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Abstract: The nonparanormal graphical model has emerged as an important tool for modeling
dependency structure between variables because it is flexible to non-Gaussian data while maintaining
the good interpretability and computational convenience of Gaussian graphical models. In this paper,
we consider the problem of detecting differential substructure between two nonparanormal graphical
models with false discovery rate control. We construct a new statistic based on a truncated estimator of
the unknown transformation functions, together with a bias-corrected sample covariance. Furthermore,
we show that the new test statistic converges to the same distribution as its oracle counterpart does.
Both synthetic data and real cancer genomic data are used to illustrate the promise of the new method.
Our proposed testing framework is simple and scalable, facilitating its applications to large-scale data.
The computational pipeline has been implemented in the R package DNetFinder, which is freely
available through the Comprehensive R Archive Network.

Keywords: gene regulatory network; nonparanormal graphical model; network substructure;
false discovery rate control

1. Background

Inferring the structural change of a network under different conditions is essential in many
problems arising in biology, medicine, and other scientific fields. For instance, in genomics, it is often of
importance to study the structural change of a genetic pathway between diseased and normal groups.
In the field of brain mapping, it is critical to identify the difference in brain connectivity between
groups (for example, the brain connectivity network of normal subjects and patients often possess
different structures). Most of these applications have relied on the prevailing Gaussian graphical
models (GGMs) because of its good interpretability and computational convenience, and there is a
rich and growing literature on learning differential networks under GGMs. To name a few, Guo et al.
(2015) [1] introduced a joint estimation for multiple GGMs by a group lasso approach, under the
assumption that the GGMs being studied are sparse and only differ in a small portion of edges.
Danaher et al. (2014) [2] proposed a fused graphical lasso method which is free from the sparsity
assumption on condition-specific networks and only requires the sparsity of the differential network.
Zhao et al. (2014) [3] constructed a new estimator which directly estimates the differential network
defined as ∆∆∆ = ΣΣΣ−1

X −ΣΣΣ−1
Y , where ΣΣΣ−1

X and ΣΣΣ−1
Y represent the two condition-specific precision matrices

and ∆∆∆, ΣΣΣ−1
X , ΣΣΣ−1

Y have the same dimension. Liu (2017) [4] presented a new test to simultaneously study
structural similarities and differences between multiple high-dimensional GGMs, which adopts the
partial correlation coefficients to characterize the potential changes of dependency strength between
two variables.

Most of the aforementioned algorithms were based upon penalized likelihood maximization.
Although some algorithms were consistent under certain regularity conditions, they failed to control
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the false discovery rate (FDR) of the substructure detection as it is difficult to choose a tuning parameter
to control the FDR at the desired level [1–3]. One exception is Liu (2017), who introduced a hierarchical
testing framework to adjust for the multiplicity. Liu’s test was constructed to asymptotically control
the FDR while keeping satisfactory statistical power. Simulation studies in [4] have shown that this
new test exhibits substantial power gains over existing methods such as graphical lasso. One major
drawback that limits the application of Liu’s test is the Gaussian assumption, which is often violated
in practice especially in genomics. For instance, some digital measurements of gene expression level
such as RNA-Seq data often greatly deviate from normality even after log-transformation or other
variance-stabilizing transformations. In this paper, we aim to extend Liu’s work to a more flexible
semiparametric framework, namely the nonparanormal graphical models (NPNGMs), where the
random variables are assumed to follow a multivariate normal distribution after a set of monotonically
increasing transformations. We use a novel rank-based multiple testing method to detect the structural
difference between multiple networks from non-Gaussian data. The method is computationally
efficient and asymptotically controls the FDR at a desired level. To begin with, we give the formal
definition of nonparanormal distribution:

Definition 1. A random vector YYY = (Y1, Y2, ..., Yp) follows a nonparanormal distribution if there exists a set
of univariate and monotonically increasing transformations, fff = ( f1, ..., fp), such that:

(X1, ..., Xp) ≡ ( f1(Y1), ..., fp(Yp)) ∼ N(µµµ, ΣΣΣ),

where µµµ and ΣΣΣ denote the mean and covariance matrix in the multivariate normal distribution, respectively.
The distribution of YYY depends on three parameters and it can be generally written as YYY ∼ NPN(µµµ, ΣΣΣ, fff ).

By Definition 1 and Sklar’s theorem, it is easy to verify that when the transformation functions
f ′j s are all differentiable, the nonparanormal distribution NPN(µµµ, ΣΣΣ, fff ) is equivalent to a Gaussian
copula [5]. As graphical models, the NPNGMs are much more flexible than GGMs in modeling non-
Gaussian data while retaining the interpretability of the latter. Some recent studies have established the
estimation and properties of high dimensional nonparanormal graphical models. For example, Liu et al.
(2009) [5], who first studied high-dimensional NPNGMs, bridged the estimations of GGMs and
NPNGMs by a nonparametric and truncated (Winsorized) estimator of the unknown transformation
functions. Xue and Zou (2012) [6] proposed to use an adjusted Spearman’s correlation to estimate the
structure of high-dimensional NPNGMs, and they showed that the rank-based estimator achieves the
same rate of convergence as its oracle counterpart (i.e., assuming known transformation functions).
Despite the advances in single NPNGM estimation, to the best of our knowledge, the inference of
differential substructure between multiple NPNGMs has not been studied. In this paper, we tackled
this problem by embedding the Winsorized estimator into the testing framework of Liu (2017). Under
some regularity conditions, we showed that the new test statistic converges to the same distribution as
its oracle counterpart does [4].

