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Abstract: Essential genes are a group of genes that are indispensable for cell survival and cell fertility.
Studying human essential genes helps scientists reveal the underlying biological mechanisms of a
human cell but also guides disease treatment. Recently, the publication of human essential gene
data makes it possible for researchers to train a machine-learning classifier by using some features
of the known human essential genes and to use the classifier to predict new human essential genes.
Previous studies have found that the essentiality of genes closely relates to their properties in the
protein–protein interaction (PPI) network. In this work, we propose a novel supervised method to
predict human essential genes by network embedding the PPI network. Our approach implements
a bias random walk on the network to get the node network context. Then, the node pairs are
input into an artificial neural network to learn their representation vectors that maximally preserves
network structure and the properties of the nodes in the network. Finally, the features are put
into an SVM classifier to predict human essential genes. The prediction results on two human PPI
networks show that our method achieves better performance than those that refer to either genes’
sequence information or genes’ centrality properties in the network as input features. Moreover,
it also outperforms the methods that represent the PPI network by other previous approaches.

Keywords: human essential genes; protein–protein interaction network; network embedding;
feature representation

1. Introduction

Essential genes are a group of genes that are indispensable for cell survival and cell fertility [1].
Scientists focus on studying essential genes in bacteria to find potential drug targets for new
antibiotics [2]. Identifying essential genes in prokaryotic or simple eukaryotic organisms helps
us understand the primary requirement for cell life, but also points the way to synthetic biology
research that aims to create a cell with a minimal genome. The development of wet-lab experimental
techniques, such as single-gene deletions [3], RNA interference [4], and conditional knockouts [5],
has accumulated several essential genes in some simple eukaryotic organisms such as S. cerevisiae [6],
C. elegans [7], and A. thaliana [8], in the past few years. However, it is hard to apply these techniques to
explore human essential genes due to technical difficulties and species limitations [9].

The close relationships between essential genes and human diseases found by previous
researches has motivated scientists to identify essential genes in humans to seek guidance for disease
treatment [10–12]. However, it is hard to apply the computational methods that have successfully
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predicted essential genes of some simple eukaryotic organisms to humans. The biggest challenge is
the lack of known human essential genes, because a human is a high and complex organism, which
requires more than basic cell survival and fertility to be completely functional and adapted to the
environment. The techniques mentioned above are difficult to use to explore human essential genes
correctly. Recently, with the emergence of the CRISPR-Cas gene-editing system, several landmark
studies [13–15] have individually disrupted every human gene in several cell lines in culture and
examined how the loss of each gene affects cell viability by using the gene-editing system. Together,
these studies provide the first accurate picture of the sets of genes that are absolutely required for the
viability of individual human cell types, a long-awaited analysis that presages efficient screens for
tumor-specific essential genes. They have published about 2000 human essential genes [13–15] that are
indispensable for the viability of individual human cancer cell lines.

The publication of human essential gene data has motivated researchers to deeply study the
functions of human genes. The popular way is to train a machine-learning classifier by inputting
the features of some known human essential genes and use the classifier to predict new human
essential genes. The outputs are lists of genes with the probabilities to be essential. Then, we set a
threshold, i.e., 0.5. If the probabilities are above the threshold, the genes are predicted as essential
genes. Guo et al. [16] extracted features from genes’ DNA sequence by a Z-curve method and input
these features into an SVM classifier to predict human essential genes. As far as we know, in addition
to DNA sequences, there are other biological properties related to the essentiality of genes. Guo’s work
inspired us to design a more effective method and extract powerful features to improve the prediction
accuracy of human essential genes.

One of the most important features related to the genes’ essentiality is their topology properties in
biological networks. The studies on some simple eukaryotic organisms have found that the proteins
(genes) with a larger number of interactive partners in the protein–protein interaction (PPI) network
are highly likely to be essential proteins (genes), because removing them from the networks would
cause the collapse of the network [17]. Therefore, some centrality methods are frequently employed to
measure the importance of the genes in the network [9], including degree centrality (DC) [18], closeness
centrality (CC) [19], betweenness centrality (BC) [20], information centrality (IC) [21], eigenvector
centrality (EC) [22], subgraph centrality (SC) [23] and edge clustering coefficient centrality (NC) [24].
Since the PPI data currently available are incomplete and error prone, some researchers design the
composited features by integrating PPI networks with other biological information, such as gene
functional annotation data [25], gene expression data (PeC [26], WDC [27], FDP [28]), subcellular
information [29], protein domain information [29], and orthologous information [30].

The features mentioned above display the genes’ essentiality from different perspectives. Previous
researchers have made great efforts to improve the essential gene prediction accuracy in some simple
eukaryotic organisms by employing machine-learning methods and combining some topological and
biological features [9]. For example, Chen et al. [6] trained an SVM classifier by the features of some
known yeast essential proteins, including the combination of phyletic retention, proteins’ evolutionary
rate, paralogs, protein size, and the degree centrality in PPI networks and gene-expression networks.
Then, the classifier was adopted to predict other potential yeast essential genes. Zhong et al. [31]
developed an XGBoost-based classifier to integrate multiple topology properties of essential genes in
the PPI network to predict yeast and E. coli essential genes.

