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Abstract: Post-translational modification (PTM) is a critical biological reaction which adds to the
diversification of the proteome. With numerous known modifications being studied, pupylation has
gained focus in the scientific community due to its significant role in regulating biological processes.
The traditional experimental practice to detect pupylation sites proved to be expensive and requires a
lot of time and resources. Thus, there have been many computational predictors developed to challenge
this issue. However, performance is still limited. In this study, we propose another computational
method, named PupStruct, which uses the structural information of amino acids with a radial basis
kernel function Support Vector Machine (SVM) to predict pupylated lysine residues. We compared
PupStruct with three state-of-the-art predictors from the literature where PupStruct has validated a
significant improvement in performance over them with statistical metrics such as sensitivity (0.9234),
specificity (0.9359), accuracy (0.9296), precision (0.9349), and Mathew’s correlation coefficient (0.8616)
on a benchmark dataset.

Keywords: post-translational modification (PTM); lysine pupylation; structural features; protein
sequences; amino acids; prediction

1. Introduction

Post-translational modifications (PTM) are referred to as changes of protein composition through
the addition of small molecules to specific sites (amino acid residues) on the body of a protein.
Those modifications are responsible for protein function regulation, cell functioning, subcellular
localization, biological practices, and protein turnover in health and disease [1–5]. Different PTMs have
been identified so far, including ubiquitination [6], methylation [7,8], acetylation [9], glycation [10],
prolyl isomerization [11], succinylation [12–16], crotonylation [17], and phosphoglycerylation [18].

While there have been a lot of studies done on these PTMs, another modification named
pupylation [19,20] has attracted much attention in the research community. The process whereby
prokaryotic ubiquitin-like protein (Pup) [21,22] attaches to substrates for degradation via an isopeptide
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bond causing the modification of specific lysine residues is pupylation [23]. Although Pup and
Ubiquitin (Ub) are similar, their amino acid sequence or structure are different. While Ub has 76 amino
acids, Pup proteins are small, ranging from 60 to 70 residues in length [24]. Pupylation plays a key
role in regulating various cellular procedures, such as signal transduction and protein degradation
in prokaryotic cells [25,26]. The pupylation and ubiquitylation are the same in function [27], but the
enzymology involved in ubiquitylation requires an activating enzyme, conjugating enzyme, and protein
ligase. In contrast, pupylation only requires deamidase of Pup (DOP) [28] and proteasome accessory
factor A (PafA) [19,24,29]. First, the C-terminal glutamine of Pup is deamidated to glutamate via DOP,
then the deamidated Pup is attached to a specific lysine of substrate proteins by PafA. The tagging
with Pup can render proteins as substrates for proteasomal degradation. The depupylation event in
actinobacteria and the fact that some members harbor the pupylation gene locus without encoding
proteasomal subunits proposes the assumption that pupylation might fulfill a larger role in regulation
and cellular signaling [30]. Most prokaryotic pupylation remains unknown [31,32].

To understand the fundamentals of pupylation, it is critical to involve biological markers at
the cellular level for detecting pupylation sites. Identifying a pupylated site through the traditional
experimental process is demonstrated to be expensive, complex, inefficient, and time-consuming.
To overcome these disadvantages, computational methods are more preferred and a prediction tool
is needed.

There are a number of computational models developed with a different technique, but there
are a lot of improvements that can be done for better performance. Some of these methods include
the first proposed technique GPS-PUP, which employed a group-based prediction system (GPS)
sequence encoding [33], and EnsemblePup [34] which incorporated the bi-profile Bayes feature
extraction with support vector machine (SVM). Features such as position-specific scoring matrix
(PSSM), secondary structure, amino acid index property (AAindex), conservation scores, and structural
disorder score were employed with an SVM classifier to develop PrePup [35]. IMP-PUP [36] constructed
features based on the composition of k-spaced amino acid pairs on a semi-supervised self-training SVM
algorithm, while pbPUP [37] was developed with the profile-based composition of k-spaced amino acid
pair (pbCKSAAP) encoding with the SVM classifier. PUL-PUP [38] made use of the SVM algorithm
and positive-unlabeled learning with a composition of k-spaced amino acid pairs feature (CKSAAP),
iPUP [39] also incorporated CKSAAP features. The structural, sequential, and evolutionary hallmarks
features which included protein secondary structures, physicochemical properties, binary features,
PSSM, and amino acid pairs and SVM classifier was employed to develop PupPred [40]. EPuL [41]
incorporated only positive and unlabeled samples. The progress and challenges faced in protein
pupylation sites prediction were discussed in [20]. CIPPN [42] was developed using a neural network
and, most recently, PSSM-PUP [43] employed PSSM, which was converted into bigram probabilities
for feature extraction with an LibSVM classifier was developed.