We begin with the notations and problem formulation. For a vector aaa = (a1, ..., ap), we define its

`0 norm as ‖aaa‖`0 = ∑
p
i=1 I{ai 6= 0}, its `1 norm as ‖aaa‖`1 = ∑

p
i=1 |ai|, its `2 norm as ‖aaa‖`2 =

√
∑

p
i=1 a2

i ,
and its `∞ norm as ‖aaa‖`∞ = maxi |ai|. For a matrix AAA = (aij) ∈ Rp×q, we define its `0 norm as

‖AAA‖0 = ∑i,j I{aij 6= 0}, its `1 norm as ‖AAA‖1 = ∑i,j |aij|, its Frobenius norm as ‖AAA‖F =
√

∑i,j a2
ij and its

`∞ norm as ‖AAA‖∞ = maxi,j |aij|. Let AAAi,−j denote the ith row of AAA with its jth entry being removed and
AAA−i,j denote the jth column with its ith entry being removed. We use AAA−i,−j to denote a (p− 1)× (q− 1)
matrix by removing the ith row and the jth column. For square matrix BBB, we let λmax(BBB) and λmin(BBB)
denote the largest and smallest eigenvalues of BBB respectively. In addition, for a given sequence of
random variable {Xn, n = 1, 2, ...} and a constant sequence {an, n = 1, 2, ...}, Xn = op(an) denotes that
Xn/an converges to zero in probability as n approaches to infinity and Xn = Op(an) denotes that Xn/an
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is stochastically bounded. If there are positive constants c and C such that c ≤ Xn/an ≤ C for all n ≥ 1,
we write Xn ∼ an.

To formulate the problem, we let k ∈ {1, 2, ..., K} be the index of class, p be the dimension, and
(Y(k)

1 , ..., Y(k)
nk ) be a sample of size nk for class k where Y(k)

m = (Y(k)
m1 , ..., Y(k)

mp )
T ∈ Rp, m ∈ {1, ..., nk}.

Under Y(k)
m ∼ NPN(µµµ(k), ΣΣΣ(k), fff (k)), we test the following hypothesis:

H0ij : ρ
(1)
ij· = ρ

(2)
ij· = ... = ρ

(K)
ij· ,

Haij : ρ
(k)
ij· 6= ρ

(k′)
ij· , for some k, k′ ∈ {1, ..., K},

where 1 ≤ i, j ≤ p, {ΣΣΣ(k)}−1 = ΩΩΩ(k) = (ω
(k)
ij ), and ρ

(k)
ij· represents the partial correlation coefficient

between X(k)
i and X(k)

j given XXX(k)\(X(k)
i , X(k)

j ), (X(k)
m1 , ..., X(k)

mp) = ( f (k)1 (Y(k)
m1 ), ..., f (k)p (Y(k)

mp )). The edge

(i, j) is a differential edge if ρ
(k)
ij· 6= ρ

(k′)
ij· for some k, k′ ∈ {1, ..., K}, and the differential network is defined

as the set of all differential edges. As a well-known result in statistics, ρ
(k)
ij· = −ω

(k)
ij /

√
ω
(k)
ii ω

(k)
jj . Here,

we consider an equivalent alternative of the hypothesis testing above. Similar as in [4], let

Sij(ΩΩΩ) =

√
∑

1≤k<k′≤K
(ρ

(k)
ij· − ρ

(k′)
ij· )

2, (1)

then the hypothesis testing can be simplified as

H0ij : Sij(ΩΩΩ) = 0,

Haij : Sij(ΩΩΩ) > 0.

As Sij(ΩΩΩ) = Sji(ΩΩΩ), we defineHHH0 = {H0ij, 1 ≤ i < j ≤ p} andHHHa = {Haij, 1 ≤ i < j ≤ p}, and the
total numbers of tests are p(p− 1)/2, i.e., card(HHH0) = card(HHHa) = p(p− 1)/2.

The rest of this paper is structured as follows: In Section 2, we introduce the new test statistic and
multiple testing procedure. In Section 3 we perform a simulation study to evaluate the finite sample
performance of the proposed test in terms of FDR control and statistical power. We then apply the new
method to a rich genomic data to study the genetic difference between four breast cancer subtypes.
We discuss the strength and shortcomings of the test in Section 5. Technical proof of the asymptotic
results is provided in Appendix A.

2. Statistical Methods

2.1. Winsorized Estimator of the Latent Gaussian Variables

In practice, the transformation functions fff (k) = ( f (k)1 , ..., f (k)p ) in the nonparanormal distribution
are unknown. However, one can use a Winsorized estimator to approximate fff (k), i.e., to impute the
latent Gaussian variables (oracle data) (X(k)

m1 , ..., X(k)
mp)1≤m≤nk . To illustrate the Winsorized estimator,

we define the following quantile function:

ĥ(k)j (t) = Φ−1(F̃(k)
j (t)), 1 ≤ j ≤ p,

where F̃(k)
j is some estimator of the cumulative distribution function of Y(k)

j , and a natural choice for

F̃(k)
j would be the empirical cumulative distribution function (eCDF)

F̂(k)
j (t) =

1
nk

nk

∑
m=1

I{Y(k)
mj ≤ t}.