As for human essential gene identification, we can draw a lesson from previous studies on other
species. However, a machine-learning method that combines multiple biological and topological
properties to make predictions still cannot take full advantage of the characteristics of network
topology. Genes or their protein products interact with each other to perform their functions in
cells together [12,32]. Their interactions in the PPI network play an important role in essential gene
prediction. Recently, with the development of biological techniques, the human PPI network becomes
even more complete and correct. Therefore, it is imperative to find an effective method to extract the
characteristics of genes in the network and represent the human PPI network as much as possible.
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Network embedding is an efficient method to mine the useful information from the network,
which converts the network nodes into a vector of low dimensional space while maximally preserves
the network structural information and the network properties. There are many network embedding
methods [33–37]. In this work, we learn the vector representation of the nodes in the human PPI
network by using a random walk-based network embedding method. This kind of method, first,
implements random walk on the network to get the network context of a starting node. Then,
a word2vec [33] method that originates for natural language processing inputs the node pairs into
an artificial neural network and learns the representation vectors for the nodes in the PPI network.
The random walk-based network embedding methods different in the way of walking on the network.
The DeepWalk [34] method implements a depth-first search on the network, whereas The LINE [35]
method implements a breadth-first search strategy to generate the node context. The vertices that
share similar neighbors in the network tend to be identical to each other [32]. Hence, in this work,
we conduct a bias random walk on the human PPI network to generate the note context, which
means a node more likely walks to the connecting nodes sharing similar neighbors with it [38]. After
that, the node pairs are input into a neural network to represent the features of genes in the PPI
network and, then, these features are put into a variety of classifiers to label whether or not the genes
are essential. In contrast to previous supervised machine-learning methods, our method conducts
network embedding to extract the features for the genes from the PPI network through mapping
them to latent space vectors that maximally preserve the relationships between the nodes and their
network neighborhoods. The prediction results on two human PPI networks show that our method
achieves better performance that either refers to genes’ sequence information [16] or selects genes’
centrality properties in the network as input features. It also outperforms the methods that represent
the PPI network by other previous approaches, i.e., Deepwalk [34] and Line [35]. Part of the contents
appeared in the conference paper [39]. In this work, we comprehensively discuss the advantage of
bias random walk in the course of network embedding learning, but also investigate what the feature
representations of the human essential genes are.

2. Methods

Our method involved two steps to predict humane essential genes. First, every node in the human
PPI network represents a vector that can preserve the structure of the input network. Secondly, the
vector is put into a classifier to train the classifier and make predictions. Similar to the node2vec
model [38], our method learns the feature representation for every node in the PPI network by the
following steps: The first step is to conduct a bias random walk on the PPI network starting from a
single node and, then, to obtain a node sequence that records the network context of the starting node.
Next, a window slides along the node sequence to get the node pairs that have a close relationship
in the network. These node pairs are put into a skip-gram-based architecture to learn the feature
representation of every node. Figure 1 shows an overview of our method for identifying essential genes.
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2.1. Bias Random Walk

Network embedding methods originate for learning features for words in the natural language
processing field. The input of the methods is a word sequence that represents the neighborhood
relationship of the word in the language context. The word and its neighbor are the input and output
layers of an artificial neural network. The weights of the hidden layer are the “node vectors” that we
are trying to learn. In this work, the input is a PPI network, which is not linear and is composed of
nodes with complicated neighborhood relationships. Hence, to resolve this issue, a bias random walk
is simulated on the network to get an ordered node sequence starting from every node in the network.

Let G = (V,E,W) denote a PPI network, where a vertex v∈ V is a gene and an edge e (u,v) ∈ E
connects the genes v and u and w (u,v) ∈W is the weight of edge e (u,v), which measures the reliability
of the connection between u and v. Here, all edges in the PPI network are treated equally, and their
weights are set to one. Considering the module nature of the PPI network, a vertex walks to its
neighbors at different probabilities. That is, given a vertex v, there is an edge e (u,v), where vertex u is
visited by vertex v at the previous step. The vertex v walks to one of its neighbor k by evaluating the
transition probabilities T (v,k) on edge e (v,k). The transition probabilities T (v,k) is defined as follows:

T (v,k) = π (u,k) * w (v,x), (1)

with π(u, k)


1
p , duk = 0
1, duk = 1
1
q , duk = 2

,

where duk denotes the shortest path distance from the previous vertex u to the next vertex k. Especially,
duk = 0 means that the vertices u and k are the same vertex and the vertex v jumps back to its previous
vertex u, duk = 1 means that the vertex k is the common neighbor of the vertices u and v, and duk = 2
means that the u and k connect indirectly, and the vertex k is not their common neighbor. The parameter
p controls the likelihood of the vertex v traveling back to its previous vertex u. The parameter q
controls the probability of the vertex v jumping to the next vertex k. Setting different values for the
parameters p and q guides a bias walk on the network. If the parameters p and q are larger than one,
the vertex v is more likely to walk to the vertex that is the common neighbor of it and its previous
step, i.e., the vertex u. After computing the transition probabilities for every edge in the PPI network,
we row normalize the transition probability matrix T to ensure the sum of the walk-out probabilities
for each node to be one.
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Tnorm(v, k) =
T(v, k)∑

j∈N(v) T(v, j)
, (2)

In bias random walk, a node tends to walk to its neighbor along the edge with the highest
transition probability. Suppose a node has number N of neighbors, it usually needs O(N) time to find
the walk-out edge with the highest transition probability. This work adopts an alias sampling method
to find the edge in O(1) time [38]. The outcome of the bias random walk is a vertex sequence that
records the walking trace in the network starting from a vertex, which reserves the neighborhood
relationship of the starting vertex in the network. Algorithm 1 gives the pseudocode of the bias
random walk.

Algorithm 1. Bias random walk algorithm.

Input G = (V, E, W), Len_walkLists, parameters w, p and q;
Output vertex sequence lists: walkLists
T = computing transition probabilities (G, p, q, w)//computing transition probabilities for every edge in the
network
Tnorm = normalizing T by Equation (2) G’ = (V, E, Tnorm)
walkLists = {}
for iter = 1 to Len_walkLists do

for every node u ∈ V do
Append u to seq
while len(seq) < w:

t = seq [-1] // getting the last node of the set seq
N(t) = sort (GetNeighbors(t, G’)) // sorting neighbor list of current vertex in alphabetic

order
n = AliasSampling(N(t), Tnorm) //applying alias sampling with respect to the normalized

transition probabilities to select a next visiting neighbor node
Append n to seq

Append seq to walkLists
return walkLists

2.2. Feature Learning

After getting the neighbor sequence of every starting vertex in the network by a bias random walk,
a window (a parameter c controls the window size) slides along the sequence to get the neighbors of
an input vertex. We set a window size two, for example. If the sequence of vertices is {1,2,3,4,5 . . . }
and Vertex 1 is the input vertex. The training samples should be {1,2}, {1,3}, {2,1}, {2,3}, {2,4}, {3,2}, {3,1},
{3,4}, {3,5}, {4,3}, {4,2}, {4,5}, {5,4}, and {5,3} (see Figure 1). Then these vertices and their neighbors are
input into a skip-gram with negative sampling architecture (SGNS, also called word2vec method) [33]
to finish the feature learning for every vertex in the network. Following is a brief overview of the
SGNS method.