The benchmark datasets from the PupDB database [44] is used in most of the studies. While many
of the methods used the composition of k-spaced amino acid pairs features, there are only three methods,
namely PrePup [35], PUL-PUP [38], and PupPred [40], which involve secondary structural features.
Despite several methods being presented so far, their performance in identifying pupylated lysine
residues remains limited, and therefore better techniques are necessary to determine the pupylated
and non-pupylated lysine residues correctly.

In this study, we propose a new predictor, named PupStruct, which utilizes structural features
such as accessible surface area (ASA), secondary structure (helix, strand, and coil), and backbone
torsion angles for predicting pupylated lysines. The peptide comprising 13 amino acids upstream and
downstream of lysine residue was employed for feature extraction. The benchmark dataset PupDB
database [44] consisting of 153 proteins was used with a high number of non-pupylated lysines over
the pupylated lysines. To reduce data imbalance, we used a k-nearest neighbors cleaning treatment [45]
and employed a support vector machine with a radial basis kernel function for pupylation prediction.
Structural features that contribute to the better overall performance of PupStruct in comparison to
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other methods was used. Finally, PupStruct was compared with two benchmark predictors ([36]
and [38]) which showed a significantly improved performance over them. PupStruct is able to predict
pupylated lysines with 0.9234 sensitivity, 0.9359 specificity, 0.9296 accuracy, and 0. 8616 Mathew’s
correlation coefficient.

2. Materials and Methods

We propose a computational method named PupStruct which employs nine structural features,
including accessible surface area, secondary structure (helix, strand, and coil), and backbone torsion
angles. The following sections discuss the benchmark dataset, different features, feature exaction for
each lysine, and the support vector machine classifier used for pupylation site prediction.

2.1. Protein Dataset

As stated in the introduction, for this study, we have taken the protein sequences from PupDB
databases [44]. It contained 153 protein sequences whose lysine residues are either pupylated or
non-pupylated. We examined each protein sequence and retrieved whether it was composed of
pupylation or non-pupylation residues. We attained 181 positive lysines (pupylated) and 2290 negative
lysines (non-pupylated) which were used for this study. The next section explains various structural
features computed from each of the protein sequences.

2.2. Structural Features

We retrieved each protein sequence and computed nine different features related to the accessible
surface area, secondary structure, and backbone torsion angles. These features are also used in other
existing predictors [12,18,42,46,47]. To achieve this, we employed the toolbox SPIDER2 [48,49] which
has previously obtained good outcomes for prediction using accessible surface area [50–53], secondary
structure [54–57], and backbone torsion angles [50,58–61]. SPIDER2 has also been used to extract the
structural properties for other predictions [12,18,61–64]. The details for these structural properties are
explained in the succeeding sections.

2.2.1. Accessible Surface Area (ASA)

ASA refers to the accessible area of each amino acid to a solvent of the protein in 3D configuration [65–67].
Since the value of an amino acid involves the protein configuration, the predicted ASA value of individual
amino acids displays vital information regarding the protein structure. We executed SPIDER2 on each
protein sequence to compute an estimated numeric ASA value for each amino acid in the protein with
known 3D structures [48]. It is wise to note that the predicted ASA value entirely depends on the sequence
information which is mainly used by SPIDER2 for computation.