Genes 2020, 11, 167 4 of 18

One major drawback of the eCDF above is that under high dimensionality, the variance of F̂(k)
j (t) could

be too large. To overcome the problem, Liu et al. (2009) considered a truncated (Winsorized) estimator
as follows:

F̃(k)
j =


δn F̂(k)

j (t) < δn

F̂(k)
j (t) δn ≤ F̂(k)

j (t) ≤ 1− δn,

1− δn F̂(k)
j (t) > 1− δn

where δn serves as the truncation parameter that should be carefully chosen. Liu et al. (2009) [5]
suggested δn = 1/(4n1/4√π log n) to balance the bias and variance of eCDF, and so we will use this
value in our calculations. To estimate the transformation functions and impute the latent Gaussian
variable XXX, we define

X(k)∗
mj = f̃ (k)j (Y(k)

mj ) = µ̂
(k)
j + σ̂

(k)
j h̃(k)j (Y(k)

mj ),

where h̃(k)j (t), µ̂
(k)
j and σ̂

(k)
j are given below:

h̃(k)j (t) = Φ−1(F̃(k)
j (t)),

µ̂
(k)
j =

1
nk

nk

∑
m=1

Y(k)
mj ,

σ̂
(k)
j =

√√√√ 1
nk

nk

∑
m=1

(Y(k)
mj − µ̂

(k)
j )2.

The Winsorized estimator X(k)∗
mj generally works well in approximating the unknown X(k)

mj , and it could

be used to estimate the oracle sample covariance. Let Σ̂ΣΣ
(k)

be the sample covariance matrix by the

oracle data, and Σ̃ΣΣ(k) be the sample covariance matrix by (X(k)∗
1 , ..., X(k)∗

p ), that is

Σ̃ΣΣ(k)
=

1
nk

nk

∑
m=1

(X(k)∗
m − µ̃µµ(k))(X(k)∗

m − µ̃µµ(k))T ,

where µ̃µµ(k) = (1/nk)∑nk
m=1 X(k)∗

m . Liu et al. (2009) established the following consistency results under
mild regularity conditions:

‖Σ̃ΣΣ(k) − Σ̂ΣΣ
(k)‖∞ = Op

(√√√√ log p log2 nk

n1/2
k

)
.

When estimating the precision matrix ΩΩΩ(k), one can consider a modified graphical lasso based on
imputed data, i.e.,

Ω̃ΩΩ(k)
glasso = arg min

ΩΩΩ

{
tr(ΩΩΩΣ̃ΣΣ(k)

)− log |ΩΩΩ|+ λ‖ΩΩΩ‖1

}
. (2)

Liu et al. (2009) showed the following convergence, which elucidated the asymptotic equivalence
between the oracle data and imputed data in the structural estimation of NPNGM

‖Ω̃ΩΩ(k)
glasso −ΩΩΩ(k)‖F = Op

(√√√√ (‖ΩΩΩ(k)‖0 + p) log p log2 nk

n1/2
k

)
.
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2.2. Asymptotic Results for a Single Class

To extend Liu’s test to a nonparanormal case, we first consider the problem of single GGM
estimation based on oracle data, i.e., (X(k)

m1 , ..., X(k)
mp)1≤m≤nk ∼ N(µµµk, ΣΣΣk), in the following regression

framework
X(k)

mj = α
(k)
j +XXX(k)′

m,−jβββ
(k)
j + ε

(k)
mj . (3)

It is not hard to show that the regression coefficients βββ
(k)
j = (β

(k)
j,1 , ..., β

(k)
j,j−1, β

(k)
j,j+1, β

(k)
j,p ) and the error

term ε
(k)
mj satisfy

βββ
(k)
j = −

(
ω
(k)
jj
)−1ΩΩΩ(k)

−j,j, cov(ε(k)mi , ε
(k)
mj ) =

ω
(k)
ij

ω
(k)
ii ω

(k)
jj

.

As the oracle data (X(k)
m1 , ..., X(k)

mp)1≤m≤nk in Equation (3) are generally unknown, we consider a new
regression model based on Winsorized imputations:

X(k)∗
mj = α̂

(k)
j +XXX(k)∗′

m,−jβ̂ββ
(k)
j + ε

(k)∗
mj . (4)

In solving the problem of single GGM estimation, Liu (2017) proposed an elegant test based on a
bias-corrected sample covariance. This has motivated us to construct the following new statistic

S(k)∗
ij =

√√√√ 1

nkr(k)∗ii r(k)∗jj

( nk

∑
m=1

ε
(k)∗
mi ε

(k)∗
mj +

nk

∑
m=1
{ε(k)∗mi }

2 β̂
(k)
i,j +

nk

∑
m=1
{ε(k)∗mj }

2 β̂
(k)
j,i
)
, (5)

where r(k)∗ij = (1/nk)∑nk
m=1 ε

(k)∗
mi ε

(k)∗
mj . By letting ε̄εε(k) = (1/nk)∑nk

m=1 εεε
(k)
m , (σ̂(k)

ij,ε)1≤i,j≤p = (1/nk)

∑nk
m=1(εεε

(k)
m − ε̄εε(k))(εεε

(k)
m − ε̄εε(k))′, b(k)ij = ω

(k)
ii σ̂

(k)
ii,ε +ω

(k)
jj σ̂

(k)
jj,ε− 1, we will prove that, under mild conditions

(see a detailed proof in Appendix A)

