.00 0.00

Somatic cells
count (cs/mL)

SEP 554.46 815.37 696.41 8.81 1204.37 1412.25 1206.80 14.82
Rti 0.00 0.60 0.01 0.03 0.00 0.02 0.00 0.00

Table 4. Pearson Product Moment (ρ) correlation comparison of Predicted breeding values’ (PBVs),
Standard error of prediction (SEP) and accuracies (RTi) between models when genetic effects (additive,
dominant, or epistatic effects) were included or excluded.

PBV Parameters Pearson Product Moment Correlation

SEP Milk yield (Kg) 0.994 **
RTi Milk yield (Kg) 0.103 **

SEP Fat (Kg) 0.674 **
RTi Fat (Kg) 0.097 **

SEP Protein (Kg) 0.671 **
RTi Protein (Kg) 0.099 **
SEP Solids (Kg) 0.022 **
RTi Solids (Kg) −0.009

SEP Lactose (Kg) 0.045 **
RTi Lactose (Kg) 0.012 *

SEP Somatic cells (cs/mL) 0.036 **
RTi Somatic cells count (cs/mL) −0.010

SEP: Standard error of prediction; RTi: accuracy. p < 0.01 *; p < 0.05 **.

4. Discussion

Genomic selection could be basically considered a form of marker-assisted selection in which a
very large number of genetic markers (10.000 up to ≈800.000 SNPs) are used. Quantitative trait loci
(QTL) are sections of DNA that correlate with the variation of a quantitative trait in the phenotype of a
population. All QTL are closely linked at the chromosomes with at least one marker. Under these
premises, conclusions drawn from high scale genomic selection may be applicable to marker-assisted
selection using lower numbers of SNPs. The high number of genetic markers used in genomic selection
can be used as input in a genomic formula that predicts the breeding value of an animal, so does
the lower set of SNPs used in marker-assisted selection. Statistically, this reduction in the number of
SNPs translates into a reduction in the values of adjusted determination coefficients (adjusted R2),
thus, variance explanatory power, when compared to those models, comprises higher numbers of
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SNPs used in genomic selection. This is supported by Pizarro et al. [32], who reported determination
coefficients or percentages of variance explained that ranged from only around 15% to 40% for the
models comprising the 40 SNPs in our study.

Estimates of genetic parameters, among them heritability and correlations, are of great importance,
as they provide us with the necessary information that allows us to select the best animals according
to our productive needs [1]. This is the reason why Murciano-Granadina breeding programs have
focused on increasing several economically important traits for greater productivity. The application of
inappropriate multivariate statistical techniques may alter animal hierarchization or ranking depending
on breeding value when milk yield and components are studied, reporting erroneous information can
result in detrimental effects for the programs implemented. This addresses the need to design analysis
plans fitting the specific situation occurring at a certain population [40].

In this context, principal components analysis (PCA) reduces the number of originally correlated
variables into a smaller set of uncorrelated variables, maintaining most of the original variability and
reducing dimensionality to a new set of variables, under the assumption of losing as little information
as possible, which improves the descriptive performance of models [41]. The PCA technique has been
successfully incorporated into genetic assessments in horses [42], cattle [43], dairy [44], and for the
analysis of reproductive traits in several bovine breeds [45,46]. Principal component methods have
commonly been aimed at disentangling the potential redundancies among traits measured rather than
directly implemented towards the identification of a common explicative structure underneath genetic
effects (whether it is additive, dominance, or epistatic), there have been some attempts to apply such
methods in goats’ genetic evaluations [47]. Unfortunately, clustering based on principal components
analysis, performed with SNP did not reveal any major distinct groups, hence, its application is
not feasible.

Benradi et al. [48] reported heritabilities for the Murciano-Granadina breed, which were slightly
lower than those found in this study for milk yield and fat content (0.18, 0.16 with single-trait analysis),
while values for protein content matched those in our study (0.25). Pizarro et al. [32] reported superior
heritability for protein content of 0.53 in the Murciano-Granadina breed, when genotype for αS1-casein
was included, which may suggest the model used a rather complex diversification of genetic effects
into additive, dominance, and epistatic effects may improve the performance of the model used, which
may base on an improved control of such genetic relationship within and between the genes in the
casein complex.