2.2.2. Secondary Structure

This property presents significant information on the local 3D structure of proteins. This can be
inferred as amino acid’s contribution to each of the defined local structures of proteins, namely helix
(ph), strand (pe), and coil (pc), as is shown in Figure 1a. Again, we executed SPIDER2 to predict the
prospect contribution of each amino acid to the three mentioned local structures, namely ph, pe and pc,
which results in three discrete numerical vectors of these local structures [68]. Furthermore, SPIDER2
also gives the local structure with the highest probability as one L × 3 matrix, where L depicts the
protein length, and the three columns are the corresponding probabilities contribution to each local
structure ph, pe and pc. Hence, to simplify, we denote this matrix as SSPre [69].

2.2.3. Local Backbone Torsion Angles

The secondary structure gives important information on local configuration of amino acids of
protein [70], whereas torsion angles between neighboring amino acids supplement predicted ASA and
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secondary structure with vital information about the local structure of proteins. Since the predicted
secondary structure is a distant output, the backbone torsion angle φ and Ψ continuously provides
information on local amino acids interaction along the protein backbone [71,72]. Recently, two new
angles are identified based on the dihedral angles θ, between three Cα atoms (Cαi-1–Cαi–Cαi+1) and τ,
rotated about the Cα1–Cαi+1 bond [50]. To attain these four angles, we executed SPIDER2 [49] on every
protein sequence and achieved four numerical vectors, namely φ, Ψ, θ and τ. The illustration of φ, Ψ,
θ and τ is shown in Figure 1b.
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2.3. Feature Extraction for Lysine Residues

Structural features are used to identify the pupylated and non-pupylated sites by employing 6
upstream and 6 downstream amino acids from and including the lysine residue K as shown in Figure 2
which adds the window size equal to 13. The mirroring effect [18,47,73–75] was employed to fill the
amino acids in the absence of 6 amino acids either upstream or downstream from the lysine residue,
i.e., if the lysine residue is located near the N or C terminus as shown in Figure 3. To obtain the best
window size, we constructed training dataset using 11- to 41-residue window sizes and trained the
PupStruct predictor but the best result was obtained by window size 13.

Let us consider peptide S, consisting of 6 upstream and 6 downstream amino acids, including
lysine reside K in the middle, that can be stated as:

S = { A−6, A−5, A−4, A−3, A−2, A−1, K, A1, A2, A3, A4, A5, A6} (1)

Where A-i (for 1 ≤ i ≤ 6) are upstream and Ai (for 1 ≤ i ≤ 6) are downstream amino acids. Therefore,
the lysine residue consists of 13 amino acids in total, including K. Each peptide S will contain a
pupylated or non-pupylated lysine which means the K can have a class label x as x = {0, 1} where x = 1
then S denotes pupylated residue and if x = 0 then S denotes non-pupylated residue. Moreover, each
amino acid Ai (for −6 ≤ i ≤ 6; A0 = K) can be deliberated by the structural features as:

Ai =
{
ASA, ph, pe, pc, φ, Ψ,θ, τ

}
(2)

It is worth noting that the structural features ASA, ph, pe, pc, φ, Ψ, θ and τ are numeric vales and
each represents a sole value for each amino acid Ai. Thus, Ai can be expressed in an 8-dimensional
feature vector. The numeric values were normalized and then placed in a vector form. This implies
that each segment S (of 13 amino acids) is represented by 104 structural features (of 13 amino acids x 8).
These structural features of lysine are used to predict pupylated or non-pupylated sites in line with the
peptide S.
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2.4. Support Vector Machine for Classification

The support vector machine (SVM) [76,77] is engaged in both regression and classification
applications and is also used in many state-of-the-art predictors for pupylation sites [35–39,41,43].
The literature shows that the SVM produces a lower prediction error compared to other classifiers
when large numbers of features are considered, as in this study there are 104 features. It is also
proven that SVM has produced best results and mostly used in the areas of bioinformatics research
including genomics, protein function prediction, protease functional site recognition, chemogenomics,
transcription initiation site prediction and gene expression data classification [78–80]. SVM operates
by discovering the maximum difference among the two hyperplanes demonstrating linear boundaries
of two different classes. The dimension of the hyperplane is influenced by the number of features,
therefore, kernel functions which can be either polynomial, radial or linear was employed to deal
with non-linear boundaries between classes [81–83]. We used the LIBSVM [84] classifier developed
Chih-Chung Chang and Chih-Jen Lin on the Matlab platform developed the MathWorks, Inc from
Natick, Massachusetts, United States, with a radial basis kernel function to determine the margin
between pupylated and non-pupylated lysine residues. The radial basis kernel function was fine-tuned
with a gamma set to 0.5 and cost value set to 3 (nu-SVR).

