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Abstract: High-quality chicken meat is an important source of animal protein for humans. Gene
expression profiles in breast muscle tissue were determined, aiming to explore the common regulatory
genes relevant to muscle and intramuscular fat (IMF) during the developmental stage in chickens.
Results show that breast muscle weight (BMW), breast meat percentage (BMP, %), and IMF (%)
continuously increased with development. A total of 256 common differentially expressed genes
(DEGs) during the developmental stage were screened. Among them, some genes related to
muscle fiber hypertrophy were upregulated (e.g., CSRP3, LMOD2, MUSTN1, MYBPC1), but others
(e.g., ACTC1, MYL1, MYL4) were downregulated from Week 3 to Week 18. During this period,
expression of some DEGs related to the cells cycle (e.g., CCNB3, CCNE2, CDC20, MCM2) changed
in a way that genetically suggests possible inhibitory regulation on cells number. In addition,
DEGs associated with energy metabolism (e.g., ACOT9, CETP, LPIN1, DGAT2, RBP7, FBP1, PHKA1)
were found to regulate IMF deposition. Our data identified and provide new insights into the
common regulatory genes related to muscle growth, cell proliferation, and energy metabolism at the
developmental stage in chickens.

Keywords: chicken; muscle development; gene expression profiling; molecular regulation;
fat metabolism

1. Introduction

Chickens are an important source of high-quality animal protein for humans. The broiler
industry is one of the most active industry sectors today, aiming to obtain the highest meat tissue,
the optimal ratio of carcass muscle to fat, acceptable physicochemical characteristics, flavor, health,
and safety for consumers. Among them, muscle and intramuscular fat (IMF) are the two main
characteristics, respectively, representing the yield and quality of meat [1,2]. Essentially, this depends
on the development of muscle and adipose tissue or cells, and their relationship.

Muscle fiber is the basic unit of skeletal muscle. It is formed by the fusion of several muscle
cells [3]. Myoblasts originate from the mesoderm of the embryo. They proliferate in large numbers,
migrate, and fuse into polynucleated cells to form muscle tubes, and then differentiate to form muscle
fibers by regulation of Wnt, Shh, MyoD, and Myf5 [4–6]. The number of skeletal muscle fibers is mainly
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determined at the embryonic stage, and the increase of meat produced is mainly due to the increase in
muscle cells volume [7,8]. Under the regulation of extracellular factors, new skeletal muscle originates
after birth primarily due to the activation, proliferation, and differentiation of satellite cells [9,10].

Energy metabolism plays an important role in muscle growth and development. Skeletal muscle
could absorb and utilize glucose and fatty acids, whereas a lack of energy will trigger muscle atrophy,
governed by specific signaling pathways. Protein synthesis consumes energy, and a key sensor for
cellular energy levels (AMPK) is sensitive to the body’s nutritional status [11]. When the body is
deficient in energy and nutrition, skeletal muscle protein synthesis will decrease [12].

Although there are a few studies on the regulatory mechanisms of muscle development and
lipid metabolism in chickens [13], knowledge on the common key genes regulating these processes at
the developmental stage is scarce. In this study, we focused on exploring the genetic regulation of
muscle development and energy metabolism at the developmental stage in chickens. Gene expression
profiling was used to identify candidate genes that potentially govern muscle development and lipid
metabolism during development. Our findings constitute a theoretical basis for producing higher
quality chicken meat.

2. Materials and Methods

2.1. Animals and Ethics Statement

The study was conducted in accordance with the guidelines for experimental animals developed by
the Ministry of Science and Technology of China. The protocols of animal experiments were approved
by the Science Research Department (in charge of animal welfare issues) of Nanjing Agricultural
University (Nanjing, China; No. NJAU20181102).

The Beijing-You (BJ-Y) chicken, a unique Chinese commercial breed with a high meat quality,
was used in this study. One hundred and twenty male BJ-Y chickens with a similar weight at Day
1 came from the same half-sib family and were randomly distributed into four groups. Birds were
maintained in 24 floor pens (each 4.55 m2) in an environmentally controlled room, at a temperature
range of 20–25 ◦C and relative humidity (RH) between 40% and 70%, throughout the feeding process.
Feed and water were provided ad libitum during the experiment. Diets were formulated based on the
National Research Council (1994) requirements and the Feeding Standards of Chickens established by
the Ministry of Agriculture, Beijing, China (2004). Composition of the diet is shown in Table 1.