In regards to somatic cells count (cs/mL), lower results were reported by recent studies, suggesting
heritabilities may range from 0.20 to 0.24 in Saanen and Alpine goats [48–51]. However, these studies
did not involve any genetic factor but nongenetic ones in the model, thus results are not comparable.
These heritability values enable the potential selection of animals considering the levels of somatic
cells as a selection criterion. Somatic cell counts must be considered as a potential trait for selection
given the implications that the migration of neutrophils from blood to mammary gland as a response
to infection has on the quality, hence, the value of milk [49,52–54]. Higher heritabilities in our results
when genetic effects are included in the model compared to those obtained when these effects are
excluded suggest including genetic effects may improve selection possibilities, which may derive from
a better performance of the models used.

Moderate heritability values for lactose content were reported. These values are in agreement with
the heritability values of 0.27 for lactose content reported in the literature for Polish White Improved
(PWI) and Polish Fawn Improved (PFI) does [48]. Contextually, heritability estimates confirm the
existence of a considerable level of genetic diversity that allows the possibility of continuing to improve
the production of milk, fat, protein, solids, lactose, and somatic cell content in the breeding programs
and selection of goats of Murciano-Granadina breed, even if they are highly selected breeds [49,55].

Heritability standard errors for milk yield and fat content, protein, solids, lactose, and somatic
cells including SNPs dominance and additive effects and epistatic interactions among casein genes
(CSN1S1, CSN2S2, CSN2, CSN3) as fixed effects (0.05; 0.01; 0.01; 0.05; 0.05, 0.01; 0.07 for milk yield,
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fat, protein, solids, lactose, and somatic cell counts, respectively), suggested the outcomes from the
models tested report reliable enough values. When such genetic effects were not considered in the
model the values for standard error of prediction were 0.01; 0.01; 0.02; 0.01, 0.01; 0.05 for milk yield,
fat, protein, solids, lactose, and somatic cell counts, respectively (Table 1), which remained within the
ranges of estimated values in other dairy goat populations [55–57], indicating that the estimation of
the parameters studied in our samples is comparable.

Genetic correlations, including additive effects, dominance effects, and epistatic interactions
among SNPs of the genes of the casein complex were negative between milk yield and protein content
(−0.42), milk and lactose performance (−0.07), lactose and protein content (−0.20), and lactose content
and somatic cells (−0.22). When SNPs genetic effects were excluded from the model genetic correlations
between milk yield, fat, protein, solids contents and somatic cell count (−0.29; −0.33; −0.34 and −0.18,
respectively), fat and lactose content (−0.18), protein and lactose (−0.16), and lactose and somatic cells
(−0.32). Very similar values were found in the Saanen and Alpine breeds [3].

These negative values have been reported for genomic correlations between loci and have been
attributed to the alteration of the relationship between traits under directed selection [58], as it
would happen in our study. However, low somatic cell counts are related to a lower prevalence of
intramammary infection [59]. Hence, these favorable genetic correlations may support the use of a
selection rate that will adequately weigh these traits to maximize the economic response for farmers.
Phenotypic correlations estimated from the models including and excluding SNPs additive, dominance
and epistatic interactions among casein genes were similar. Furthermore, very similar values were
found in Saanen breeds; Alpina and Toggenburg [3,60].

Negative genetic and phenotypic correlations between milk yield and fat content, protein solids,
lactose, and somatic cells revealed unfavorable associations, which could negatively affect the quality
of dairy products, particularly those of special relevance for the cheese industry. Therefore, dairy
goats should be selected using indexes that consider the phenotypic relationships between these traits
but also include SNPs epistatic interactions (as a rather diversified element of quantification of inter
and intralocus gene relationships). Including the existing association of such traits with yield and a
firmer cheese curd [61] can maximize the economic response of the markets that commercialize goat’s
milk products.

The highest genetic correlations were found for fat and solids contents (0.85), protein and solids
contents (0.60), and fat and protein (0.43) when genetic effects (additive, dominance, and epistatic
effects) were considered in the model. Contrastingly, when such genetic effects were excluded,
the genetic correlation between the same traits reduced to 0.73; 0.51 0.39, respectively. In this context,
genetic correlations may be considered to improve the profitability of the outputs of selection given
the implicit potential increase in the content of components that are intrinsically related to cheese
production, as has been reported for other high-quality cheese production dairy goat breeds [62,63].
Phenotypic correlations are in the range for other dairy goat populations observed in the literature.
The highest correlations were reported for fat and solids content, 0,96 and 0,95, when genetic effects
were included and excluded from the model, respectively [64,65].