Give an undirected graph G = (V,E,W), for every vertex v∈V, we can get its sequence of neighbor
{vm} in the network by a bias random walk. Suppose there are number m of vertices in the sequence.
Let f: v∈V->Rd be the function that maps a vertex v to its feature representation vector and f(v) denotes
the feature representation of the vertex v. Here, d is the size of the feature representation vector,
which is empirically set to 64 [33]. Given a vertex v in the input vertex sequence, N(v) denotes its
neighborhood set. The SGNS architecture aims to build a model that maximizes the log-probability
of neighbors N(v) around a vertex v under the assumption that its feature representation is f (v).
The objective function is formally defined as follows:

max
f

∑
v∈V

log P(N(v)| f (v)), (3)
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Given the feature representation of the node vertex v, we factorize the likelihood by assuming that
the probability of observing a neighbor is independent of observing any other neighborhood node [38].

P(N(v)| f (v)) =
∏

u∈N(v)

P(u| f (v)), (4)

where P(u|f(v)) is defined as follows:

P(u| f (v)) =
exp( f (u)· f (v))∑

vs∈V exp( f (vs)· f (v))
, (5)

The underlying assumption of this objective function is the vertices that are close in the original
network should have similar feature representations in latent space. The SGNS uses a two-layer
artificial neural network to train the feature representation of every vertex. Figure 1 shows the workflow
of SGNS architecture. Suppose there are m distinct vertices in an input sequence, the SGNS applies an
m-dimensional one-hot vector to represent the input sequence. The one-hot vector of the ith vertex
in an input sequence is a binary vector, whose elements are all zeros except for the ith element is
one. The input vertex and its neighbors are encoded into corresponding one-hot vectors. Then, these
vectors are placed at the input layer and the output layer of the artificial neural network, respectively.
The stochastic gradient descent (SGD) technique is adopted to train the weights of the hidden layer.
Finally, merely multiplying the 1 ×m one-hot vector from left with an m × d weight matrix results in the
feature representation vector of an input vertex. Since computing

∑
vs∈V

exp( f (vs)· f (v)) in Equation (4)

is too time-consuming for the large scale network, negative sampling is adopted to address the
computational problem [33].

2.3. Classification

The previous steps help us learn feature vectors for genes while maintaining their topological
properties in the PPI network. The features of some labeled genes are put into a classifier to build a
model. Then, the classifier determines the unlabeled genes to be essential according to their feature
vectors. A variety of classifiers are available to finish the prediction task. This work aims to verify that
using a network embedding method to learn genes’ features in the PPI network is helpful to predict
human essential genes. Hence, one of popular classifiers is selected to predict the human essential
genes, including random forest (RF) [40], support vector machine (SVM, RBF kernel) [6], decision tree
(DT) [41], logistic regression (LR) [42], extra tree (ET), k-nearest neighbor (KNN) [43] and Naive Bayes
(NB) [44].

3. Results

3.1. Datasets

Two kinds of datasets were involved in this work. The one dataset was the human essential gene
dataset, which was from the supplementary files of [16]. The human essential genes came from three
recent works [13–15], which consist of 1516 essential genes and 10,499 non-essential genes.

The other dataset was the human PPI network. We tested our method on two different human PPI
networks. One network (namely FIs) was downloaded from the Reactome database [45], involving
12,277 genes and 230,243 interactions. The other network was from the InBio Map database (called
InWeb_IM dataset) [46], consisting of 17,428 genes and 625,641 interactions. To compare with the Guo’s
method [16], the genes which appeared in both the PPI network and the supplementary files of [16]
remained in the training and testing datasets. Consequently, the FIs dataset included 1359 essential
genes and 5388 non-essential genes, and the InWeb_IM dataset included 1512 essential genes and 9036
non-essential genes. Table 1 shows the details of the two human PPI networks.
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Table 1. Details of two human PPI networks.

Data Set Genes Interactions Essential Genes Training and Testing Genes

FIs 12277 230243 1359 6747
InWeb_IM 17428 625641 1512 10548

3.2. Evaluation Metrics

The five-fold cross-validation was selected to test the prediction performance of our method.
All genes in the benchmark dataset partitioned into five parts at random. Four of the five parts were
the training set, and the remaining part was the testing set. According to the benchmark dataset, some
popular statistical metrics measured the prediction performance. The metrics included precision, recall,
Sp (specificity), NPV (negative predictive value), F-measure, ACC (accuracy), and MCC (Matthews
correlation coefficient). Their definitions are as follows:

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

F−measure =
2·precision·recall
precision + recall

, (8)

Sp =
TN

TN + FP
, (9)

NPV =
TN

TN + FN
, (10)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (11)

ACC =
TP + TN

TP + TN + FP + FN
, (12)

where TP (true positive) and FP (false positive) measure the number of predicted essential genes that
match or not match with known essential genes. FN denotes the number of known essential genes
that are missed by predictions. TN indicates the number of true-negative genes. In addition, the area
under the Receiver Operating Characteristic (ROC) Curve (AUC) and the area under precision-recall
curve (AP) measure the overall performance of each method with selecting different thresholds to get
candidate essential genes.

Due to the unbalance between essential genes and non-essential genes, we took two different
strategies in the course of validation. In one strategy, each fold data maintains the same ratio of
essential genes to non-essential genes in the original data, i.e., about 1:4 in the FIs dataset and 1:6 in the
InWeb_IM dataset. The other strategy keeps the ratio of essential genes to non-essential genes as 1:1 in
each fold data.