S(k)∗
ij + b(k)ij

ω
(k)
ij

ω
(k)
ii ω

(k)
jj

D−→ N
(
0, 1 +

{ω(k)
ij }

2

ω
(k)
ii ω

(k)
jj

)
. (6)

Similar as in [4], the estimated coefficients β̂ββ
(k)
j must satisfy the following conditions:

‖β̂ββ(k)
j − βββ

(k)
j ‖`1 = Op(a(k)n ),

min
{

λ1/2
max(ΣΣΣ

(k))‖β̂ββ(k)
j − βββ

(k)
j ‖`2 , max

1≤j≤p

√
(β̂ββ

(k)
j − βββ

(k)
j )TΣ̂ΣΣ

(k)
−j,−j(β̂ββ

(k)
j − βββ

(k)
j )
}
= Op(b

(k)
n ),

where
a(k)n = o(

√
log p/nk), and b(k)n = o(n−1/4

k ). (7)

Equation (6) is our main result, which is essentially a counterpart of Proposition 3.1 in [4]. The detailed
proof is given in Appendix A. The asymptotic result we obtained here suggested that, by an appropriate

choice of regression coefficients β̂ββ
(k)
j , Liu’s test can be readily extended to a nonparanormal framework

by Winsorized imputation. Under GGMs, the condition (7) can be satisfied by several popular
shrinkage estimators including lasso estimator and Dantzig selector. For the choice of βββ

(k)
j under

NPNGMs, one can use the rank-based method introduced by Xue and Zou (2012) [6]. Xue and Zou
(2012) showed that the rank-based estimator (e.g., rank-based lasso and rank-based Dantzig selector)
achieved exactly the same convergence rate as its oracle counterpart, therefore, it also satisfies our
condition (7).
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2.3. Multiple Testing Procedure for FDR Control

Now we introduce the multiple testing procedure for FDR control based on the single-class result
from Equation (6). As suggested in [4], the partial correlation coefficient can be well estimated by a
thresholding estimator

ρ̂
(k)
ij. = S(k)

ij I
{
|S(k)

ij | ≥ 2

√
log p

nk

}
,

and we define the following two-sample test statistics

S(k,k′)
ij =

S(k)
ij − S(k′)

ij√
1
nk
(1− {ρ̂(k)ij. }2)2 + 1

nk′
(1− {ρ̂(k

′)
ij. }2)2

.

In the multi-sample case SSSij = (S(k,k′)
ij )1≤k<k′≤K, we consider a sum squared test statistics

Sij =

√
∑

k<k′
{S(k,k′)

ij }2.

Motivated by [4] (Equations 2.6 and 2.7) and [7], we define the following statistic

Tij = Φ−1P
(√√√√ M

∑
i=1

λiZ2
i ≤ Sij

)
,

and constant A = (P0 − P̂0)/Q0, where Zi, i = 1, ..., M represent a sequence of M i.i.d. standard
normal random variables, P0 = 2Φ(1)− 1, P̂0 = 2 ∑1≤i<j≤p I{|Tij| ≤ 1}/(p2 − p), Q0 =

√
2φ(1) and

A(t) = (1 + |A| |t|φ(t)√
2(1−Φ(t))

)−1. For a given 0 < α0 < 1, let

t(α0) = inf
{

t ∈ R, 1− φ(t) ≤
α0 A(t)max{1, ∑1≤i<j≤p I{Tij ≥ t}}

(p2 − p)/2

}
.

the FDR can be controlled at level α, if we reject H0ij : Sij(ΩΩΩ) = 0 when Tij ≥ t(α0). One may refer to [7]
for the detailed proof about this testing procedure.

Our proposed computational pipeline consisted of three steps: (1) Winsorized imputation for
the latent Gaussian variables; (2) rank-based estimation of regression coefficients, and (3) multiple
testing with FDR control. On the whole, we put forward a simple procedure to estimate the structural
difference between multiple nonparanormal graphical models. The computational pipeline for a
two-sample comparison has been implemented in the R package DNetFinder, which can be downloaded
from the Comprehensive R Archive Network (CRAN).

3. Numerical Study

We performed a simulation study to evaluate the finite sample performance of the proposed
procedure. In particular, we evaluated the empirical false discovery rate (eFDR) as well as the statistical
power under two classes, i.e., K = 2. The dimension and sample size were set to be p = 200 and
n1 = n2 = 100. We consider two commonly used graph-generating models including the band graph
and Erdős–Rényi (ER) graph, and two estimators for regression coefficients including lasso estimator
and Dantzig selector. Detailed set-up for precision matrices ΩΩΩ1 and ΩΩΩ2 are given below:
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• Band graph: ΩΩΩ1 = (ωij)1≤i,j≤p was obtained by the following assignments

ωij =


1 |i− j| = 0

0.6 |i− j| = 1

0 |i− j| ≥ 2

.

We then randomly picked 50 edges in ΩΩΩ1 as the differential edges and changed their signs in ΩΩΩ2.
To ensure positive definiteness, we added max(|λmin(ΩΩΩ1)|, |λmin(ΩΩΩ2)|) + 0.05, to the diagonal of
ΩΩΩ1 and ΩΩΩ2.