3. Results

Having a computational method which aims to predict pupylation sites requires a severe
assessment of its performance. This section discusses the statistical metrics, evaluation strategy,
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balancing dataset, oversampling dataset, and the comparison of the proposed PupStruct with other
recent state-of-the-art predictors from the literature.

3.1. Performance Measures

In this study, we have incorporated five metrics to compare the performance of PupStruct with
other state-of-the-art predictors in terms of predicting pupylated and non-pupylated lysines. These five
metrics are sensitivity (Sn), specificity (Sp), accuracy (Acc), precision (Pre) and Matthew’s correlation
coefficient (Mcc), which are widely used in the literature [35,37–39,85]

Sensitivity, which is one of the key measures, evaluates the correctness of identifying pupylation
sites. The predictor attaining high sensitivity shows that it can accurately detect the pupylated lysines
(positive instances). In other words, sensitivity value 0 shows the predictor’s inability to detect
any pupylated lysine residues (true positives), whereas the value 1 depicts a predictor’s capability
to correctly identify all pupylated lysines. Specificity gauges the predictor’s capability to detect
non-pupylation sites (true negative). It varies between 0 and 1 where value 0 shows predictor’s inability
to predict non-pupylation sites and value 1 indicates predictor’s ability to predict non-pupylation
sites. Accuracy calculates the total number of correctly classified pupylated and non-pupylated lysine
residues which ranges between 0 and 1 where 0 means a least accurate predictor and 1 means the
best accurate predictor. Precision, which is another assessment measure, is a fraction of correctly
identified pupylated sites over the sum of correctly identified pupylated and non-pupylated sites.
Mathew’s correlation coefficient (MCC) scales the classification quality of the predictor, which ranges
from −1 to +1. A predictor with (MCC) value −1 implies a totally negative correlation, whereas +1
means a completely positive correlation.

Considering Equations (3)–(7) for each metric, let’s look at a dataset with +P as a number of
pupylated sites and −P as a number of non-pupylated sites. Therefore, each metric can be expressed as:

Sensitivity =
+P+

+P+ + +P−
(3)

Speci f icity =
−P

−P+ + −P−
(4)

Precision =
+P+ + −P+

+P + −P
(5)

Accuracy =
+P+ + −P+

+P + −P
(6)

MCC =
(−P+ × +P+) − (−P− × +P−)√

(+P+ + +P−)(+P+ + −P−)(−P− + +P−)(−P+ + −P−)
(7)

where +P+ is number of pupylated sites classified correctly, +P− represents the number of pupylated
sites incorrectly classified, −P+ is the number of non-pupylated sites predicted correctly and
−P− represents the number of incorrectly predicted non-pupylated sites by the predictor.

The perfect predictor should achieve the highest in all the five metrics. However, at least
sensitivity should be greater when comparing it with other predictors. A lower value of sensitivity
shows that it cannot correctly predict pupylated lysine residues and, therefore, it is not fit for lysine
pupylation detection.

3.2. Evaluation Strategy

To accurately evaluate the effectiveness of the PupStruct predictor in terms of the statistical
metrics, we used a cross-validation method. Two most common cross-validation approaches are n-fold
cross-validation and jackknife. An independent test set is used for evaluation purposes. The jackknife
method is considered to be the least arbitrary and yields unique outcomes for a dataset [86] but we
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deployed the n-fold cross-validation scheme for this study which involves less processing time and also
commonly used in the literature [15,35,36,38,39,41]. The n-fold cross-validation technique is employed
in the following steps:

1. Partition data samples randomly into n parts of roughly equal size with roughly similar negative
and positive samples on each fold.