3.3. Parameter Selection

As mentioned in the Method section, the transition probability T (v,k) mainly depends on the
value of π (u,k) (see Equation (1)), since, in this work, we only focus on the unweighted human PPI
network. Equation (1) shows that the value of π (u,k) changes with different values of the parameters p
and q. If the p and q equal one, the node v has an equal probability of jumping back to its previous
node u or walking to the common neighbor of it and its last step node u or guiding to its new neighbors.
On the one hand, if the p and q exceed one, the node v more likely walks to the node that is the common
neighbor of it and its last step node u. On the other hand, if the value of q is less than one, the node has
more likelihood of jumping to the nodes far away from it and if the value of p is less than one, the
node is more likely to be guided back to its previous nodes. To investigate the effect of parameters
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on the prediction performance of our method, for the FIs dataset, we fix the values of w, c, and p to
20, 10, and one respectively and set the values of q to 0.5, 0.8 and the integers ranging from one to 10.
Figure 2a shows that, when the p and q equal one, the AUC values and F-measure values by keeping
the ratio of essential genes to non-essential genes as 1:1 or their original rate on this dataset are 0.9179,
0.9227, 0.8415, 0.7098, respectively. Under this condition, the performance of our method is lower than
when the q is 0.8 or ranges from two to six. It suggests that the bias random walk on the human PPI
network can improve the performance of human essential gene predictions. Moreover, the AUC values
and F-measure values when q ranging from two to 10 vary within a very narrow band and are higher
than that when q is less than one. In this work, the q is three on this dataset because the performance
of our method receives the best. Similarly, for the parameter p, we fix the values of w, c, and q to 20, 10
and three, respectively, and set the p to 0.5, 0.8 and the integers ranging from one to 10. We notice from
Figure 2b, that the AUC values of our method drop quickly when the p is less than one, which suggests
that setting more probability to jump back to the previous node reduces the prediction performance.
When the parameter p has the same value three as the parameter q, the AUC values are lower than
that when the p is one. Under most conditions, setting the p to one achieves better performance than
setting p to other values. Hence, in this work, the parameter p is set to one on this dataset.
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The parameter w decides the walk distance in the network. The larger the w value is, the farther
the node walks away from the start node and the more global information of the network is explored.
To investigate the effect of the parameter w, the values of c, p, and q are fixed to 10, one and three,
respectively, and the w ranges from 10 to 45 on the FIs dataset. Figure 2c shows that the AUC and
the F-measure values of our method achieve relatively high values when the w is 20 on this dataset.
Consequently, in the following tests, w was set to 20 on this dataset.

The parameter c controls the size of the sliding window along the node sequence. It decides
which two nodes in the node sequence are regarded to have a close relationship in the PPI network
and will be the input and output of the artificial neural network. Setting the c values too small ignores
many truly related gene pairs and setting the c values too large introduces many unrelated gene pairs.
To investigate the effect of the parameter c, we fix the values of w, p, and q to 20, one and three,
respectively, and the range of c from two to 20 on the FIs dataset. Figure 2d shows that the AUC values
and F-measure values of our method achieve relatively high points when the c is ten on this dataset.
Consequently, the c is set to 10 on the FIs dataset in this work.

For the InWeb_IM dataset, we fixed the values of w, c, and p to 25, four, and one, respectively,
and set the q to 0.5, 0.8 and the integers ranging from one to 10. Figure 3a shows that when the values
of q equal four, the AUC values and the F-measure values achieve the highest. Hence, the q is four on
this dataset. For parameter p, we fixed the values of w, c, and q to 25, four, and four, respectively and
set the p to 0.5, 0.8 and the integers ranging from one to 10. Figure 3b shows that setting p to six helps
our method achieve the best performance. Similarly, we test the parameters w and c and set the w and
c to 25 and four, respectively, on the InWeb_IM dataset.

3.4. Comparison with Existing Methods

To test the effectiveness of our method, we compared it with four other existing approaches,
including the Z-curve method [16], the centrality-based method, the DeepWalk [34] method, and the
LINE [35] method. The Z-curve method is the latest method to predict human essential genes,
which inputs DNA sequence features extracted by a λ-interval Z-curve method into an SVM classifier
to make predictions [16]. The centrality-based method makes use of genes’ central indices in the
network as input features, including DC, BC, CC, SC, EC, IC, and NC. CytoNCA [47] calculated these
centrality indices. The remaining two are the DeepWalk [34] and the LINE [35] that learn the feature
representation for every node in the human PPI network by different network embedding methods.
All these methods select the SVM classifier to make predictions. Table 2; Table 3 show their prediction
performances on two different human network datasets, including the FIs dataset and the InWeb_IM
dataset. The ratio of essential genes to non-essential genes in the course of validation shows in the
brackets at the first column of the tables. For example, we maintained the ratio of the two kinds of
genes as 1:4 on the FIs dataset or 1:6 on the InWeb_IM dataset. The best and comparable results are in
bold font.
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Table 2. Performance comparison between our method and existing methods with different essential
to non-essential gene ratios on FIs dataset.

Methods Precision Recall SP NPV F-measure MCC ACC AUC AP

DeepWalk (1:4) 0.771 0.621 0.954 0.909 0.688 0.625 0.887 0.905 0.734
LINE (1:4) 0.837 0.394 0.981 0.866 0.539 0.513 0.863 0.856 0.693

Centrality (1:4) 0.608 0.523 0.917 0.879 0.562 0.464 0.836 0.753 0.550
Z-curve (1:4) 0.526 0.530 0.880 0.882 0.528 0.409 0.810 0.834 0.522

Our method (1:4) 0.822 0.597 0.968 0.905 0.692 0.641 0.893 0.913 0.769

DeepWalk (1:1) 0.833 0.846 0.830 0.843 0.839 0.676 0.838 0.907 0.896
LINE (1:1) 0.705 0.847 0.647 0.808 0.770 0.503 0.747 0.839 0.848

Centrality (1:1) 0.852 0.553 0.904 0.669 0.671 0.488 0.728 0.760 0.797
Z-curve (1:1) 0.733 0.800 0.708 0.780 0.765 0.511 0.754 0.824 0.783

Our method (1:1) 0.859 0.836 0.863 0.840 0.847 0.699 0.849 0.914 0.902
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Table 3. Performance comparison between our method and existing methods with different essential
to non-essential gene ratios on InWeb_IM dataset.

