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Abstract: Transposable elements (TEs) are dynamic elements present in all eukaryotic genomes.
They can “jump” and amplify within the genome and promote segmental genome rearrangements
on both autosomes and sex chromosomes by disruption of gene structures. The Bovine-B long
interspersed nuclear element (Bov-B LINE) is among the most abundant TE-retrotransposon families
in vertebrates due to horizontal transfer (HT) among vertebrate lineages. Recent studies have shown
multiple HTs or the presence of diverse Bov-B LINE groups in the snake lineage. It is hypothesized
that Bov-B LINEs are highly dynamic and that the diversity reflects multiple HTs in snake lineages.
Partial sequences of Bov-B LINE from 23 snake species were characterized. Phylogenetic analysis
resolved at least two Bov-B LINE groups that might correspond to henophidian and caenophidian
snakes; however, the tree topology differed from that based on functional nuclear and mitochondrial
gene sequences. Several Bov-B LINEs of snakes showed greater than 80% similarity to sequences
obtained from insects, whereas the two Bov-B LINE groups as well as sequences from the same
snake species classified in different Bov-B LINE groups showed sequence similarities of less than
80%. Calculation of estimated divergence time and pairwise divergence between all individual
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Bov-B LINE copies suggest invasion times ranging from 79.19 to 98.8 million years ago in snakes.
Accumulation of elements in a lineage-specific fashion ranged from 9 × 10−6% to 5.63 × 10−2% per
genome. The genomic proportion of Bov-B LINEs varied among snake species but was not directly
associated with genome size or invasion time. No differentiation in Bov-B LINE copy number
between males and females was observed in any of the snake species examined. Incongruence
in tree topology between Bov-B LINEs and other snake phylogenies may reflect past HT events.
Sequence divergence of Bov-B LINEs between copies suggests that recent multiple HTs occurred
within the same evolutionary timeframe in the snake lineage. The proportion of Bov-B LINEs varies
among species, reflecting species specificity in TE invasion. The rapid speciation of snakes, coinciding
with Bov-B LINE invasion in snake genomes, leads us to better understand the effect of Bov-B LINEs
on snake genome evolution.

Keywords: Bov-B LINE; copy number; horizontal transfer; retrotransposons; snake

1. Introduction

Transposable elements (TEs) are repeated DNA sequences that have the ability to move within a
genome. In eukaryotes, TEs are often an abundant component of the genome [1–3]. Different classes
of TEs are generally present in the same genome with diverse effects, such as promotion of genomic
rearrangements or disruption of gene structures [4–6]. Comparison of nucleotide sequences of the same
TE class or family reveals that TE copies show predominantly high nucleotide sequence similarities
within species but low similarities among species [7–9]. By contrast, several TEs show high sequence
similarities among distantly related species, which might result from interspecific transmission of
TEs, a process termed horizontal transfer (HT) [9,10]. This might also indicate that evidence for HT
is the lack of TE copies in the sister-species of the same evolutionary clade. This likely leads to the
evolution of novel gene functions that assist in driving genetic variation [6,11,12]. More than half of
the HTs documented in vertebrate genomes are derived from retrotransposons, and this might affect
genome evolution [9,13]. Retrotransposons have the innate ability, using a copy-and-paste mechanism
via an RNA intermediate, to jump within or between species, resulting in massive amplification of
copy number variation and subsequent rapid increase in genome size over a short period in some
lineages [1,14,15]. Retrotransposons amplified drastically in ruminants, while in horses, they retained
low copy number of retrotransposons. This might result from different host silencing mechanisms [16].
Interestingly, the Bovine-B long interspersed nuclear element (Bov-B LINE) is among the most abundant
retrotransposon families in vertebrates that show evidence of HT [17–19]. Bov-B LINEs were originally
identified in cow, and their nucleotide sequences were observed to be closely related to those of
bovids, including goats, sheep, and buffalo, leading to detection of a lineage-specific Bov-B LINE
in Ruminantia [20–23]. Similarly, highly conserved Bov-B LINEs have been detected in squamate
reptiles [24]. Comparison of Bov-B LINE sequences of many insects and vertebrates has revealed that
ixodid ticks (reptile ticks) might be vectors for the transfer of BoV-B LINEs among vertebrate lineages.
The transferred sequences are subsequently amplified, mutated, and diversified into lineage-specific
Bov-B LINEs [17]. However, a lineage-specific Bov-B LINE has not been detected in snakes. The Bov-B
LINEs of python and rat snakes are placed in different clades from those of viper and king cobra mixed
with mammalian Bov-B LINE sequences [19]. This finding leads to the hypothesis that Bov-B LINEs
are highly dynamic, and multiple HT events involving Bov-B LINEs have occurred in the snake lineage,
in contrast to other vertebrates. However, the evolutionary history of Bov-B LINEs within multiple
snake species has not been well studied [19,24].