Table 1. Composition and nutrient levels of experimental diets (% as fed-basis, 22 day–126 day).

Ingredient, % Nutrient Composition

Corn 60 ME (kcal/kg) 13.0
Wheat middling 6.85 CP,% 18

Wheat bran 6.6 Ca,% 0.8
Fish meal 0.9 Total P,% 0.6

Feather meal 4.65 Nonphytate P,% 0.35
Soybean meal 12.6 Lys,% 0.85

Lard 4.5 Met,% 0.32
L-lysine HCl 0.2 Met+Cys,% 0.69

DL-Methionine 0.09 Thr,% 0.66
Limestone 1.17 Trp,% 0.17

Dicalcium phosphate 1.14 Ile,% 0.68
Salt 0.3

Premix 1 1.00
Total 100.00

1 Provided the following per kilogram of diet: retinyl acetate, 10,000 IU; cholecalciferol, 2000 IU; DL-α-tocopherol
acetate, 20 IU; menadione, 2.50 mg; thiamine, 2 mg; riboflavin, 8 mg; niacin, 50 mg; pyridoxine, 8 mg; cobalamin,
0.01 mg; pantothenic acid, 20 mg; folic acid 0.8 mg; biotin, 0.18 mg; choline chloride, 500 mg; Fe, 80 mg; Cu, 8 mg;
Mn, 80 mg; Zn, 60 mg; I, 0.35 mg; Se, 0.15 mg.
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2.2. Tissue Samples and Measurements

Under carbon dioxide anesthesia, chickens with a similar weight were euthanized by severing the
carotid artery at Weeks 3, 8, 13, and 18, respectively (n = 20 per time point, five from each group). After
slaughter, the pectoral muscles were dissected in the same area for all chickens, snap-frozen in liquid
nitrogen, and stored at −80 ◦C until use for RNA-sequencing. Samples from the pectoral muscle on the
other side were stored at −20 ◦C for biochemical analysis. In addition, the breast meat weight (BMW)
and eviscerated weight (EW) were recorded, and breast meat percentage (BMP, %) was calculated
(BMW as a percentage of EW).

Two grams of each sample were thawed, obvious fat was removed, and the samples were minced
thoroughly. Minced samples were dried in two 10–12-h stages (at 65 ◦C and 105 ◦C, respectively),
followed by cooling and drying in a desiccator for at least 30 min. The IMF contents in the pectoralis
major were measured by the Soxhlet method [14,15], using anhydrous ether as the solvent. Results are
expressed as percentages, on the basis of dry tissue weight.

Samples (~2 cm3) of 3 randomly selected birds were removed from the same locations on the
breast muscle. The samples were oriented for transverse fiber sectioning and mounted on cork disks
using OCT Tissue-Tek (Sakura Finetechnical Co., Tokyo, Japan). Serial cryostat sections (10-µm; −20 ◦C)
were cut, mounted, and stained with hematoxylin and eosin [16]. For each bird, muscle fiber size
was estimated by measuring the minimum fiber diameter of 100 fibers using image analysis software,
and the density of muscle fibers (fibers/mm2) was estimated by point-counting stereology, counting
500 points.

2.3. RNA Extraction and Gene Expression Profiling

Total RNA was extracted from the pectoral tissue of the chickens at different time points (Weeks 3, 8,
13, and 18), using the TRIzol reagent ((Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
protocol. The quality of the RNA was assessed by 1% gel electrophoresis, and the RNA concentration
was determined by a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Hudson, DE, USA).
The optical density (OD) 260/280 values of all samples were limited to a range of 1.8 to 2.0. RNA
samples were subsequently used for gene expression profiling.

