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Abstract

:

Microsatellites or simple sequence repeats (SSRs) are popular co-dominant markers that play an important role in crop improvement. To enhance genomic resources in general horticulture, we identified SSRs in the genomes of eight citrus species and characterized their frequency and distribution in different genomic regions. Citrus is the world’s most widely cultivated fruit crop. We have implemented a microsatellite database, citSATdb, having the highest number (~1,296,500) of putative SSR markers from the genus Citrus, represented by eight species. The database is based on a three-tier approach using MySQL, PHP, and Apache. The markers can be searched using multiple search parameters including chromosome/scaffold number(s), motif types, repeat nucleotides (1–6), SSR length, patterns of repeat motifs and chromosome/scaffold location. The cross-species transferability of selected markers can be checked using e-PCR. Further, the markers can be visualized using the Jbrowse feature. These markers can be used for distinctness, uniformity, and stability (DUS) tests of variety identification, marker-assisted selection (MAS), gene discovery, QTL mapping, and germplasm characterization. citSATdb represents a comprehensive source of markers for developing/implementing new approaches for molecular breeding, required to enhance Citrus productivity. The potential polymorphic SSR markers identified by cross-species transferability could be used for genetic diversity and population distinction in other species.
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1. Introduction


The genetic selection of plants in conventional plant breeding is decided by the parents and influenced by different environmental conditions [1]. In conventional plant breeding, alleles are mixed over the generations, resulting in the development of new combinations, which helps in achieving higher trait value through selection. Developing a variety of woody plant species through traditional breeding may take 1012 years [2]. This time period can be reduced by performing marker-assisted selection (MAS) on seedling material [3]. In recent years, marker-assisted selection has become popular in breeding programs for many crops [4,5,6,7]. One of the pre-requisites for using MAS is the discovery of DNA-based markers, which are tightly linked to the target trait of interest. Microsatellite (SSR) markers have been the system of choice for quantitative trait loci (QTL) mapping in many crops for a long time. Microsatellites are tandem repeats of 1–6 nucleotide long DNA units flanked by unique sequences in the genome but found more abundantly in the intronic region [8]. These are characterized by multi-allelic variation, reproducibility, and a high co-dominant inheritance [9]. The mutation rate of SSRs ranges from 10−3 to 10−6 per generation [10], which increases with the length of the repeat unit [11]. They are highly versatile, low-cost, informative PCR-based molecular markers associated with a high frequency of length polymorphism [12]. These features make them the preferred choice among available genetic markers (e.g., AFLP, RAPD, RFLP, SNP and SRAP) and provide the basis for their effective applications in a wide range of fields, such as genetic mapping, QTLs identification, varietal identification, genetic diversity analysis, linkage mapping, marker-assisted selection and evolutionary analysis [13].



The genus Citrus is a large taxonomic rank that includes many cultivated species such as oranges, lemons, pomelos, grapefruits, and limes. Citrus plants are woody, perennial small to moderate-sized trees that are cultivated all over the world to produce fresh fruits and juice, and as ornamentals, etc. Being part of our heritage, the citrus industry has a great social and cultural significance, in addition to its economic and agronomic importance. A number of SSR markers have been reported in citrus in different studies, but there is a limited catalogue. Therefore, there is a need for more comprehensive identification of markers for genetic diversity, MAS, association or comparative mapping, genetic linkage maps, and qualitative and quantitative traits [14,15,16,17,18,19,20,21,22].



Conventional methods for SSR screening using genomic libraries are costly, labor-intensive and time-consuming [23]. In silico approaches can thus be used to overcome this problem. These methods have the advantage of predicting SSRs in specific regions in the genome, which is more efficient in designing molecular markers for linkage mapping and QTLs [24]. The advent of next-generation sequencing (NGS) technologies and advancement in computational approaches have made possible the discovery of markers in bulk.