Methods Precision Recall SP NPV F-measure MCC ACC AUC AP

DeepWalk (1:6) 0.749 0.515 0.971 0.923 0.610 0.571 0.906 0.904 0.667
LINE (1:6) 0.819 0.165 0.994 0.877 0.275 0.332 0.875 0.832 0.547

Centrality (1:6) 0.527 0.562 0.916 0.926 0.544 0.465 0.865 0.828 0.511
Z-curve (1:6) 0.485 0.462 0.918 0.911 0.473 0.388 0.853 0.840 0.456

Our method (1:6) 0.841 0.550 0.983 0.929 0.665 0.641 0.921 0.915 0.762

DeepWalk (1:1) 0.817 0.848 0.811 0.842 0.832 0.659 0.829 0.908 0.894
LINE (1:1) 0.641 0.905 0.492 0.839 0.750 0.436 0.699 0.804 0.792

Centrality (1:1) 0.816 0.713 0.839 0.745 0.761 0.557 0.776 0.851 0.841
Z-curve (1:1) 0.730 0.777 0.713 0.762 0.753 0.491 0.745 0.827 0.801

Our method (1:1) 0.855 0.858 0.854 0.858 0.857 0.713 0.856 0.928 0.921

Tables 2 and 3 show that our method has the best performance among all the methods compared
on the two datasets, no matter maintaining which ratio of essential genes to non-essential genes in the
course of validation. When the ratio of the two types of genes was 1:4 on the FIs dataset, the F-measure,
MCC, AUC, and AP values of our method were 0.692, 0.641, 0.913, and 0.769, which achieved 31%,
57%, 9.5%, and 47.3% improvements as compared with the Z-curve method and achieved 23%, 38%,
21.2%, and 39.8% improvements as compared with the centrality method. For the comparison with the
DeepWalk and LINE, the four indicators showed improvements of 0.6%, 2.6%, 0.9%, 4.8% and 28.4%,
25%, 6.7%, 11%, respectively. When the ratio of the two kinds of genes was 1:6 on the InWeb_IM dataset,
the F-measure, MCC, AUC, and AP values of our method were 0.665, 0.641, 0.915 0.762, respectively,
which were 40.6%, 65.2%, 8.98%, 67.1% higher than that of the Z -curve method, and were 22.2%,
37.8%, 10.5%, 49.1% higher than that of the centrality method. For the comparison with DeepWalk
and LINE, the F-measure, MCC, AUC, AP values of our method showed improvements of 9%, 12.3%,
1.2%, 14.2%, and 141.8%, 93.1%, 9.8%, 39.3%, respectively. When the ratio of the two kinds of genes
was kept as 1:1 in the course of cross-validation, the evaluation metrics of most comparing methods,
including precision, recall, F-measure, ACC, MCC, AUC, and AP, increase their values to some degree.
Compared with DeepWalk that has the highest performance among the other existing methods, the
F-measure, MCC, AUC and AP values of our method were 0.847, 0.699, 0.914, 0.902 on the FIs dataset
and reached up to 0.857, 0.713, 0.928, 0.921 on the InWeb_IM dataset. Our method still possesses the
highest F-measure, MCC, AUC, and AP values on the two datasets.

The Z-curve method used the gene’s sequence information as prediction features. The centrality
method combined seven genes’ central indices in the network into feature vectors to make predictions.
The success of our method proved that learning the genes’ latent features from the PPI network,
which extremely maintains the structure of the network, was able to improve the identification of
human essential genes. Compared with DeepWalk and LINE that also extracted genes’ features by
network-embedding, our methods showed better performance, which proves that our method takes
better network-embedding strategies to predict human essential genes.

3.5. Comparison of Different Classifiers

In this work, we extract the gene’s features in the PPI network by using a network-embedding
method. To assess the effectiveness of the features on human essential gene predictions, besides the
SVM classifier, the other six frequently used classifiers are selected to predict human essential genes in
our method. These classifiers include deep neural network (DNN), decision tree (DT), Naive Bayes
(NB), k-nearest neighbor (KNN), logistic regression (LR), random forest (RF), and extra tree (ET).
The batch_size, epochs, learning rate, and activation function of the DNN model are 64, 20, 0.0001,
and sigmoid, respectively. For the DNN with one hidden layer, the number of neurons is 32. For the
DNN with three hidden lays, the numbers of neurons are 32, 16, and one, respectively. Tables 4 and 5
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list the performance comparisons of our method on two different datasets with different classifiers and
different ratios of essential genes to non-essential genes in cross-validation. Among all comparing
classifiers, the extra tree algorithm (ET) based on random achieved the highest prediction performance.
By maintaining the original essential and non-essential gene ratio in the training and testing dataset,
the F-measure, MCC, AUC, and AP values of our method by using ET classifier achieved 0.727, 0.676,
0.932, 0.806 on the FIs dataset, and 0.692, 0.659, 0.943, 0.779 on the InWeb_IM dataset. When keeping
the same ratio of essential gene to non-essential, the F-measure, MCC, AUC, and AP values of our
method using ET classifier are 0.7%, 1.9%, 0.98%, and 2.2% higher than that by using the SVM classifier
on the FIs dataset, and are 1.05%, 2.2%, 0.65%, and 0.76% higher than that by using the SVM classifier
on the InWeb_IM dataset. The results suggest that choosing other efficient classifiers can further
improve the prediction performance of our method.

Table 4. Performance comparison of our method with different classifiers and different essential and
non-essential gene rates on FIs dataset.

Methods Precision Recall SP NPV F-measure MCC AccuracyAUC AP

DNN (1 layer, 1:4) 0.258 0.770 0.220 0.805 0.234 0.026 0.667 0.460 0.242
DNN (3 layers, 1:4) 0.248 0.407 0.690 0.822 0.308 0.083 0.633 0.534 0.245

DT (1:4) 0.623 0.619 0.906 0.904 0.621 0.526 0.848 0.763 0.660
NB (1:4) 0.553 0.737 0.850 0.928 0.632 0.531 0.827 0.880 0.683

KNN (1:4) 0.795 0.628 0.959 0.911 0.702 0.644 0.893 0.889 0.782
LR (1:4) 0.787 0.585 0.960 0.902 0.671 0.613 0.885 0.914 0.755

SVM (1:4) 0.822 0.597 0.968 0.905 0.692 0.641 0.893 0.913 0.769
RF (1:4) 0.826 0.646 0.966 0.916 0.726 0.674 0.902 0.927 0.799
ET (1:4) 0.828 0.648 0.966 0.916 0.727 0.676 0.902 0.932 0.806