• Erdős–Rényi (ER) graph: Each node pair (i, j) were randomly connected with probability 5%.
A correlation coefficient is generated for each edge in the network from a two-part uniform
distribution [−1/2,−1/4]∪ [1/4, 1/2]. To ensure positive-definiteness, we shrunk the correlations
by a factor of 5 and the diagonals were set to be one for ΩΩΩ1. We then randomly selected 5% of the
edges as the differential edges, and changed their signs in ΩΩΩ2.

For each graph, we generated the latent Gaussian data (oracle data) from N(000, ΩΩΩ−1), ΩΩΩ ∈
{ΩΩΩ1, ΩΩΩ2}, and a Winsorized estimator with truncation parameter δn = 1/(4n1/4√π log n) was used to
implement our test. The performance of the proposed method was then evaluated in two aspects: false
discovery rate control and statistical power. In particular, we compared the results based on oracle
data and imputed data by the Winsorized estimator. Two estimators including the lasso estimator and
Dantzig selector were used to estimate coefficients β̂ββ. For oracle data, we applied the R package flare to
calculate the solution path over a sequence of 20 candidate λ’s and tune by Akaike information criterion
(AIC). For imputed data, we adopted the rank-based methods introduced by [6], i.e., the rank-based
lasso and rank-based Dantzig selector. The simulation was repeated for 100 times for each FDR level
(α ∈ {0.05, 0.10, 0.15, ..., 0.50}) and the average empirical FDR and statistical power were summarized.

Figures 1 and 2 compared the empirical false discovery rate (eFDR) with the desired level α

under the band graph and ER graph. It can be seen that the empirical FDR based on imputed data
is close to the one by oracle data, both close to the desired level of α, suggesting that the FDRs were
controlled quite well for both cases. The lasso estimator works almost equally well as Dantzig selector
in both settings.
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Figure 1. Empirical false discovery rates (eFDRs) by oracle data and Winsorized imputations under
the band graph setting. The x-axis represents the desired FDR levels from 0.05 to 0.5, and the solid line
is y = x.
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Figure 2. Empirical FDRs (eFDRs) by oracle data and Winsorized imputations under the Erdős–Rényi
(ER) graph setting. The x-axis represents the desired FDR levels from 0.05 to 0.5, and the solid line is
y = x.

Figures 3 and 4 summarized the statistical power of the test for the band graph and ER graph.
As can be seen, the power for ER graph is substantially lower than the band graph, indicating that the
complexity and denseness of the underlying differential network may significantly decrease the power
of our test. The test based on oracle data performs slightly better than the imputed data, which is due
to the loss of information during Winsorized imputation. Similar as we observed from Figures 1 and 2,
the lasso estimator works almost equally well as Dantzig selector.
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Figure 3. Statistical powers by oracle data and Winsorized imputations under the band graph setting.
The x-axis represents the desired FDR levels from 0.05 to 0.5.
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Figure 4. Statistical powers by oracle data and Winsorized estimator under the ER graph setting.
The x-axis represents the desired FDR levels from 0.05 to 0.5.

In addition, we compared the proposed test with a direct estimator, recently developed by Zhang
(2019) [8]. The direct estimator is a rank-based estimator and can be solved by a parametric simplex
algorithm. We simulated the data from the Erdős–Rényi (ER) graph with different sample sizes
(n = 25, 50, 100, 150) and numbers of dimensions (p = 40, 60, 90, 120). As the direct estimator does
not control the false discovery rate, we set the FDR level at 0.05 for our proposed test. Figure 5
summarized the empirical FDR and statistical power under different sample sizes (with dimension
fixed at 100) and different dimensions (with sample size fixed at 100). It can be seen that the two
methods have comparable performance and our proposed test achieves lower FDR but slightly lower
statistical power. However, it is noteworthy that the direct estimator is computationally expensive
and becomes impractical when the dimensions exceed 150. Table 1 summarized the running time of
the two methods, where it can be seen that our test is much faster than the direct estimator, especially
for relatively high dimensions. For instance, when p = 120, the direct estimator takes hours while
our test takes less than 10 seconds. As the core part of the proposed algorithm is the estimation of
regression coefficients, the time complexity is the same as the linear regression. For instance, with
LASSO and p > n, the time complexity is O(np2), while the direct estimator by Zhang (2019) has a
time complexity O(np4).

Table 1. Running time of the proposed test and direct estimator (in seconds).

n/p 40 60 90 120

25 0.88 (7.0) 1.59 (110) 3.79 (1936) 6.49 (23,066)
50 1.19 (7.7) 1.93 (127) 4.15 (1973) 6.83 (23,119)

100 1.87 (9.1) 2.61 (146) 5.00 (2016) 7.80 (23,153)
200 2.11 (11) 3.04 (165) 6.22 (2055) 9.61 (23,201)
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Figure 5. Comparison of the proposed test and direct estimator by Zhang (2019), in terms of empirical
FDR and statistical power under different sample sizes and dimensions.

4. A Genomic Application

In this part, we applied the proposed test to the Cancer Genome Atlas data (TCGA, [9]) to study the
different roles of the cell cycle pathway in the two subtypes of breast cancer including luminal A subtype
and basal-like subtype. The cell cycle pathway is known to play a critical role in the initiation and
progression of many human cancers including breast cancer and ovarian cancer [10,11]. For instance,
the cell cycle pathway provided by KEGG (Kyoto Encyclopedia of Genes and Genomes, [12]) contains
128 important genes that co-regulate cell proliferation, including ATM, RB1, CCNE1, and MYC.
Abnormal regulation among these genes may cause the over-proliferation of cells and an accumulation
of tumor cell numbers [11].