Two groups of snakes are recognized at infraorder rank: (i) Scolecophidia, commonly termed
“blind” snakes, and (ii) Alethinophidia, comprising Henophidia (pythons, boas, and other “primitive”
snakes) and Caenophidia (advanced snakes). Snake genomes are relatively small, with an average
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DNA content of about 1.45 Gb [25–32]; however, recent snake genomic analyses have revealed that the
remarkable variation in genome size reflects substantial differences in the amount of repeated DNA, such
as satellite DNA (satDNA) and TEs [32,33]. The Z or the W sex chromosomes of several advanced snakes
contain large numbers of satDNA and TE copies [32,34–37]. This finding suggests a correlation between
repeated DNA and the differentiation process for snake sex chromosomes [32,37–41]. Snakes thus
represent an ideal model for investigating TE dynamics in the genome, including HT and copy
number variation concomitantly. However, relatively little is known about Bov-B LINE distribution in
snakes because relatively few snake reference genomes are publicly available [25–28,30–32,42]. For an
improved understanding of snake Bov-B LINE sequence evolution, it is essential to adopt a targeted
and systematic experimental approach to investigate TE sequences in multiple snake species. In the
present study, by taking advantage of this sequence similarity and copy number variation, we sought to
test the following five hypotheses on the evolutionary origin of Bov-B LINEs: (i) Bov-B LINE originated
in the genome of a common snake ancestor and was subsequently either inherited in certain lineages
or lost in others, (ii) multiple HTs of Bov-B LINE independently occurred in different evolutionary
lineages of snakes, (iii) copy number variation of Bov-B LINE occurred independently in different
evolutionary lineages of snakes, (iv) variation in Bov-B LINE copy number among snakes depends
on invasion time, and (v) copy number variation of Bov-B LINE among snakes is associated with
the degree of differentiation in snake sex chromosomes. We first screened 23 snake species for the
presence of Bov-B LINE using molecular cloning and sequencing of reverse transcriptase (RT) gene
sequences. This method has previously been used to detect the status of HTs in phylogenetic analyses
of metazoans [7,43,44]. In addition, Bov-B LINE copies in the snake genome were quantified using
quantitative real-time polymerase chain reaction (qPCR) and determined in silico for the copy number
of Bov-B LINE in entire genome sequences. The results provide an improved understanding of the
evolutionary dynamics of Bov-B LINE in snake genomes.

2. Material and Methods

2.1. Specimen Collection and DNA Extraction

Detailed information is presented in Table 1. All snake samples, comprising 23 species from
nine families, were collected from the Queen Saovabha Memorial Institute (Bangkok, Thailand) and
Real Zoo (Ayutthaya, Thailand). The sex of each individual was determined from morphology and
confirmed using a molecular sexing approach [45–47]. Blood samples were collected from the ventral
tail vein using a 23 gauge needle attached to 2 mL disposable syringes. The syringes contained 10 mM
ethylenediaminetetraacetic acid for DNA extraction. Total genomic DNA was extracted, following
the standard salting-out protocol as described previously by Supikamolseni et al. [48], and used as
templates for PCR amplification. Animal care and all experimental procedures were approved by
the Animal Experiment Committee, Kasetsart University, Thailand (approval no. ACKU59-SCI-034
and ACKU61-SCI-024) and conducted in accordance with the Regulations on Animal Experiments at
Kasetsart University.
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Table 1. Classification of species and numbers of samples used in this study.

Species Abbreviation Superfamily Family
Number of

Individuals Used
(Male + Female)

Cylindrophis ruffus CRU Henophidia Cylindrophiidae 2 + 2
Epicrates maurus EMA Henophidia Boidae 1 + 1

Xenopeltis unicolor XUN Henophidia Xenopeltidae 3 + 3
Python bivittatus PBI Henophidia Pythonidae 2 + 2

Python regius PRE Henophidia Pythonidae 2 + 2
Acrochordus

javanicus AJA Caenophidia Acrochordidae 3 + 3

Daboia siamensis DSI Caenophidia Viperidae 4 + 2
Homalopsis buccata HBU Caenophidia Homalopsidae 3 + 2
Enhydris enhydris EEN Caenophidia Homalopsidae 1 + 1

Ophiophagus hannah OHA Caenophidia Elapidae 1 + 1
Naja kaouthia NKA Caenophidia Elapidae 3 + 3
Naja siamensis NSI Caenophidia Elapidae 3 + 2

Bungarus candidus BCA Caenophidia Elapidae 4 + 4
Bungarus flaviceps BFL Caenophidia Elapidae 1 + 1

Oligodon fasciolatus OFA Caenophidia Colubridae 1 + 1
Ahaetulla prasina APR Caenophidia Colubridae 2 + 2
Boiga dendrophila BDE Caenophidia Colubridae 1 + 1