DNN (1 layer, 1:1) 0.554 0.452 0.503 0.504 0.527 0.007 0.503 0.500 0.519
DNN (3 layers, 1:1) 0.535 0.538 0.532 0.536 0.536 0.070 0.535 0.562 0.553

DT (1:1) 0.768 0.788 0.762 0.783 0.778 0.551 0.775 0.775 0.831
NB (1:1) 0.822 0.765 0.834 0.780 0.792 0.600 0.799 0.876 0.873

KNN (1:1) 0.837 0.805 0.844 0.812 0.821 0.649 0.824 0.895 0.906
LR (1:1) 0.839 0.827 0.841 0.829 0.833 0.668 0.834 0.910 0.907

SVM (1:1) 0.859 0.836 0.863 0.840 0.847 0.699 0.849 0.914 0.902
RF (1:1) 0.859 0.844 0.861 0.846 0.851 0.705 0.852 0.921 0.921
ET (1:1) 0.867 0.840 0.872 0.845 0.853 0.712 0.856 0.923 0.922

Table 5. Performance comparison of our method with different classifiers and different essential and
non-essential gene rates on InWeb_IM dataset.

Methods Precision Recall SP NPV F-measure MCC AccuracyAUC AP

DNN (1 layer, 1:6) 0.355 0.772 0.206 0.877 0.261 0.103 0.712 0.499 0.206
DNN (3 layers, 1:6) 0.350 0.255 0.921 0.881 0.295 0.202 0.826 0.483 0.221

DT (1:6) 0.584 0.588 0.930 0.931 0.586 0.517 0.881 0.759 0.616
NB (1:6) 0.456 0.697 0.861 0.945 0.551 0.473 0.837 0.877 0.615

KNN (1:6) 0.778 0.564 0.973 0.930 0.654 0.617 0.914 0.888 0.740
LR (1:6) 0.785 0.591 0.973 0.934 0.675 0.637 0.918 0.931 0.749

SVM (1:6) 0.841 0.550 0.983 0.929 0.665 0.641 0.921 0.915 0.762
RF (1:6) 0.799 0.615 0.974 0.938 0.695 0.659 0.923 0.940 0.776
ET (1:6) 0.816 0.600 0.977 0.936 0.692 0.659 0.925 0.943 0.779

DNN (1 layer, 1:1) 0.652 0.504 0.568 0.591 0.607 0.157 0.578 0.603 0.640
DNN (3 layers, 1:1) 0.737 0.497 0.823 0.620 0.593 0.338 0.659 0.637 0.692

DT (1:1) 0.802 0.791 0.805 0.794 0.797 0.596 0.798 0.798 0.849
NB (1:1) 0.836 0.708 0.862 0.747 0.767 0.576 0.785 0.874 0.872

KNN (1:1) 0.853 0.843 0.854 0.845 0.848 0.697 0.849 0.904 0.906
LR (1:1) 0.865 0.834 0.870 0.840 0.849 0.704 0.852 0.925 0.920

SVM (1:1) 0.855 0.858 0.854 0.858 0.857 0.713 0.856 0.928 0.921
RF (1:1) 0.844 0.886 0.836 0.880 0.864 0.723 0.861 0.932 0.920
ET (1:1) 0.853 0.879 0.849 0.876 0.866 0.729 0.864 0.934 0.928
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3.6. Feature Representation of Human Essential Genes

Our method represents every node in the human PPI network as a latent vector and uses the
vector as the features of the node to predict essential proteins. To investigate whether the feature
representation learned by our method can preserve network structure and the properties of the nodes
in the network, we rebuild the network according to the Euclidean distance between the nodes’ feature
vectors. Then, we calculate some centrality indexes for nodes in the PPI network, including DC, BC,
CC, NC, and IC. Table 6 shows the Pearson's correlation coefficient between these centrality indexes of
the human essential genes in the original PPI network and the rebuilt network. We note that on the FIs
dataset and InWeb_IM dataset, the Pearson's correlation coefficients between the centrality indexes
of the human essential genes in the original and the rebuilt network are above 0.8 and some values
even close to one. It suggests the essential genes have very similar topology properties in the two PPI
networks and the feature representation learned by our method can preserve network structure.

Table 6. The Pearson's correlation coefficient between the centrality indexes of the human essential
genes in the original PPI network and the rebuilt network.

Data set DC BC CC NC IC

FIs 0.9262 0.8040 0.9998 0.9911 0.9794

InWeb_IM 0.9617 0.8372 0.9999 0.9938 0.9839

To probe why the feature representations can improve the performance of the human essential
genes’ prediction, we clustered the essential genes into 20 subgroups according to their features by a
k-means method. For comparison, we select two different kinds of features for clustering. One type of
gene feature is the connection relationship between a gene and the other genes in the PPI network,
which is a row of the adjacent matrix of the network. The other type of gene feature is a gene’s feature
representation learned by the network embedding method. The clustering results on two human PPI
networks were visualized by a t-SNE tool. Figure 4; Figure 5 show that the human essential genes
can be separated into several subgroups well, when using the genes’ feature representations. On
the FIs dataset, the largest subgroup consists of 289 essential genes, and the smallest one consists of
21 essential genes. On the InWeb_IM dataset, the largest subgroup consists of 176 essential genes, and
the smallest one consists of 20 essential genes. However, when the clustering features are selected as
the connection relationship between a gene and the other genes in the PPI network, most of the human
essential genes are aggregated in a large subgroup while the remaining subgroups have small sizes.
On the FIs dataset, the largest subgroup consists of 902 essential genes, and the smallest one consists of
six essential genes. On the InWeb_IM dataset, the largest subgroup consists of 1022 essential genes,
and the smallest one consists of one essential gene. Moreover, we also leverage silhouette value and
Dunn value to evaluate the quality of the clustering results under two different clustering features.
Table 7 lists the detailed information about these subgroups. The silhouette and Dunn values of the
subgroups generated by the feature representation are higher than that of the subgroups generated by
the connection relationship features. It suggests that selecting the feature representation as clustering
features can successfully divide human essential genes into the subgroups with the high compactness
within clusters and the high separation among clusters.