RNA from three representative chickens per week of sampling were selected for transcript
detection. Based on ultra-high-throughput sequencing (HiSeq2500; Illumina, San Diego, CA, USA),
gene expression profiling was performed at Berry Genomics (Beijing, China). Raw data were converted
to FASTQ files using bcl2fastq (Illumina). Clean reads were generated by removing reads containing
adapter and low-quality sequences. The results were mapped to the reference chicken genome and
genes (Gallus gallus, Galgal5; available at https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.3)
using TopHat 1.3.2 (https://ccb.jhu.edu/software/tophat). Gene expression levels were calculated using
the RPKM method, as described by Mortazavi et al. [17]. Differentially expressed genes (DEGs) in
different time-points comparisons (3w vs. 8w, 3w vs. 13w, and 3w vs. 18w) were analyzed using the R
package edgeR. These genes were screened by the following criteria: |log2 FC| ≥ 0.58, with p < 0.05.

2.4. Data Analysis and qRT-PCR Detection

Based on the DEGs, Gene Ontology (GO) enrichment analysis was performed to identify the
gene function classes and categories corresponding to the DEGs, using the ClueGO and CluePedia
plugins of Cytoscape (https://cytoscape.org/). The significance level of GO terms enrichment was set
at p < 0.05 as indicated in the Yekutieli method [18]. According to the results of the GO enrichment
analysis, the related DEGs were screened. Significantly enriched signaling pathways of DEGs were
analyzed by the KEGG (Kyoto Encyclopedia of Genes and Genomes), using Kobas 3.0 [19]. A p < 0.05
was considered to be indicative of statistical significance.

Using nine RNA samples from every groups, quantitative real-time polymerase chain reaction
(qRT-PCR) was performed to confirm the results of the gene expression profiling. RNA samples were

https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.3
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reverse transcribed using a TIANGEN® FastQuant RT Kit (TIANGEN, Beijing, China), and specific
primers were designed and shown in Table 2, placing them at or just outside of the exon/exon junctions.
Samples were amplified using the real-time PCR Detection System ABI 7500 (Applied Biosystems,
Shanghai, China). The PCR mixture contained 10 µL of 2× iQ™ SYBR Green Supermix, 0.5 µL
(10 µmol/L) of primers, and 1 µL of cDNA, along with ddH2O for a total volume of 20 µL. After initial
denaturation for 30 s at 95 ◦C, amplification was performed for 40 cycles (95 ◦C for 5 s and 60 ◦C for
32 s). PCR efficiency for these genes and β-actin was consistent. The comparative cycle threshold
(CT) method was used to determine fold-changes in gene expression [20], with fold-changes being
calculated as 2−∆∆CT. The results are expressed as the mean fold-change in gene expression from
triplicate analyses, using samples of 3-week-old chickens as the calibrators (arbitrarily assigned an
expression level of 1 for each gene). Correlations between relative abundance from qRT-PCR and gene
expression profiling data were also calculated.

Table 2. The specific primers for Q-PCR in this study.

Gene Sequence Accession NO.