It should be noted that there is a moderate similarity between the values of genetic correlations in
both models since we evaluated the same traits in the same population set. The positive correlations
found for fat and other components such as protein or solids had been previously described by
Verdier-Metz et al. [66] who assessed cheese yield of milk by calculating it through fresh yield by
dividing the weight of the fresh curd by the amount of milk used for cheese and solids production
by multiplying the fresh yield by the value of the dried matter of the molded curd. These authors
reported a wide range of values (55 to 85 g/kg) for the ratio of fats and proteins across different
types of manufactured milk. The same proportion linearly accounted for 77% of fresh yield and
87% of solids yield variability. This indicates that the values reported in this study in relation to
fat/protein/solids could produce an increase in the economic value of the Murciano-Granadina goat,
which may contribute to a better yield of cheese production [62].
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The relationship between fat and protein is not only important from a nutritive point of view,
but also from a cheese performance-enhancing perspective. Milk component enrichment must be
balanced as increases in protein that are not simultaneous to fat increases, will result in very aqueous
and less fatty cheeses, which may not fulfill the needs of the markets [67].

The use of functional models provides an alternative vision that reflects the physiological or
molecular interactions that more precisely describe the gene mapping of the economically important
phenotypes involved in productive traits such as milk or cheese production [68]. A substantial body of
theory and simulation has shown that genetic interactions can be an important determinant of heritable
variation and therefore the response to selection of populations [69,70].

Despite many empirical studies that demonstrate genetic interactions, key empirical evidence is
scarce on how the epistasis influences heritability, affects functional traits, or can be controlled and
modeled. As a common factor, almost all the studies found in literature lack a clear population context
which is crucial given heritability is a specific parameter, not only of the population being measured
but, the tools used to measure it and the model implemented.

The lack of significant differences in regard to whether genetic effects (additive, dominant,
or epistatic effects) were included or not may suggest the prediction of breeding values for each
individual may be similar across models. Significant correlations were higher for standard error of
prediction of milk yield, fat, and protein content predicted breeding values. However, despite being
significant, these values drastically reduced when the results for reliability and accuracy of predicted
breeding values were compared between the two models, including and excluding genetic effects.
This may suggest the inclusion of genetic effects as fixed effects may increase the estimative power and
accuracy of the model used to perform genetic evaluations for economically important traits linked to
milk yield and its components.

These findings are in agreement with those in literature according to which when a relatively
low number of genotyped animals is assessed through a shallow pedigree, that is, individuals which
are likely to be distantly related or unrelated are contrasted within a considerably large pedigree and
all breeding values estimated using BLUP are zero. Conclusively, BLUP may still predict a breeding
value with a significant accuracy when animals in the test population (genotyped animals in our field
database) and reference population (whole pedigree) may share a distant relationship and accuracy
reduced to close to zero when animals in the pedigree and study sets are poorly related, distantly
related or unrelated [71].

5. Conclusions

The heritabilities and correlations between fat, protein, and solids content must be considered
given their implication in the nutritional and commercial quality of several dairy products. Additionally,
lactose and somatic cells count genetic parameters may also be critical traits to consider given their
implications with milk’s health quality. These intertrait relationships may address which selective
paths may be more profitable, hence, they should be considered when targeting the maximization of
the commercialization potential of goat milk as a raw material for cheesemaking industry. Indexes
comprising the evaluation of these traits considering additive, dominance, and epistatic relationships
among casein complex genes or SNPs could lead to remarkable increases in the outcomes derived
from selective practices and indirectly in the economic value of dairy breeds. As suggested by our
results, the inclusion of casein complex SNPs additive, dominance, and epistatic effects in the model
used in genetic evaluations for milk yield and components may increase models’ estimative power
and the accuracy of the breeding values obtained after dairy goat genetic evaluations when compared
to models lacking such effects. This may translate into the enhancement of the genetic progress of
the breed and strengthen the international competitiveness of Murciano-Granadina breed in the dairy
goat industry.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/3/309/s1,
Table S1: Single-nucleotide polymorphism (SNP) identity and genotyping conditions; Table S2: Summary of the
results of epistatic relationship through Nonlinear Canonical Correlation Analysis, SNPs explaining intergroup
variability and reinforcing epistatic interaction (Multiple fit>0.1), alleles for each SNP, their relative frequency and
dominance ratios; Table S3: Kruskal–Wallis H Ranks, partial eta squared (ηp2) and Pearson Product-Moment (ρ)
correlation coefficient for genetic and nongenetic factors affecting milk yield (Kg), Fat (Kg), Protein (Kg), Solids
(Kg), Lactose (Kg) and Somatic cell count ( the greener the lower the higher effect power of the factor, the redder
the lower the effect power of the factor).
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