The transcriptome profiling data for breast cancer were downloaded through the Genomic Data
Commons portal [13] in January 2017. The expression level of each gene was quantified by the count
of reads mapped to the gene. The quantifications were done by software HTSeq of version 0.9.1 [14].
In our analysis, we excluded 43 subjects including 12 male subjects and 31 subjects with >1% missing
values. In addition, we removed the effects due to different age groups and batches using a median-
matching and variance-matching strategy [10,15,16]. For example, the batch effect can be removed in
the following way:

g∗ijk = Mi + (gijk −Mij)
σ̂gi

σ̂gij

,

where gijk refers to the expression value for gene i from sample k in batch j (j = 1, 2, ..., J; k = 1, 2, ..., nj),
Mij represents the median of gij = (gij1, ..., gijnj), Mi refers to the median of gi = (gi1, ..., gi J), σ̂gi and
σ̂gij stand for the standard deviations of gi and gij, respectively.
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The remaining 959 breast cancer samples were further classified into five subtypes according
to two molecular signatures, namely PAM50 [17] and SCMOD2 [18]. The two classifications were
implemented separately using R package genefu [19] and we obtained 530 subjects with concordant
classification by two classifiers. The resulting set contains 221 subjects in the luminal A group, 119
in the luminal B group, 74 in the her2-enriched group, 105 in the basal-like group, and 11 in the
normal-like group. For illustration purposes, we conducted two pairwise comparisons (1) Luminal A
vs basal-like and (2) Luminal B vs basal-like.

To balance the bias and variance, we choose the same truncation parameter in Winsorized
imputation as in our simulation study

δ
(k)
n =

1

4n1/4
k

√
π log nk

,

where k ∈ {1, 2}, n1 = 221, n2 = 105. The proposed test based on the Winsorized estimator was then
conducted for each gene pair with different FDR cutoffs. Figures 6 and 7 summarized all the identified
differential edges under FDR levels α = 0.05, 0.10, 0.15, 0.20, with all isolated genes being removed.
Our results suggested a list of important genes that play different roles in different breast cancer
subtypes. For instance, in Figure 6, genes CCNB1 and PRKDC contribute to several differential edges.
According to recent studies, gene CCNB1 is a prognostic biomarker for certain subtypes of breast
cancer and it is closely associated with hormone therapy resistance [20]. It has also been reported in
the literature that the PRKDC regulates chemosensitivity and is a potential prognostic and predictive
marker of response to adjuvant chemotherapy in breast cancer patients [21]. Our findings about several
other genes including CHEK2 and CDC7 also confirmed some existing reports [22,23]. As we observed
from the two examples, as the desired FDR level increases, the resulting differential network tends to
be denser and denser (Figure 8 showed the correlation between FDR and the number of differential
edges). In practice, users should consider the trade-off between the accuracy (FDR) and number of
new hypotheses (number of differential edges) and choose an appropriate FDR [24].
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Figure 6. The inferred differential networks between the LumA and Basal-like subtypes under different
desired FDR levels: (a) 0.05; (b) 0.10; (c) 0.15; (d) 0.20, with all isolated genes being removed. Each
connection in the network represents an identified differential edge.
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Figure 7. The inferred differential networks between the LumB and Basal-like subtypes under different
desired FDR levels: (a) 0.05; (b) 0.10; (c) 0.15; (d) 0.20, with all isolated genes being removed. Each
connection in the network represents an identified differential edge.
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Figure 8. Desired FDR level against the number of differential edges.

5. Discussion

Detecting the differential substructure on multiple graphical models is a fundamental and
challenging problem in statistics. Liu (2017) studied the problem under the Gaussian framework
and introduced an elegant hierarchical test based on the estimation of single GGM. Unlike most
existing methods, Liu’s approach asymptotically controlled the false discovery rate at a nominal level,
which guarantees the quality of the estimated differential network. In this work, we further extended
Liu’s test to a more flexible semiparametric framework, namely the nonparanormal graphical models.
Our test is built upon a Winsorized estimator of the unknown transformation functions and it enjoys
similar asymptotic properties as its oracle counterpart does.

Although the new test holds great promise in many applications such as genetic network modeling,
it has some practical limitations. First, as we see from the theoretical derivation, the good performance of
the test relied on the sparsity assumption on the differential network. Although the sparsity assumption
is reasonable in many cases, it still could be violated in some applications. For instance, some genetic
pathways may exhibit a global change of gene–gene regulations between different phenotypes. When the
differential network is dense or locally dense, the method may fail to control the FDR. To solve the
problem, a new test needs to be defined to evaluate the level of the sparseness of the change between two
conditions. However, there is still a gap on the literature of this topic.

Second, one key assumption in NPNGMs is that the transformed variables follow a joint Gaussian
distribution. This assumption also needs to be checked in real-world applications. Under low
dimensions, one can employ some popular normality tests, including the Anderson–Darling test
and Shapiro–Wilk test, on the imputed data or other normal scores. However, most of these tests fail to
detect non-normality for high-dimension data. The normality test under high dimension is still an open
and challenging problem and we left it for future research.