2. Take out one-fold as test set or validation data and the remaining n-1 folds as training data.
3. Use the training data set to fine-tune the parameters of the predictor.
4. Use the test set to compute the five statistical metrics.
5. Repeat Step 1 to Step 4 for the remaining n folds and calculate the average of each

performance metric.

We carried out 6-, 8- and 10-fold cross-validations to evaluate PupStruct predictor and recorded
the result.

3.3. Filtering Out the Imbalance Data

Our benchmark dataset comprised 163 protein sequences which has 181 pupylation sites
(positive sample set) and 2290 non-pupylation sites (negative sample set). The difference between
the number of positive set and negative set of around 12 times creates a huge imbalance between the
classes. Although this may be biologically realistic to have a number of non-pupylated lysines greater
than pupylated lysines, this inconsistency can cause severe bias in machine learning. We applied the
k-nearest neighbors cleaning technique [45] to tackle this problem, which is mostly used in the literature.

For this, we first set the cut-off K value equal to 12 since the negative and positive sample ratio
was about 12:1, thus we eliminated any negative sample which had at least one positive sample within
its 12-nearest neighbors. We consequently increased the k value until we achieved similar numbers of
positive and negative samples. Eventually, the number of negative samples was significantly reduced
to 188 samples by k value of 48. After the filtering process, the filtered negative samples and all positive
samples were used to perform n-fold cross-validation to evaluate the PupStruct predictor.

3.4. PupStruct vs. Other Existing Predictors

The proposed PupStruct was compared with recent two proposed predictors IMP-PUP [36] and
PUL-PUP [38]. It can be noted that PUL-PUP also used structural features. The software packages
were given for the two methods. It is worth noting that both predictors used the same dataset thus,
many of the proteins may be used in their training set. Therefore, the software was re-run and tested
using the test set respectively to the set used in PupStruct evaluation process. For PUL-PUP [38],
since the code didn’t execute, we retrieve the features from the method and used the same train and
test set from PupStruct to calculate the performance. The performance reported is based on test data
which correspond to the test set kept aside during the n-fold cross-validation procedure means that we
keep aside the test set during the n-fold cross-validation procedure. Test data was not used to adjust
the training parameters of the model.

Table 1 reports the performance of the predictors. It is clearly witnessed that the proposed
PupStruct is performing better than all the benchmark predictors in metrics in likes of sensitivity,
accuracy and MCC. The sensitivity was improved by 14%, accuracy by 11%, specificity by 7%,
and precision by 9%. Moreover, MCC was significantly improved by 21% compared to IMP-PUP [36].

To give more insight of the performance of PupStruct, we generated ROC curve to measure AUC
(area under the curve) and calculated the average AUC values for 6-, 8-, and 10-fold cross validations
which was recorded at 0.910, 0.915 and 0.911 respectively which indicates stable performance of
PupStruct. The results of the ROC-AUC analysis are shown in Figure 4.
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Table 1. Shows comparison of performance assessment of PupStruct and two benchmark predictors
for 6-, 8-, 10-fold cross-validation. The highest values in each metric are in bold.

Fold Predictor Sensitivity Specificity Precision Accuracy MCC

6
PUL-PUP 0.5586 0.7547 0.6897 0.6586 0.3219
IMP-PUP 0.7785 0.8611 0.8407 0.8205 0.6437
PupStruct 0.9228 0.9309 0.9317 0.9270 0.8563

8
PUL-PUP 0.5753 0.7919 0.7308 0.6856 0.3826
IMP-PUP 0.7767 0.8610 0.8422 0.8197 0.6423
PupStruct 0.9234 0.9359 0.9349 0.9296 0.8616

10
PUL-PUP 0.6082 0.7190 0.6946 0.6646 0.3380
IMP-PUP 0.7784 0.8611 0.8429 0.8203 0.6441
PupStruct 0.9173 0.9409 0.9398 0.9296 0.8611
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Figure 4. Shows mean Receiver operating characteristic (ROC) curves of PupStruct predictions on 6-,
8- and 10-folds (a) ROC curves for 6 folds, (b) ROC curves for 8 folds, (c) ROC curves for 10 folds.
This encouraging result demonstrates the proficiency of proposed PupStruct predictor to distinguish
the pupylated and non-pupylated lysine residues accurately. It appears that structural information of
amino acids provides essential information about nearby modified lysines. Finally, the SVM classifier
with a radial basis kernel function appears to discover the maximal separation of both hyperplanes
when structural characteristics are employed. All these structural features together with the classifier
plays a key role in predicting pupylated and non-pupylated lysine residues.