In accordance with the TRIPS (trade-related aspects of intellectual property rights) agreement and other intellectual property rights, plant breeders own a variety on the basis of distinctness, uniformity and stability (DUS) characteristics, which can be used for allocating new variety status and solving legal disputes [25]. So, in order to supplement DUS characteristics for variety identification, SSR markers were successfully used in crops such as rice [26], maize [27], barley [28], tobacco [29], soybean [30], wheat [31], mung beans [32], kadam [33] and potatoes [34]. The characterization of different Citrus species can also be undertaken using such approaches. The Citrus genus contains more than 100 species with limited genomic resources available. Extensive molecular mining of SSR markers and assessment of their polymorphism with cross-species transferability may be a more pragmatic approach to addressing the need for markers in previously untouched species. In closely related species, flanking regions of SSRs are conserved; heterologous primers of these flanking regions can facilitate the use of molecular markers [35]. SSR markers from focal species can be applied in non-focal species to investigate the population genetic structure of wild species [36].



Though different microsatellite databases have been developed [37,38], due to the high number of species in these databases, they lack some features, such as e-PCR, browsing/visualizing SSRs on the genome, etc. Therefore, in addition to the existing databases, a dedicated database focusing on all available genomic data of the genus Citrus that contains a wide range of user-friendly features could be a valuable genomic resource for Citrus crop improvement and characterization.



The present study was aimed at genome-wide mining of SSRs and the development of a user-friendly database containing microsatellites from eight Citrus species (Citrus sinensis, Citrus clementina, Citrus maxima, Citrus medica, Citrus ichangensis, Atlantia buxifolia, Citrus reticulata and Fortunella hindsii) with the options for chromosome-wise SSR mining and primer designing for genotyping, along with e-PCR-based polymorphism discovery. It also aims to provide annotated genic regions of SSR to be used as functional domain markers (FDMs).




2. Materials and Methods


2.1. Data Collection


The genomes of Citrus sinensis [39], Citrus clementina [40], Citrus maxima, Citrus medica, Citrus ichangensis, and Atlantia buxifolia [41] were downloaded from the Citrus Genome Database [42]; Citrus sinensis and Citrus maxima were assembled chromosome-wise while Citrus medica, Citrus clementina, Citrus ichangensis, and Atalantia buxifolia were assembled scaffold-wise, Citrus reticulata through pseudomolecule assembly and Fortunella hindsii through contig-assembly (Table 1). Genome assemblies were used from these two resources: Huazhong Agricultural University (HZAU), and Joint Genome Institute (JGI).




2.2. In Silico Simple Sequence Repeat Mining and Primer Designing


SSRs were identified in genomes of 8 citrus species (Table 1). A Perl script (miSATminer) was written to identify repeat motifs in a genome sequence. Microsatellites were identified with parameters such as 10 repeat units for mono, 5 repeat units for the di, tri, tetra, penta, and hexa. In-house Perl scripts were used to fetch the flanking regions of the identified SSRs for primer designing. Primer3 executables were used to design primers with the following default parameters: melting temperature, 55–65 °C; GC content, 40–60%; primer size, 18–27 bp; length and product size, 150–280 bp [43].




2.3. Functional Annotation of SSR Markers


The full annotation of gene functions is available for these eight citrus species and was implemented in the Jbrowse genome browser inside the citSATdb database. In this genome browser, markers can be visualized against the reference sequence, gene coordinates, and structural and functional details.




2.4. Marker and Database Development Workflow


Microsatellite repeat loci were mined by pattern identification in the genome sequences using miSATminer, our inhouse developed Perl script. This script mines SSR loci from the genome sequences with custom repeat parameters. SSR primers for genotyping were designed using Primer3 executables by extracting a flanking length of 300 bp upstream and 300 bp downstream of SSR loci in the genome. Selected repeats can be viewed with their markers in the sequence. ePCR was implemented in the database for polymorphism. In citSATdb, we have provided eight genome assemblies and an option for uploading user sequences to check amplification. The markers with variable product size in two genomes were considered as polymorphic markers. All the results can be downloaded as a CSV file. The whole workflow of the database is depicted in (Figure 1).




2.5. Database Development and Web Interface


The Citrus microsatellite database (citSATdb) is a three-tier-based relational database developed with a client tier, middle tier, and database tier. Predicted SSRs and their corresponding primers were stored in MySQL data tables and accessed through the Apache server. A user-friendly interface of the database was developed with PHP, HTML5, and Jquery. In silico microsatellite designing with miSATminer and custom Perl scripts and Primer3 was implemented for primer designing. Jbrowse for the visualization of genomic sequences, SSRs and primers was also implemented. The NCBI local and remote database was also implemented for similarity searches. e-PCR was implemented for cross-species transferability. The web server contains seven tabs viz. Home, About, Species, Tools, JBrowse, Help, and Contact; the database will be updated regularly with newly available genome data.