It is also noteworthy to mention that the new test relied on an accurate estimator for the coefficients
βββ. Motivated by [6], we chose two popular estimators including lasso estimator and Dantzig selector
based on the adjusted Spearman’s rank, which satisfies Condition (7). In fact, some other estimators
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also satisfy the conditions, for instance, the rank-based adaptive lasso [6,25] and square-root lasso
estimator [6,26]. These estimators can also be incorporated into our testing framework.

6. Conclusions

We have introduced a novel statistical test to detect the structural difference between the two
nonparanormal graphical models. The proposed test dropped the Gaussian assumption and can be
potentially applied to many non-Gaussian data for differential network analysis. For instance, some
digital gene expression data (e.g., RNA-seq data) do not follow Gaussian distribution even after log
transformation or other variance-stabilizing transformations. In such cases, one can model the data with a
nonparanormal graphical model and apply our test to find differential edges between two or multiple
phenotypic conditions. The proposed test may also be used to detect the difference between normal and
disease populations in the brain connectivity network.
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NPNGM Nonparanormal graphical model
GGM Gaussian graphical model
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Appendix A. Proof of Equation (6)

Define the estimated residuals based on Winsorized estimator as:

ε∗mj = X∗mj − X̄∗j − (XXX∗m,−j − X̄XX∗−j)β̂ββj,

where X̄∗j = 1/n ∑n
m=1 X∗mj and X̄XX∗−j = 1/n ∑n

m=1 XXX∗m,−j. The choice of β̂ββj must satisfy the following
two conditions:

‖β̂ββj − βββj‖`1 = Op(an),

min
{

λ1/2
max(ΣΣΣ)‖β̂ββj − βββj‖`2 , max

1≤j≤p

√
(β̂ββj − βββj)TΣ̂ΣΣ−j,−j(β̂ββj − βββj)

}
= Op(bn),

where a(k)n = o(
√

log p/nk), and b(k)n = o(n−1/4
k ).

It is noteworthy to mention that the conditions above are slightly different from the conditions in [4]
due to the different convergence rates by oracle data and imputed data. The conditions above can be
satisfied by the rank-based estimators introduced in [6], e.g., rank-based lasso estimator or rank-based
Dantzig selector. By letting ε̃mj = εmj − ε̄i, we have:

ε∗miε
∗
mj = ε̃mi ε̃mj − ε̃mi

{
(XXX∗m,−j − X̄XX∗−j)β̂ββj − (XXXm,−j − X̄XX−j)βββj

}
(A1)

− ε̃mj
{
(XXX∗m,−i − X̄XX∗−i)β̂ββi − (XXXm,−i − X̄XX−i)βββi

}
(A2)

+
{

β̂ββ
T
i (XXX

∗
m,−i − X̄XX∗−i)

T(XXX∗m,−j − X̄XX∗−j)β̂ββj − βββT
i (XXXm,−i − X̄XX−i)

T(XXXm,−j − X̄XX−j)βββj
}

. (A3)
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First, for term (A3), we have:

| 1
n

n

∑
m=1

{
β̂ββ

T
i (XXX

∗
m,−i − X̄XX∗−i)

T(XXX∗m,−j − X̄XX∗−j)β̂ββj − βββT
i (XXXm,−i − X̄XX−i)

T(XXXm,−j − X̄XX−j)βββj
}
|

=|β̂ββT
i (Σ̃ΣΣ−i,−j − Σ̂ΣΣ−i,−j)β̂ββj + (β̂ββi − βββi)

T(Σ̂ΣΣ−i,−j −ΣΣΣ−i,−j)(β̂ββj − βββj) + (β̂ββi − βββi)
TΣΣΣ−i,−j(β̂ββj − βββj)|

≤max
i,j
|β̂ββT

i (Σ̃ΣΣ−i,−j − Σ̂ΣΣ−i,−j)β̂ββj|+ max
i,j
|(β̂ββi − βββi)

T(Σ̂ΣΣ−i,−j −ΣΣΣ−i,−j)(β̂ββj − βββj)|+ max
i,j
|(β̂ββi − βββi)

TΣΣΣ−i,−j(β̂ββj − βββj)|,

where the last term can be bounded as follows:

max
i,j
|(β̂ββi − βββi)

TΣΣΣ−i,−j(β̂ββj − βββj)| = Op(λmax(ΣΣΣ) max
1≤i≤p

‖β̂ββi − βββi‖2
`2
) = Op(b2

n).

It is not hard to show that:

‖Σ̂ΣΣ−ΣΣΣ‖∞ = Op

(√
log p

n

)
,

therefore, the second term can also be bounded

max
i,j
|(β̂ββi − βββi)

T(Σ̂ΣΣ−i,−j −ΣΣΣ−i,−j)(β̂ββj − βββj)| = Op

(
a2

n

√
log p

n

)
.

Under some mild regularity conditions (stated in [6]), we have

‖Σ̃ΣΣ− Σ̂ΣΣ‖∞ = Op

(√
log p log2 n

n1/2

)
,

thus under the condition that maxi,j |βi,j| ≤ C1 and λmin(ΣΣΣ) = o((log p/n)
3
4 ), the first term can be

bounded as follows:

max
i,j
|β̂ββT

i (Σ̃ΣΣ−i,−j − Σ̂ΣΣ−i,−j)β̂ββj|

≤max
i,j
|βββT

i (Σ̃ΣΣ−i,−j − Σ̂ΣΣ−i,−j)βββj|+ max
i,j
|(β̂ββi − βββi)

T(Σ̃ΣΣ−i,−j − Σ̂ΣΣ−i,−j)(β̂ββj − βββj)|

=Op

(√
log2 p log2 n

n3/2 + a2
n

√
log p log2 n

n1/2

)
.