CSRP3 F:5′-CTTTGGACAAGGGGCTGGAT-3′

R:5′-TCTGCAGCGTACACCGATTT-3′ NM_001199486

LMOD2 F:5′-GGGTGCGTGTGAGAAGGATT-3′

R:5′-CTGGAACTCCTGCCATCCTC-3′ NM_001199715

MUSTN1 F:5′-CCCTTGCACTAAGCTCACCA-3′

R:5′-ACGTAGAAAGAAGGCCCGTG-3′ NM_213580

MYBPC1 F:5′-CACGGTGGATGAGGCTGAAT-3′

R:5′-CTGCTCCAATGTGGTCTGGT-3′ XM_025155757

ACTC1 F:5′-CCGTGCCTATCAGCCAAGAT-3′

R:5′-CGACGATGGATGGGAACACA-3′ NM_001079481

MYL1 F:5′-TCGGAAAGACCAGATGGCAC-3′

R:5′-TTTCCACAACCCCCGTGAAA-3′ NM_001044632

MYL4 F:5′-TCAAGAAACCCGACCCCAAG-3′

R:5′-CGTAGGTGATCTGCATGGCT-3′ NM_205479

BIRC5 F:5′-GCCTATGCTGAAATGCTGCC-3′

R:5′-CGCGGAGTGCTTTTTGTGTT-3′ NM_001012318

CTSK F:5′-CCGCCATAAAAGAGCCAACG-3′

R:5′-GTCCTCTTCCAGAGGTCCCA-3′ NM_204971

LMNB1 F:5′-AGGAGCGGGAAAACTATCGC-3′

R:5′-ACTACGGCTTGACGAAGCTC-3′ NM_205286

LMNB2 F:5′-ACTTATGCGTGTGGACCTGG-3′

R:5′-CCGACTGGTGTCCACTTCAA-3′ NM_205285

BUB1 F:5′-AAGTTACGAGGCGCAGATCC-3′

R:5′-GTCACGAACGCCTTCACAAG-3′ NM_001012870

CCNB3 F:5′-GCTACTTTCAAAAGAGCCGGG-3′

R:5′-AACGCTGACCTCTTCTTGGG-3′ NM_205239

CCNE2 F:5′-GATGTCGAGACGCAGCCGA-3′

R:5′-TTCTTCTTAATCTCCTCTGCCGTT-3′ NM_001030945

CDC20 F:5′-ATTCCCAACCGCAGCACTAT-3′

R:5′-AGCAGGTGTAGTCTTCTGGC-3′ NM_001006536

MCM2 F:5′-TAATCCGGCGGGGTAGGAA-3′

R:5′-GTAGTCCCTCTCCATCCCCT-3′ NM_001006139

PLK1 F:5′-TCATCCTGGGCTGCCAATAC-3′

R:5′-TCTTGGGCTCGCCATCATAC-3′ NM_001030639
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Table 2. Cont.

Gene Sequence Accession NO.

FBP1 F:5′-AATCTTGTGGCAGCGGGTTA-3′

R:5′-CTGCCGTCCTCAGGGAATTT-3′ NM_001278048

PHKA1 F:5′-AGAAGAGTGTGCGATCGGTG-3′

R:5′-GGTCAGAGACTGCCTACGTT-3′ XM_004940598

ACOT9 F:5′-CTATGGTGCTGGAGGACCGC-3′

R:5′-CCTCAATCTGCTCCGCACTT-3′ NM_001012823

CETP F:5′-AGTCTCGCCCTTCCTGAGAT-3′

R:5′-GCAGCTTGGATAGTGACCGT-3′ NM_001034814

LPIN1 F:5′-ACCATGGCAAACAGAATAAAAGATG-3′

R:5′-CCTTCACAGCGGCAAGTACC-3′ XM_015276093

DGAT2 F:5′-ATGGGTCCTCACGTTCCTCA-3′

R:5′-CCACTGGGATCTTCTTCCACC-3′ XM_419374

RBP7 F:5′-GAAGAACAGGGGCTGGACTC-3′

R:5′-TGCATGGCTGTCATGTTTCC-3′ XM_417606

β-actin F:5′TCTTGGGTATGGAGTCCTG-3′

R:5′TAGAAGCATTTGCGGTGG-3′ NM_205518

2.5. Statistical Analysis

Statistical differences between pairs of groups (3w vs. 8w, 3w vs. 13w, and 3w vs. 18w) were
evaluated using the Student’s t-test. All computations were performed, using SPSS Version 20.0
(IBM Corporation, Armonk, NY, USA). The Spearman rank correlation analysis was performed to
assess the association between data from gene expression profiling and qRT-PCR. A p < 0.05 was
considered significant, and data are presented as mean ± SEM.

3. Results

3.1. Changes in Live Weight, Pectoral Muscle, and IMF

Data on the BMW, BMP, and IMF in breast muscle tissue of the chickens at 3, 8, 13, and 18 weeks
are presented in Figure 1a. Both of the BMW and BMP (%) have continuously increased (p < 0.01)
through development from 3 weeks to 18 weeks. Similar observations were recorded for IMF (%),
which also continuously and significantly increased (p < 0.05 or p < 0.01) throughout the development
period. In addition, the density and diameter of the muscle fibers were also analyzed, showing that the
diameters of the breast muscle fibers continuously and significantly increased, while the density of the
fibers accordingly decreased through development from 3 weeks to 18 weeks (p < 0.05 for both; Table 3
and Figure 1b).

Table 3. The diameter and density of muscle fibers in breast tissue at different stages of development.