3. Results and Discussion


3.1. Cross-Species Comparison of Citrus Species SSRs


For the development of the Citrus web genomics resource, SSR loci were mined successfully using miSATminer. A total of 1,699,853 putative microsatellites were mined from the genomes of eight Citrus species. The highest number of microsatellites were identified in Fortunella hindsii (240,182), followed by Citrus ichangensis (226,950), Citrus maxima (224,961), Citrus medica (210,590), Atalantia buxifolia (204,687), Citrus sinensis (203,297), Citrus reticulata (201,408) and Citrus clementina (187,778). Maximum microsatellite density (SSRs/Mb) was observed in Atalantia buxifolia (675.26), whereas the minimum was observed in Citrus medica (552.12) (Table 2). Previous studies have reported a negative correlation between the SSR density and genome size [44]. However, the SSRs identified in our study of eight Citrus species show no correlation between the SSR density and genome size. This is in line with some of the recent findings which reported that there is no correlation between the genome size and SSRs density; genome size differences may lead to the degree of microsatellite repetition in the genome [45,46,47,48,49,50].




3.2. SSR Motifs Characterized by Repeat Length


In all the species, mono-nucleotide repeats were most abundant, followed by di-, tri-, tetra-, penta-, and hexa-nucleotide repeats. Among all the citrus species, the maximum number of mono-nucleotide repeats was found in Fortunella hindsii (152,611) followed by C. ichangensis (144,115), C. maxima (142,446), A. buxifolia (129,304), C. medica (125,467), C. reticulata (123,469), C. sinensis (121,051), and C. clementina (115,888). In the case of di-nucleotide repeats, the maximum number was observed in F. hindsii (61,408) followed by C. medica (60,040), C. ichangensis (57,930), C. maxima (57,059), C. reticulata (55,336), C. sinensis (54,874), A. buxifolia (51,030), and C. clementina (50,108). The occurrence of tri-nucleotides was observed highest in C. sinensis (23,568) followed by F. hindsii (22,143), C. maxima (21,668), C. medica (21,259), C. ichangensis (21,149), A. buxifolia (20,572), C. reticulata (19,400), and C. clementina (18,553). Similarly, tetra-nucleotides were most frequent in F. hindsii (3159) followed by C. sinensis (3050), C. medica (2975), C. maxima (2954), C. ichangensis (2844), A. buxifolia (2822), C. reticulata (2631), and C. clementina (2620). C. ichangensis (613) and A. buxifolia (613) contain the maximum penta-nucleotides, followed by F. hindsii (576), C. maxima (539), C. medica (534), C. sinensis (473), C. clementina (436), and C. reticulata (408). Hexa-nucleotides were most abundant in A. buxifolia (346) followed by C. medica (315), C. ichangensis (299), C. maxima (295), F. hindsii (285), C. sinensis (281), C. clementina (173), and C. reticulata (164) (Table 3, Figure 2). From these results, a high abundance of mono-nucleotide repeats was observed in all the genomes, which may be due to the intrinsic limitation of the chemistry of next-generation sequencing (NGS) technology used for data generation [51]. Similarly, di-nucleotide repeats in higher abundance have also been reported in other crops [52,53].