Combining the three terms above, we have

| 1
n

n

∑
m=1

{
β̂ββ

T
i (XXX

∗
m,−i − X̄XX∗−i)

T(XXX∗m,−j − X̄XX∗−j)β̂ββj − βββT
i (XXXm,−i − X̄XX−i)

T(XXXm,−j − X̄XX−j)βββj
}
|

=Op

(√
log2 p log2 n

n3/2 + a2
n

√
log p log2 n

n1/2 + b2
n

)
.

Next, we bound term (A1), which can be rewritten as:

ε̃mi(XXXm,−j − X̄XX−j)(β̂ββj − βββj) + ε̃mi{(XXXm,−j − X̄XX−j)− (XXX∗m,−j − X̄XX∗−j)}β̂ββj,

where the first term can be further decomposed into two parts,

ε̃mi(XXXm,−j − X̄XX−j)(β̂ββj − βββj) = ε̃mi(Xmi − X̄i)(β̂i,j − βi,j)I{i 6= j}+ ∑
l 6=i,j

ε̃mi(Xml − X̄l)(β̂l,j − βl,j).
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To bound ∑
l 6=i,j

ε̃mi(Xml − X̄l)(β̂l,j − βl,j), we use the independence between εmi and XXXm,−i. It is easy to

show that

max
l 6=i
| 1
n

n

∑
m=1

ε̃mi(Xml − X̄l)| = Op

(√
log p

n

)
,

which indicates that

max
i,j
| 1
n

n

∑
m=1

( ∑
l 6=i,j

ε̃mi(Xml − X̄l)(β̂l,j − βl,j))| = Op

(
an

√
log p

n

)
.

By the independence between εmi and XXX∗m −XXXm, it is not hard to show

| 1
n

n

∑
m=1

ε̃mi{(XXXm,−j − X̄XX−j)− (XXX∗m,−j − X̄XX∗−j)}β̂ββj|

≤| 1
n

n

∑
m=1

ε̃mi{(XXXm,−j − X̄XX−j)− (XXX∗m,−j − X̄XX∗−j)}βββj|+ |
1
n

n

∑
m=1

ε̃mi{(XXXm,−j − X̄XX−j)− (XXX∗m,−j − X̄XX∗−j)}(βββj − β̂ββj)|

=Op

(
log p

n
+ an

√
log p

n

)
.

Combing term (A1) and term (A2), we have

1
n

n

∑
m=1

ε̃mi
{
(XXX∗m,−j − X̄XX∗−j)β̂ββj − (XXXm,−j − X̄XX−j)}βββj =

1
n

n

∑
m=1

ε̃mi(Xmi − X̄i)(β̂i,j − βi,j)I{i 6= j}

+ Op

(
log p

n
+ an

√
log p

n

)
.

Summarizing all the results above, by Equations (22) and (23) of Liu (2013), we have

1
n

n

∑
m=1

ε∗miε
∗
mj =

1
n

n

∑
m=1

ε̃mi ε̃mj −
1
n

n

∑
m=1

ε̃mi(Xmi − X̄i)(β̂i,j − βi,j)I{i 6= j}

− 1
n

n

∑
m=1

ε̃mj(Xmj − X̄j)(β̂ j,i − β j,i)I{i 6= j}

+ Op

(√
log2 p log2 n

n3/2 + a2
n

√
log p log2 n

n1/2 + an

√
log p

n
+ b2

n

)
.

As 1
n

n
∑

m=1
ε̃mi(Xmi − X̄i) =

1
n

n
∑

m=1
ε̃2

mi +
1
n ε̃mi(XXXm,−i − X̄XX−i)βββi, and Var(XXXm,−iβββi) = (σiiωii − 1)/ωii ≤ C,

we have

max
1≤i≤p

| 1
n

n

∑
m=1

ε̃mi(XXXm,−i − X̄XX−i)βββ| = Op

(
log p

n

)
,

therefore

1
n

n

∑
m=1

ε̃mi(Xmi − X̄i) =
1
n

n

∑
m=1

ε̃2
mi + Op(log p/n)

=
1
n

n

∑
m=1

ε∗2mi + Op

(√
log2 p log2 n

n3/2 + a2
n

√
log p log2 n

n1/2 + an

√
log p

n
+ b2

n

)
,
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1
n

n

∑
m=1

ε∗miε
∗
mj =

1
n

n

∑
m=1

ε̃mi ε̃mj −
1
n

n

∑
m=1

ε∗2mi(β̂i,j − βi,j)I{i 6= j} − 1
n

n

∑
m=1

ε∗2mj(β̂ j,i − β j,i)I{i 6= j}

+ Op

(√
log2 p log2 n

n3/2 + a2
n

√
log p log2 n

n1/2 + an

√
log p

n
+ b2

n

)
.

In addition

1
n

n

∑
m=1

ε∗2mi =
1
n

n

∑
m=1

ε̃2
mi + Op

(√
log2 p log2 n

n3/2 + a2
n

√
log p log2 n

n1/2 + an

√
log p

n
+ b2

n

)
.

Equation (6) follows immediately by central limit theorem.
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