Stage (weeks) Muscle Fiber Diameter (µm) Muscle Fiber Density (fibers/mm2)

3 1.85 ± 0.24 a 1971.26 ± 87.84 a

8 5.61 ± 0.51 b 1448.51 ± 60.22 b

13 16.93 ± 1.19 c 1089.36 ± 44.82 c

18 25.77 ± 1.07 d 882.14 ± 55.33 d

a,b,c,d Means within a column with different superscripts differ significantly (p < 0.05). n = 3.
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Figure 1. Breast muscle tissue characteristics in male chickens through development from 3 to 18 weeks.
(a) Breast muscle weight (BMW), breast meat percentage (BMP, %), and intramuscular fat (IMF, %)
continuously increased. n = 20. (b) Continuous hypertrophy of muscle fibers through development.
Shown micrographs are at magnification of 40×. n = 3.

3.2. Identification of DEGs

Using gene expression profiling, a total of 256 commonly known DEGs from three comparisons
(3w vs. 8w, 3w vs. 13w, and 3w vs. 18w) were screened. Of these, 86 were downregulated and 170
were upregulated (Table S1). Gene Ontology (GO) analysis was performed on these 256 DEGs, with
the main GO terms being positive regulation of angiogenesis, positive regulation of DNA binding,
cell division, kinetochore organization, negative regulation of transcription, cell wall macromolecule
catabolic process, regulation of cardiac muscle contraction, muscle contraction, and more (Table S2).
Similarly, using KEGG pathway analysis on these 256 DEGs, eight significantly enriched pathways
were found (Table S3 and Figure 2), including pathways related to cell number (apoptosis, cell cycle,
and oocyte meiosis). In addition, the focal adhesion, ECM-receptor interaction, glutathione metabolism,
phagosome, and pyrimidine metabolism were also screened out.
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According to the GO terms and KEGG pathways analyses results, a total of 24 DEGs related to
muscle development (n = 7), cell number (n = 10, including apoptosis, n = 4, and cell cycle, n = 6),
and energy metabolism (n = 7, including lipid metabolism, n = 5, and glycol-metabolism, n = 2) were
respectively indicated (Table 4). Moreover, qRT-PCR was performed for these 24 genes to validate
the accuracy of the gene expression profiling data, and the association between data from gene
expression profiling and qRT-PCR was analyzed by Spearman rank correlation. Results showed that
the fold-change of gene expression between the two methods was significantly correlated (r = 0.9683,
p < 0.01; Figure 3).

Table 4. The screened 24 DEGs related to muscle development, cell number, and energy metabolism
from data of gene expression profiling.

Terms Ensemble Gene
Fold Change Regulation

3w vs. 8w 3w vs. 13w 3w vs. 18w

Muscle
development

ENSGALG00000004044 CSRP3 15.473385 36.73958 32.871784 down
ENSGALG00000008805 LMOD2 9.161582 12.490921 9.54745 down
ENSGALG00000001709 MUSTN1 14.036668 28.596878 16.179874 down
ENSGALG00000012783 MYBPC1 2.4964237 3.8927796 14.324914 down
ENSGALG00000009844 ACTC1 3.3218217 3.7541575 3.3806047 up
ENSGALG00000002907 MYL1 9.879383 4.85955 5.83294 up
ENSGALG00000000585 MYL4 4.1020255 3.218896 4.0335712 up

Apoptosis

ENSGALG00000008713 BIRC5 2.5183046 4.0182652 6.315548 up
ENSGALG00000028147 CTSK 3.096479 4.440422 6.216727 up
ENSGALG00000014692 LMNB1 3.006749 4.260736 4.046107 up
ENSGALG00000000470 LMNB2 3.2512372 2.5945606 2.236566 up

Cell cycle

ENSGALG00000008233 BUB1 3.6982634 9.865544 11.166059 up
ENSGALG00000025810 CCNB3 4.101872 5.044319 9.328714 up
ENSGALG00000040794 CCNE2 2.4160562 4.6105256 2.6012228 up
ENSGALG00000009971 CDC20 5.8222446 8.590813 8.071098 up
ENSGALG00000006037 MCM2 2.4000816 2.9283285 4.938962 up
ENSGALG00000006110 PLK1 4.4251847 10.326489 10.658555 up