3.3. Designed SSR Primers, Motif Characterization by Repeat Length


citSATdb is a comprehensive microsatellite database of Citrus represented by eight species containing 1,296,500 in silico predicted markers. Distribution-wise, mononucleotide repeat primers were the most abundant followed by di-, tri-, tetra-, penta-, and hexa-nucleotide. Among the eight species, the maximum number of mononucleotide repeat primers were designed in F. hindsii (128,597) followed by C. maxima (120,885), C. ichangensis (100,422), C. reticulata (98,016), C. sinensis (97,149), C. clementina (96,191), A. buxifolia (95,905), and C. medica (85,972). In the case of di-nucleotide primers, the maximum number was observed in F. hindsii (50,791) followed by C. maxima (45,399), C. reticulata (44,528), C. sinensis (44,198), C. medica (40,922), C. ichangensis (40,333), C. clementina (38,870), and A. buxifolia (37,363). The occurrence of tri-nucleotides motif primer was observed highest in C. maxima (16,037) followed by F. hindsii (14,639), C. ichangensis (14,404), C. medica (14,248), C. clementina (13,418), C. reticulata (13,171), C. sinensis (13,069), and A. buxifolia (11,120). Similarly, tetra-nucleotides primers were most frequent in F. hindsii (2390) followed by C. medica (2097), A. buxifolia (2050), C. sinensis (2022), C. ichangensis (2002), C. reticulata (1981), C. maxima (1979), and C. clementina (1722). F. hindsii (494) contains maximum penta-nucleotides primers followed by A. buxifolia (446), C. ichangensis (426), C. sinensis (385), C. medica (363), C. maxima (352), C. reticulata (310), and C. clementina (285). Hexa-nucleotides primers were most abundant in A. buxifolia (256) followed by F. hindsii (234), C. medica (224), C. ichangensis (223), C. maxima (188), C. sinensis (180), C. reticulata (137), and C. clementina (107) (Table 4, Figure 3).



The designed SSR primers can be used for QTL/candidate gene identification, linkage mapping, and germplasm characterization. Varieties with similar morphological characteristics are very difficult to differentiate from just the phenotypic study. To conquer these difficulties, SSR markers have been used in previous studies for variety characterization, trait improvement, linkage mapping, molecular breeding application, variety development, and phylogenetic and taxonomic comparisons [8,53,54,55]. Similarly, 24 SSR markers were used to assess genetic diversity in 370 Citrus accessions [19]. The designed putative primers present in citSATdb can be used in rapid genotyping for genetic diversity and differentiating varieties. Varietal differentiation using SSR markers has already been reported in many other crops, such as barley [56], sugarcane [57], eggplant [58], capsicum [59], and sesame [60]. These markers can be further explored for trait improvement averse to abiotic and biotic stresses. For example, in Satsuma mandarins, SSR has been used to discover one major QTL for male sterility, and such a QTL can be used in seedless citrus breeding by using flanking region SSR markers with allele size differences between donor and recipient varieties [61]. Such markers can be used for high-density linkage mapping and the discovery of genes needed to improve specific traits. Using SSRs, a linkage map was developed, and QTL mapping was performed to find loci related to the freezing tolerance of citrus [62].



The availability of whole-genome assemblies of different plant species in the public domain provides an opportunity for the study of cross-species transferability in closely related species. Trait-specific candidate genes may be cloned from different species [63]. In silico cross-species transferability can also be predicted with citSATdb, which can be further used for phylogenetic and diversity studies. A similar use has been reported for diversity analysis in citrus species with few numbers of markers [19].




3.4. Functional Annotation of SSRs and Markers


All the predicted SSRs were mapped on the gene feature file (GFF) of each genome. In C. sinensis, 62,563 SSRs were found to be mapped onto the genic regions, followed by C. clementina (45,975), C. maxima (60,654), C. medica (49,403), C. ichangensis (52,336), A. buxifolia (53,937), C. reticulata (53,832) and F. hindsii (73,901) (Table 5). Further, we designed primers for each of the species; in C. sinensis (48,804), C. clementina (42,476), C. maxima (60,267), C. medica (50,690), C. ichangensis (54,065), A. buxifolia (46,373), C. reticulata (48,203), and F. hindsii (67,288), genic SSR primers were designed. A detailed distribution of the predicted and designed markers on both the genic and non-genic regions is presented in (Table 5).




3.5. Comparison with Another Databases


Many databases of marker development in plants are publicly available. The Pan-Species Microsatellite Database (PSMD) database contains eight Citrus species in its repository, although it lacks some features such as e-PCR, JBrowse, and BLAST. Plant micro-satellite Database (PMDbase) is another online database, but it has some limitations such as the markers search by user choice, repeat kind, motif type, location in the genome, etc. Secondly, only two species of citrus are present in this database. Similarly, SSRome also has only two Citrus species and lacks features such as ePCR, JBrowse, BLAST, etc. The citSATdb resource overcomes these limitations and is specifically designed as a user-friendly interface to assist the researchers in the horticultural sciences. A detailed comparison of PMDBase, PSMD, SSRome, and citSATdb is presented in (Table 6).