Table 7. Details of the subgroups aggregated by two different features.

Data Set Features Max
Size

Min
Size

Median
Size Silhouette Dunn Avg(-log(p-value))

FIs Feature representation 289 21 51.5 0.3242 0.59 63.50
Connection relationship 902 6 19.5 0.2448 0.58 45.01

InWeb_IM Feature representation 176 20 61.5 0.2279 0.63 54.95
Connection relationship 1022 1 13 0.1619 0.25 30.11
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To further investigate the biological functions of these essential gene subgroups, we used the
DAVID on-line database to perform the GO functional enrichment analysis for these subgroups in
the GOTERM_BP_FAT category. In this work, we only present the enrichment analysis based on the
GO biological process (BP) annotation. Because the module enriches in BP annotations indicates that
the genes in the module have diverse molecular functions but work together to perform a particular
biological process, such as signaling in a pathway. An essential gene subgroup is regarded as being
biological significance if its p-value is less than 0.01. All of the essential gene clusters generated by
two different clustering features on the two human PPI networks have significant biological functions
(see Supplementary Files). As we can see from Table 7, the essential gene subgroups clustered by the
feature representation have higher vital biological functions (with higher Avg(-log(p-value)) values)
than those gathered by connection relationship features. Table 8 lists ten example essential gene clusters
with the smallest p-values on the FIs dataset. We notice that the feature representation can cluster a
group of essential genes with the p-value of 6.64E-191. It consists of 116 essential genes, and 110 of them
enrich in the function of RNA splicing (GO:0000377). A cluster includes 50 essential genes, and all of
the genes in it have the function of rRNA processing (GO:0006364). However, these 50 essential genes
are separated into three clusters by connection relationship features (see Supplementary Files). The bias
random walk in the course of learning feature representation for genes can catch the modularity
structure of the network. Therefore, these features contribute to the performance improvement of
essential gene prediction because essential genes tend to cluster together.
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Table 8. Ten example essential gene clusters with the smallest p-values gathered by feature representation on FIs dataset.

GO ID Description p-value Genes in Cluster Gene Ratio

GO:0000377
RNA splicing, via

transesterification reactions with
bulged adenosine as nucleophile

6.64·10−191

PLRG1/PABPN1/SNRNP35/HNRNPM/RBMX/RBM22/DHX9/MAGOH/XAB2/SRRM2/
SNRPF/SMNDC1/SRRM1/SF3B5/PPIE/CTNNBL1/PRPF40A/SNRNP70/PRPF4B/EIF4A3/

PRPF19/BUD31/HNRNPL/NCBP1/DHX8/SNRPC/CWC22/CPSF1/RNPC3/HNRNPC/
TFIP11/SNU13/CLP1/SNRNP200/ISY1/TXNL4A/CPSF2/USP39/SNRNP27/ALYREF/

DDX23/CPSF3/PCBP1/DDX39B/PCF11/SYMPK/SF3B1/BCAS2/SRSF1/SF3A2/
WDR33/SRSF11/DHX38/SNRNP25/SNRPE/HNRNPH1/ZMAT5/RBM17/SNRNP48/

CHERP/PUF60/FIP1L1/HNRNPK/HNRNPA2B1/CSTF3/LSM7/CDC40/SNRPD3/
PRPF3/PRPF31/NUDT21/SART3/AQR/CRNKL1/U2AF2/PPWD1/PRPF6/SRSF2/

LSM4/SRRT/DHX16/SART1/CSTF1/SF1/SRSF7/SNRPB/DHX15/EFTUD2/NCBP2/
PRPF4/SF3B2/SLU7/CDC5L/SF3A3/LSM2/GPKOW/SUGP1/HNRNPU/SF3B4/

CPSF4/PRPF8/SRSF3/SNRPD2/HSPA8/SNW1/U2SURP/DDX46/SF3A1/SF3B3/PDCD7

110/116

GO:0070125 mitochondrial translational
elongation 6.97·10−158

MRPL28/MRPL22/MRPL17/MRPL48/MRPL37/MRPL4/MRPL47/TUFM/MRPL23/
MRPL9/MRPL24/MRPS12/MRPL11/MRPL10/MRPL38/ERAL1/MRPL46/MRPS6/

MRPS25/MRPL41/MRPS27/MRPL12/MRPS16/MRPS23/MRPL34/MRPS34/MRPL43/
MRPL15/MRPS24/MRPL35/MRPL40/MRPL57/MRPL21/GFM1/MRPS7/PTCD3/

MRPS22/MRPL13/MRPL51/MRPL53/MRPS2/MRPL14/MRPS5/MRPL45/MRPL18/
DAP3/AURKAIP1/MRPL19/MRPS15/MRPL20/MRPL39/MRPL44/GADD45GIP1/
MRPS18A/MRPS14/MRPS11/MRPS31/MRPS18C/MRPS18B/MRPS30/MRPL16/

MRPS35/MRPS10/MRPL33

64/67

GO:0000184
nuclear-transcribed mRNA

catabolic process,
nonsense-mediated decay

7.98·10−107

UPF1/RPS16/RPSA/SMG5/RPS14/RPL10A/RPL8/RPS11/SMG7/RPL13A/RPLP1/
ETF1/RPL27A/EIF4G1/GSPT1/RPLP2/RPL4/RPS13/RPL18/RPS4X/RPL36/RPS10/

RPL23A/RPS12/RPS5/RPL9/SMG6/RPS18/RPS21/RPS7/RPL29/RPL31/RPL12/
RPL10/RPL7/PABPC1/RPL3/RPS15A/RPL37A/RPL18A/RPL19/RPS25/SMG1/
RPL11/RPL7A/RPS15/RPS9/RPS2/UPF2/RPL27/RPL13/RPL14/RPL15/RPS29/

RPL38/RPLP0/RPS8/RPS6

58/96

GO:0000819 sister chromatid segregation 1.97·10−94

PMF1/NSL1/BUB3/ESPL1/NUP43/BIRC5/SMC2/XPO1/CENPC/NUF2/KIF18A/
SEH1L/SKA1/NUP62/SEC13/NCAPD3/NCAPD2/TTK/MAU2/SMC5/NSMCE2/
CENPA/CDCA8/RAD21/AHCTF1/CENPM/RANGAP1/SPC24/PLK1/SMC1A/
AURKB/CENPK/INCENP/RANBP2/NUP85/SPC25/CKAP5/NUP107/CENPE/
SMC3/NUP98/CENPL/PAFAH1B1/MAD2L1/CENPN/SPDL1/NDC80/CDC20/

DSN1/BUB1B/NUP133/TPR/KPNB1/CENPI/SMC4/NUDC/SGO1/CCNB1/
RAN/NUP160/CDCA5

61/91
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Table 8. Cont.