Glycometabolism ENSGALG00000012613 FBP1 2.3082318 4.2890453 2.5612748 up
ENSGALG00000004801 PHKA1 2.8975124 2.043697 2.0698583 up

Lipid
metabolism

ENSGALG00000016351 ACOT9 2.238887 2.2152865 5.0676374 down
ENSGALG00000001234 CETP 2.1345193 3.6858957 4.175847 down
ENSGALG00000016456 LPIN1 3.00475 2.3144455 3.8659291 down
ENSGALG00000040418 DGAT2 2.3845758 2.4465158 2.3423936 up
ENSGALG00000002637 RBP7 4.246696 3.4545891 2.7316358 up
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Cell cycle 

ENSGALG00000008233 BUB1 3.6982634 9.865544 11.166059 up 
ENSGALG00000025810 CCNB3 4.101872 5.044319 9.328714 up 
ENSGALG00000040794 CCNE2 2.4160562 4.6105256 2.6012228 up 
ENSGALG00000009971 CDC20 5.8222446 8.590813 8.071098 up 
ENSGALG00000006037 MCM2 2.4000816 2.9283285 4.938962 up 
ENSGALG00000006110 PLK1 4.4251847 10.326489 10.658555 up 

Glycometabolism 
ENSGALG00000012613 FBP1 2.3082318 4.2890453 2.5612748 up 
ENSGALG00000004801 PHKA1 2.8975124 2.043697 2.0698583 up 

Lipid metabolism 

ENSGALG00000016351 ACOT9 2.238887 2.2152865 5.0676374 down 
ENSGALG00000001234 CETP 2.1345193 3.6858957 4.175847 down 
ENSGALG00000016456 LPIN1 3.00475 2.3144455 3.8659291 down 
ENSGALG00000040418 DGAT2 2.3845758 2.4465158 2.3423936 up 
ENSGALG00000002637 RBP7 4.246696 3.4545891 2.7316358 up 

3.3. Differentially Expressed Genes Related to Muscle Development, Cell Number, and Energy Metabolism 

As shown in Table 4, the seven common DEGs related to muscle development, at the timeframe 
studied, were screened and the gene expression fold-change ranged between 2 and 32. Samples from 
Week 3 were used as control. Results from the qRT-PCR analysis showed that the expression levels 
of CSRP3, LMOD2, MUSTN1, and MYBPC1 were significantly higher (p < 0.05 or p < 0.01) at all other 
time points when compared to those at Week 3, but the expression levels of ACTC1, MYL1, and MYL4 
were significantly lower (p < 0.01) in the same comparisons (Figure 4). These seven genes were only 
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Figure 3. Spearman rank correlation analysis of gene expression profiling and qRT-PCR results of 24
genes in three comparisons. A high correlation coefficient (r = 0.9683, p < 0.01) was present, indicating
that the gene expression profiling data were reliable. n = 72.
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3.3. Differentially Expressed Genes Related to Muscle Development, Cell Number, and Energy Metabolism

As shown in Table 4, the seven common DEGs related to muscle development, at the timeframe
studied, were screened and the gene expression fold-change ranged between 2 and 32. Samples from
Week 3 were used as control. Results from the qRT-PCR analysis showed that the expression levels of
CSRP3, LMOD2, MUSTN1, and MYBPC1 were significantly higher (p < 0.05 or p < 0.01) at all other
time points when compared to those at Week 3, but the expression levels of ACTC1, MYL1, and MYL4
were significantly lower (p < 0.01) in the same comparisons (Figure 4). These seven genes were only
enriched in the GO terms, such as regulation of cardiac muscle contraction and muscle contraction, but
not in the related signaling pathway.
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chain reaction (qRT-PCR). These DEGs were significantly upregulated or downregulated (*p < 0.05 or
**p < 0.01) in breast muscle tissue at 8, 13, and 18 weeks when compared to those at 3 weeks. n = 9.