3.6. citSATdb: Citrus Microsatellite Web-Genomic Resource


The citrus web-genomic resource (citSATdb) was developed successfully using a three-tier architecture. This is a comprehensive microsatellite database of Citrus represented by eight species containing 1,296,500 in silico predicted markers. The web server contains seven tabs viz. Home, About, Species, Tools, JBrowse, Help, and Contact. The ‘Species’ tab provides information about the selected species on left and search options on the right side. In silico predicted markers can be searched by selecting genic or genomic, chromosome/scaffold-wise, along with motif type, repeat type, length, and location in the genome. The search results provide a visualization of repeat and flanking primers on the sequence extracted with 500 bp upstream and downstream of the repeat. It also provides an option for ePCR whereby users can check the in silico amplification of selected primers in the genome or cross-species transferability with the user-given sequence(s). All the results can be downloaded in a CSV format text file. The ‘Tool’ page provides two tabs—SSR prediction and BLAST. miSATminer was implemented with custom scripts to design SSRs and their primers for user input sequences. Standalone BLAST was implemented on the BLAST search page, where users can align their SSR query sequences to genomes. All the eight genome sequences can be visualized with gene and SSR coordinates on the genome using the ‘JBrowse’ table. The ‘Help’ tab contains a detailed tutorial for using the database efficiently and a list of frequently asked questions. A detailed workflow of exploring the citSATdb and its search features is illustrated in Figure 4.





4. Conclusions


We report here a comprehensive web genomic resource for the genus Citrus covering three of its commercially important species. citSATdb, accessed freely via the address http://bioinfo.usu.edu/citSATdb/, contains a total of 1,296,500 putative microsatellite DNA markers. Our findings on the cross-species transferability of microsatellite loci among six different species of Citrus can be used to cater to the need for molecular markers, especially for the more than 100 species of the genus Citrus for which there are no whole-genome sequence data available yet. This genomic resource can be of immense use to the global community. It can be used for chromosome-wise microsatellite locus mining and primer designing for non-genic and genic FDM-SSR for rapid genotyping. It can also be used to accelerate polymorphism discovery by e-PCR, thus being economically beneficial and needed in future re-sequencing projects. The database can be used not only for knowledge discovery research, such as QTL and gene mapping, but also for marker-assisted breeding in Citrus germplasm improvement and management.
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Figure 1. The schematic workflow of citSATdb (citrus microSATellite) database. 
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Figure 2. Distribution of SSR motifs in each of the Citrus species. 
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Figure 3. Distribution of motif types in the predicted SSR markers. 
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Figure 4. The main functions of the citSATdb database and search modules. (A) Home page; (B) species search page; (C) results page showing the desired search results; (D) results page displaying SSR and corresponding primers in sequence; (E) sequence of primers and their features; (F) ePCR results page; (G) JBrowse for visualization of markers on genome; (H) miSATminer tool for SSR prediction; and (I) BLAST search page. 
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Table 1. The genomic data of different Citrus species used in the study.
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	Species
	Assembly Version
	Assembly Level
	Genome Size (Mb)
	GC%





	Citrus sinensis
	v2.0 (HZAU)
	Chromosome
	327.945
	34.06%



	Citrus clementina
	v1.0 (JGI)
	Scaffold
	301.387
	34.96%



	Citrus maxima
	v1.0 (HZAU)
	Chromosome
	345.78
	34.99%



	Citrus medica
	v1.1 (HZAU)
	Scaffold
	406.058
	35.16%



	Citrus ichangensis
	v1.0 (HZAU)
	Scaffold
	357.621
	34.21%



	Atalantia buxifolia
	v1.1 (HZAU)
	Scaffold
	315.821
	33.55%



	Citrus reticulata
	v1.1(HZAU)
	Pseudomolecule
	334.2
	-



	Fortunella hindsii
	V1.1(HZAU)
	Contig
	373.6
	34.49%
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Table 2. Distribution of identified SSRs in Citrus species.
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	Species
	Predicted SSRs
	Designed Markers
	SSRs/MB
	Genome Size (MB)