Our PupStruct predictor’s software package can be accessed from https://github.com/vinzsingh09/

PupStruct.

4. Discussion

We further analyzed each feature (accessible surface area, secondary structure (helix, strand,
and coil), and backbone torsion angles) to gauge their contribution towards the predictor. We used
different features to train and test the model and recorded the result for comparison. Initially, we used
each group of features for training, that is ASA then secondary structure (helix, strand, and coil) and
backbone torsion angles. Next, we used individual features (ASA, ph, pe, pc, φ, Ψ,θ, τ) separately
and recorded their result contributing to the predictor. Finally, we used a combination of some of these
features which are contributing the most towards the predictor. The result shown in Table 2 is for
six-fold cross validation.

It is clearly observed from Table 2 that ASA and secondary structure (ph, pe, pc, also known
as SSpre) contributes the most towards the performance. It observed that SSPre has contributed the
most towards specificity and precision, while ASA contributes the most towards sensitivity and
MCC, which are the most important metrics. However, combining the two reduces the performance.
Protein’s shape is determined by amino acid sequence in the polypeptide chain. When exposed to the
cytosol (water-based solution in which proteins floats) or lumen (inside space of a tubular structure),
polypeptide chain assumed to localized organization to secondary structure that optimizes interactions
between side chains of amino acids with each other and water. The polypeptide backbone folds

https://github.com/vinzsingh09/PupStruct
https://github.com/vinzsingh09/PupStruct
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into spirals (helix) and ribbons (stand). These properties provide very important information about
the amino acid and extracting the helix, stand, and coil (SSPre) values contributed the most to the
performance of PupStruct [87,88]. In the literature, the accessible surface area (ASA) of a protein
is always considered as a determining factor in protein folding and stability work. ASA is surface
characterized around a protein by a hypothetical centre of a solvent sphere with the surface of the
molecule. Based on the ASA value, amino acid residues can be determined as buried or exposed.
This makes ASA a crucial feature contributing towards the performance [88]. When considering the
individual feature only, then ASA, coil (pc), followed by Tau from the local torsion angle contributes
the most towards the predictor. Eventually, using all the features gave the best result, which is shown
in Table 1, which means that each feature demonstrated some contribution towards the predictor.

Table 2. Shows features and what percentage it contributed towards the predictor.

Feature Sn (%) Sp (%) Pre (%) Acc (%) MCC (%)

ASA 86.70251 87.83602 87.60489 87.26766 0.74812
Ph, Pe, Pc (SSPre) 81.75627 92.89773 91.29129 87.56934 0.754546

Helix (Ph) 65.08961 93.59879 90.65543 79.61739 0.615526
Strand (Pe) 43.15412 95.39141 91.2274 70.2561 0.461857

Coil (Pc) 81.72043 89.78495 89.19853 85.81879 0.723357
Local Torsion angle 75.71685 69.80843 71.79877 72.77045 0.457679

Phi 76.73835 78.88889 78.17483 77.80965 0.560354
Psi 75.66308 76.88172 76.33012 76.26917 0.526891

Theta 61.21864 81.49425 77.14761 71.3354 0.438473
Tau 80.10753 81.1828 80.70276 80.64075 0.615214

ASA + Sspre 77.921147 88.25605 86.53159 83.18623 0.66673

5. Conclusions

This study presented a new computational method named PupStruct for identifying pupylation
sites in protein sequences. PupStruct utilizes structural information of amino acids around the lysine
residue and uses the k-nearest neighbour approach to solve the imbalance data issue. The analysis
of which features contribute how much to the predictor was crucial information for training. Finally,
the support vector machine (LIBSVM) with a radial basis kernel function to identify maximal separation
between pupylated and non-pupylated lysine residue showed that PupStruct performed better than
the existing predictors.
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