Similarly, seven common DEGs related to glycol-metabolism or lipid metabolism at the
developmental stage were screened. Again, samples from Week 3 were used as control. The
fold-change found ranged between 2 and 5. qRT-PCR results showed that the expression levels of
ACOT9, CETP, and LPIN1 were significantly higher and those of DGAT2, RBP7, FBP1, and PHKA1
were significantly lower at all evaluation time points when compared to those at Week 3 (p < 0.01;
Figure 5). These genes were found to be mainly involved in the corresponding signaling pathways,
but not significantly enriched.
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Figure 5. Verification of DEGs related to cell number by quantitative real-time polymerase chain
reaction (qRT-PCR). These DEGs were significantly downregulated (**p < 0.01) in breast muscle tissue
at 8, 13, and 18 weeks when compared to those at 3 weeks. n = 9.
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In addition, 10 common DEGs related to cell cycle or apoptosis at the developmental stage were
screened. All were shown to have been downregulated when compared to samples from Week 3
that acted as the control. Fold-change ranged between 2 and 11. Using qRT-PCR, we found that the
expression levels of these 10 genes, which were enriched in the cell cycle and oocyte meiosis pathways
(BUB1, CCNB3, CCNE2, CDC20, MCM2, PLK1) or the apoptosis pathway (BIRC5, CTSK, LMNB1,
LMNB2) (Figure 6), were significantly lower (p < 0.05 or p < 0.01) at other stages of development when
compared to those at Week 3.Genes 2020, 11, 244 9 of 13 
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4. Discussion

Muscle development of broilers closely affects the quantity of chicken products available for human
consumption. Intramuscular fat is an important factor affecting meat quality [21–23]. Local Chinese
chickens have a high meat quality as they have a high IMF content [24]. The developmental stage is
the main muscle and IMF formation period. At the same time, myocytes and adipocytes mutually
influence each-other due to their close adjacent relationship in the muscle tissues. Identification of
co-expressed genes in the muscle tissues during the developmental stage has great significance for
controlling muscle production and regulating meat quality. Such analysis could reveal the molecular
regulation relationship between them. The remaining energy from the yolk sac can supply the body’s
needs for yellow-feather broilers during the first two weeks after hatching [25]. Therefore, four different
stages of development were assessed: Week 3 (starting time, acted as baseline control), Week 8 (rapid
development), Week 13 (development peak), and Week 18 (market time). Comparisons between Week
3 and the other three time points was performed to screen for common DEGs, which might be the
key functional genes affecting muscle or IMF development during the entire developmental period.
In addition, the RPKM method was used in the calculation of gene expression levels to obtain more
information on the related genes, though the TPM will be more reliable. Meanwhile, the verification of
the screened candidate genes was also strengthened by Q-PCR to ensure the reliability of data.

For the 256 DEGs screened out in breast muscle tissue samples at different developmental stages,
we further identified the related functional genes by GO and KEGG analyses. Both final muscle and
IMF production are the joint result of cell proliferation and differentiation, and energy metabolism
plays an important role in this process [26]. Consequently, the functional genes related to muscle
development (n = 7), cell number (n = 10, cell proliferation and apoptosis combined), and energy
metabolism (n = 7, glucose and lipid metabolism combined) were combed out. Subsequently, these 24
genes were assessed by qRT-PCR in breast muscle tissue, at the different time points, to verify the gene
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expression profiles data. The verification ratio reached 7.8%, and the correlation analysis showed a
high degree consistency between the two methods (r = 0.9683, p < 0.01), which supports the accuracy
of the data from the gene expression profiles.

The number of skeletal muscle fibers is mainly determined at the embryonic stage, and the
occurrence of changes in the skeletal muscle after birth is mainly due to the fusion of the muscle
satellite cells with the muscle fibers, resulting in hypertrophy of the skeletal muscle fibers [9,10]. In this
study, seven common DEGs related to muscle development during the developmental stage were
screened out. Among them, CSRP3, LMOD2, MUSTN1, and MYBPC1 levels were significantly higher,
and levels of ACTC1, MYL1, and MYL4 were significantly lower at all time points, when compared
to Week 3. In a similar study, MYBPC1 had been shown to have a significantly higher expression
level during development in breast muscle tissue [13]. It had been reported that CSRP3, LMOD2,
MUSTN1, and MYBPC1 have important positive regulation on myofibril assembly and hypertrophy
of muscle fibers [27–29], while MYL1 and MYL4 have a negative regulatory effect on myogenesis by
inhibiting myoblast proliferation [30]. Phenotypic results showed that BMW, BMP (%), and muscle
fiber diameter have all continuously and significantly increased, indicating that muscle growth mainly
depends on regulation of the differentiation (hypertrophy) of muscle fiber from 3 weeks to 18 weeks.
Comprehensively considering these results, these seven genes were identified as key regulatory genes
related to muscle growth at the developmental stage in chickens.