GO ID Description p-value Genes in Cluster Gene Ratio

GO:0006364 rRNA processing 5.08·10−94

WDR75/BMS1/EXOSC9/UTP6/NOP56/HEATR1/EXOSC1/UTP20/UTP4/UTP14A/
EXOSC8/RRP36/NOL6/MPHOSPH10/DDX47/RRP9/TBL3/PWP2/EXOSC7/

WDR3/WDR18/IMP4/EXOSC5/EXOSC4/WDR46/UTP18/DIEXF/UTP11/
LAS1L/UTP3/UTP15/NOC4L/FBL/IMP3/NOP14/PDCD11/TEX10/NOP58/
RCL1/XRN2/KRR1/DDX49/EXOSC3/EXOSC10/WDR43/DDX52/EXOSC6/

NOL11/EXOSC2/WDR36

50/50

GO:0031145
anaphase-promoting

complex-dependent catabolic
process

5.71·10−89

ANAPC11/PSMD7/PSMD14/PSMA7/PSMB3/PSMB6/PSMA3/PSMD12/PSMA4/
PSMB5/PSMA2/ANAPC2/PSMB1/ANAPC4/PSMD6/ANAPC5/PSMA5/PSMD2/
PSMD4/PSMC6/PSMC1/CDC16/ANAPC15/PSMD1/PSMD11/PSMB4/PSMD3/

PSMD8/CUL3/ANAPC10/PSMC4/PSMA1/PSMC2/PSMC3/PSMB7/AURKA/
PSMC5/PSMD13/PSMB2/CDC23

40/51

GO:0098781 ncRNA transcription 2.19·10−81

GTF2E1/PHAX/INTS5/TAF13/TAF6/POLR2E/ZC3H8/ELL/POLR2H/TAF8/INTS7/
POLR2F/BRF1/GTF2A1/POLR2B/SNAPC2/POLR2I/GTF3C2/INTS9/TAF5/INTS8/

GTF2A2/INTS2/POLR2G/POLR2C/GTF3C4/INTS3/SNAPC4/GTF3C3/GTF2B/
POLR2D/INTS6/SNAPC3/INTS1/CCNK/CDK9/ICE1/POLR2L/RPAP2/

GTF3C5/INTS4/CDK7/GTF2E2/GTF3C1

44/80

GO:0006270 DNA replication initiation 2.12·10−66
CDC7/MCM2/POLA1/MCM4/POLE2/ORC5/ORC2/CDC45/MCM3/ORC4/MCM7/

ORC3/MCM10/CDC6/MCM6/ORC6/ORC1/MCM5/PRIM1/POLA2/GINS2/
CDT1/CDK2/GINS4/POLE

25/28

GO:0048193 Golgi vesicle transport 1.46·10−61

GBF1/TRAPPC1/VPS52/COG4/KIF11/COPB1/DCTN5/VPS54/YKT6/DCTN6/
STX18/COPA/COPB2/NSF/COG8/PREB/TMED2/TMED10/TRAPPC4/DCTN4/

KIF23/COPG1/TRAPPC5/ARFRP1/ARCN1/NAPA/COPE/TRAPPC8/RINT1/
SCFD1/COPZ1/STX5/TRAPPC11/SYS1/NBAS/COG3/SEC16A/TRAPPC3/

RACGAP1/GOSR2

40/ 47

GO:0042254 ribosome biogenesis 5.70·10−53

WDR12/FTSJ3/NOP2/DDX56/MAK16/BRIX1/RRP1/NAT10/ABCE1/GTPBP4/
PPAN/MDN1/PES1/EBNA1BP2/DIS3/NOP16/POP4/DDX27/EFL1/SDAD1/
NSA2/HEATR3/RPF1/RSL1D1/RRS1/TSR2/TRMT112/LSG1/NHP2/NOP10/
NOL9/DKC1/NIP7/GNL2/ISG20L2/RPL7L1/SURF6/DDX51/RRP15/PELP1/

NGDN/NOC2L/WDR74

43/ 81
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4. Conclusions

Extracting the features related to essential genes is the critical step for designing a machine-learning
method with powerful prediction performance. Compared with previous approaches that refer to the
topological features in the PPI network or learn features from the DNA sequence, this work adopts
a network embedding method to represent the nodes in the PPI network as latent feature vectors
that maximally preserve their interactive relationships in the network. To measure the power of the
latent features on predicting human essential proteins, we learn features from two different human PPI
networks and these features are input into several popular classifiers. In the course of learning, a bias
random walk is, first, implemented on the PPI network to get the network context of a given node and,
then, the node pairs in the network context are input into an artificial neural network to learn their
representation in the latent space. The human essential gene prediction results based on the two PPI
networks show that our method using the SVM classifier outperforms the methods [16] that select
network topological properties or the DNA sequences as input features. It proved that the network
embedding method could learn feature vectors for the nodes from the PPI network to efficiently predict
human essential genes. The features represented by our method have better performance on human
essential gene prediction than that by other network embedding approaches, i.e., Deepwalk [34] and
LINE [35]. It suggests that our approach is an efficient way to learn the feature representations for
nodes in the human PPI network by adding bias in exploring neighborhoods. Moreover, using the ET
classifier can further improve the prediction performance of our method.

In the future, we will focus on designing a more robust network embedding method to find
the latent feature representation of the nodes in the PPI network, and developing more effective
machine learning methods to predict human essential genes based on the features of genes. In addition,
one human gene can produce many different protein isoforms and there exists noise in the human
PPI network. Hence, in future work, establishing reliable gene–gene networks would be a potential
solution to improve the essential gene prediction.
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