	Citrus sinensis
	203,297
	157,003
	619.91
	380



	Citrus clementina
	187,778
	150,593
	638.15
	370



	Citrus maxima
	224,961
	184,840
	650.59
	328



	Citrus medica
	210,590
	143,826
	552.12
	380



	Citrus ichangensis
	226,950
	157,810
	648.06
	407



	Atalantia buxifolia
	204,687
	147,140
	675.26
	391



	Citrus reticulata
	201,408
	158,143
	602.66
	370



	Fortunella hindsii
	240,182
	197,145
	642.89
	370
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Table 3. Distribution of predicted SSR motif types in each of the Citrus species.
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	Species
	Mono
	Di
	Tri
	Tetra
	Penta
	Hexa





	Citrus sinensis
	121,051
	54,874
	23,568
	3050
	473
	281



	Citrus clementina
	115,888
	50,108
	18,553
	2620
	436
	173



	Citrus maxima
	142,446
	57,059
	21,668
	2954
	539
	295



	Citrus medica
	125,467
	60,040
	21,259
	2975
	534
	315



	Citrus ichangensis
	144,115
	57,930
	21,149
	2844
	613
	299



	Atalantia buxifolia
	129,304
	51,030
	20,572
	2822
	613
	346



	Citrus reticulata
	123,469
	55,336
	19,400
	2631
	408
	164



	Fortunella hindsii
	152,611
	61,408
	22,143
	3159
	576
	285
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Table 4. Distribution of motif types in the designed SSR markers for each of the Citrus species.
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	Species
	Mono
	Di
	Tri
	Tetra
	Penta
	Hexa





	Citrus sinensis
	97,149
	44,198
	13,069
	2022
	385
	180



	Citrus clementina
	96,191
	38,870
	13,418
	1722
	285
	107



	Citrus maxima
	120,885
	45,399
	16,037
	1979
	352
	188



	Citrus medica
	85,972
	40,922
	14,248
	2097
	363
	224



	Citrus ichangensis
	100,422
	40,333
	14,404
	2002
	426
	223



	Atalantia buxifolia
	95,905
	37,363
	11,120
	2050
	446
	256



	Citrus reticulata
	98,016
	44,528
	13,171
	1981
	310
	137



	Fortunella hindsii
	128,597
	50,791
	14,639
	2390
	494
	234
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Table 5. Distribution of SSRs in the individual Citrus genome.
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Species

	
Predicted Markers

	
Designed Markers




	
Genic

	
Non-Genic

	
Genic

	
Non-Genic






	
Citrus sinensis

	
62,563

	
140,734

	
48,804

	
108,199




	
Citrus clementina

	
45,975

	
141,803

	
42,476

	
108,117




	
Citrus maxima

	
60,654

	
164,307

	
60,267

	
124,573




	
Citrus medica

	
49,403

	
161,187

	
50,690

	
93,136




	
Citrus ichangensis

	
52,336

	
174,314

	
54,065

	
103,745




	
Atalantia buxifolia

	
53,937

	
150,750

	
46,373

	
100,767




	
Citrus reticulata

	
53,832

	
147,576

	
48,203

	
109,940




	
Fortunella hindsii

	
73,901

	
166,281

	
67,288

	
129,857
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Table 6. Comparison of citSATdb with PMDBase, PSMD, and SSRome features.
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	Features
	citSATdb
	PMDBase
	PSMD
	SSRome





	Citrus species
	8
	2
	8
	2



	Search option with ID
	√
	×
	√
	×



	Search by motif type
	√
	×
	√
	√



	Search by repeat type
	√
	×
	√
	√



	Genic and genomic search
	√
	×
	√
	√



	Search on user-defined location
	√
	×
	√
	×



	Length of SSR
	√
	×
	√
	×



	ePCR option
	√
	×
	×
	×



	Non-nuclear (mitochondrion and chloroplast)
	×
	√
	×
	×



	JBrowse visualization of SSRs
	√
	×
	×
	×



	BLAST
	√
	×
	×
	×
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