Energy metabolism plays an important role in muscle development. A lack of energy will trigger
muscle atrophy by various signaling pathways. It was found that FBP1 and PHKA1 mRNA levels have
significantly decreased during development. According to published information, FBP1 and PHKA1
play an important regulatory role in gluconeogenesis or glycogen synthesis [31,32]. These results point
to the possibility that positive regulation of glucose utilization might be enhanced, and regulation
of gluconeogenesis or glycogen synthesis would consequently be reduced in muscle tissue at the
developmental stage. For genes related to lipid metabolism, it is known that DGAT2 and RBP7
have an important positive regulatory role in lipid deposition [33,34], ACOT9 and LPIN1 promote
lipolysis [35,36], and CETP is involved in reversed cholesterol transport and reduced fat accumulation
in chickens [37]. In this study, mRNA expression levels of DGAT2 and RBP7 were significantly lower,
and those of ACOT9, CETP, and LPIN1 were significantly higher in breast muscle tissue throughout
the development period. Combined with the continuous increase in IMF over time, although the rate
of increase slowed down gradually, our results suggest that these lipid metabolism-related genes have
a regulatory function on IMF deposition at the developmental stage in chickens.

Tissue development is the combined result of cell proliferation and differentiation. Thus, regulation
of cell number was also analyzed. It is known that both cell proliferation and apoptosis could affect cell
number. These were therefore also a focus of this study. Ten common DEGs related to cell proliferation
(BUB1, CCNB3, CCNE2, CDC20, MCM2, and PLK1, which were mainly enriched in the cell cycle and
oocyte meiosis pathways) and apoptosis (BIRC5, CTSK, LMNB1, and LMNB2) were screened out,
and mRNA expression levels of all were significantly lower in breast muscle tissue throughout the
development stage. As is widely known, BUB1, CCNB3, CCNE2, CDC20, MCM2, and PLK1 genes
have a positive regulatory effect on the cell cycle [38–42], and BIRC5, CTSK, LMNB1, and LMNB2
genes promote cell apoptosis [43–45]. The number of skeletal muscle fibers is mainly determined at
the embryonic stage, while occurrence of new skeletal muscle after birth is mainly due to activation,
proliferation, and differentiation of satellite cells [9,10]. Results on the density and diameter of muscle
fibers showed no increase in the number of muscle fibers. Genetically, it was made clear that these
10 key genes regulate cell number in breast muscle tissue at the developmental stage in chickens.

The approach of the present study was to use gene expression profiling to identify the common
functional genes that regulate muscle development, IMF accumulation, and cell number in muscle
tissue of chickens during development. Possible regulation by translational mechanisms and
post-translational modifications may have also contributed. Because of tissue complexity, additional
experiments on the expression, localization, and function of the regulatory genes should be further
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performed to reveal the clear function and regulatory mechanism of these candidate genes on muscle
development in chickens.

5. Conclusions

In this study, we screened for common regulatory genes related to muscle development, cell
number, or energy metabolism at the developmental stage in chickens. Upregulation of CSRP3, LMOD2,
MUSTN1, MYBPC1, and MYCBP2, and downregulation of ACTC1, MYL1, and MYL4, are associated
with muscle development, primarily hypertrophy of muscle fibers, during development from 3 weeks
to 18 weeks. Expression change for genes related to lipid metabolism (ACOT9, CETP, LPIN1, DGAT2,
and RBP7) and glycol-metabolism (FBP1 and PHKA1) may have contributed to the continuous increase
in IMF deposition. Meanwhile, the screened-out cell-cycle- and apoptosis-related genes reflect on the
negative regulation of cell number at the developmental stage. These findings provide new insights
into the regulation of muscle development in chickens.
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