Gonyosoma
oxycephalum GOX Caenophidia Colubridae 1 + 1

Coelognathus
flavolineatus CFL Caenophidia Colubridae 1 + 1

Coelognathus
radiatus CRA Caenophidia Colubridae 2 + 4

Xenochrophis
flavipunctatus XFL Caenophidia Colubridae 1 + 1

Ptyas mucosa PMU Caenophidia Colubridae 2 + 3
Pantherophis

guttatus PGU Caenophidia Colubridae 1 + 1

Varanus salvator VSA - Varanidae 1 + 1
Leiolepis reevesii LRE - Agamidae 1 + 1

Gallus gallus GGA - Phasianidae 1 + 1

2.2. Polymerase Chain Reaction Amplification and Molecular Cloning of Bov-B LINE

Generally, all the copies of Bov-B LINE found in different vertebrates do not exceed a length of
about 3.1 kb. Based on the most conservative sequence of reverse transcriptase (RT) domain, all the
LINEs are classified into several clades [49]. DNA fragments of Bov-B LINE sequences were amplified
using primers specific for Bov-B LINE (BovB_VA2 F 5′-GCTACACTCAATTTGCCAGCA-3′ and
BovB_VA2 R 5′- CCAGTTCTCCCTGTTGCTTC-3′). The primers were designed based on RT-specific
Bov-B LINE domain sequences of Vipera ammodytes (accession number: AF332697.1), Echis coloratus
(accession number: AF332673.1), and Crotalus horridus (accession numbers: AF332671.1, AF332672.1),
which are available in the National Center for Biotechnology Information (NCBI) and the Repbase
databases [50,51]. Because of the high cost of sequencing and the need to examine more snake
species specimens, we performed sequence analysis at RT-specific Bov-B LINE domain (<400 bp).
PCR amplification was performed using 15 µL of 1× ThermoPol buffer containing 1.5 mM MgCl2, 0.2
mM dNTPs, 5.0 µM of each primer, 0.5 U Taq polymerase (Apsalagen Co., Ltd., Bangkok, Thailand),
and 25 ng genomic DNA. The PCR conditions were as follows: initial denaturation at 94 ◦C for
3 min, followed by 35 cycles of 94 ◦C for 30 s, 50 ◦C for 40 s, and 72 ◦C for 1 min 30 s, and final
extension at 72 ◦C for 10 min. The PCR products were visualized by electrophoresis in 1% agarose gel
and cloned molecularly using the pGEM-T Easy Vector (Promega Corporation, Madison, WI, USA).
The nucleotide sequences of the DNA fragments were determined using the DNA sequencing services
of First BASE Laboratories Sdn Bhd (Seri Kembangan, Selangor, Malaysia). The BLASTn (Nucleotide
Basic Local Alignment Search Tool) program (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to search
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for nucleotide sequences in the NCBI database to confirm the identity of the amplified DNA fragments.
All sequences were deposited in the DNA Data Bank of Japan (DDBJ) (Tables S1 and S2).

2.3. Survey of Bov-B LINE Copies in Publicly Released Snake Genome Assemblies

The FASTA genome sequences from nine snake species were retrieved from the NCBI website
(http://www.ncbi.nlm.nih.gov) for Burmese python (Python bivittatus; AEQU00000000), garter snake
(Thamnophis sirtalis; LFLD00000000), corn snake (Pantherophis guttatus; JTLQ01000000), king cobra
(Ophiophagus hannah; AZIM00000000), European adder (Vipera berus berus, JTGP00000000), timber
rattlesnake (Crotalus horridus; LVCR00000000.1), speckled rattlesnake (Crotalus mitchellii pyrrhus;
JPMF01000000), habu snake (Protobothrops flavoviridis; BFFQ00000000.1), and Siamese cobra (Naja
kaouthia, PRJNA506318) [25–32]. These genomes were assembled using different sequencing
technologies and with various degrees of sequencing coverage and assembly effort. Scaffolds were
determined for all genome sequences (P. bivittatus, n = 39,112; T. sirtalis, n = 7,930; V. berus berus,
n = 25,713; P. guttatus, n = 883,920; O. hannah, n = 296,399; C. horridus, n = 186,068; C. mitchellii pyrrhus,
n = 473,380; P. flavoviridis, n = 84,502; and N. kaouthia, n = 373,317). Alignment results with the input
sequence as 330–385 bp were sorted manually using the BLASTN with default parameters. Bov-B
LINE hits were initially identified in each genome using an iterative query-driven method based on
sequence similarity. The consensus sequence of the RT domain of Bov-B LINE was used as the input
query following a best-hits filtering algorithm using the default settings. This process was repeated
three times to accommodate the inclusion of a new genome assembly version at various time stages in
the pipeline. Fragments with BLAST hits that showed more than 80% (e-value 1 × 1050) identity and
were longer than 325 bp were included in calculation of the copy number of Bov-B LINE.

Candidate sequences were obtained for each snake genome. A multiple sequence alignment
of Bov-B LINE sequences was generated, and sequences were clustered into multiple groups using
maximum likelihood (ML) analysis with 1000 replication bootstraps following the default parameters of
Molecular Evolutionary Genetics Analysis 10 (MEGA X) software (Center for Evolutionary Functional
Genomics, The Biodesign Institute, Tempe, AZ, USA) [52,53]. ML analysis was performed using the
IQ-TREE algorithm [54] on the IQ-TREE webserver [55], and the TIM model was selected using the
“auto” model selection option. We then selected representative candidate sequences from each major
group for further analysis. To determine whether the sequence belonged to a previously described
family, we compared it to the consensus sequences in the Repbase and the GenBank databases [56,57].
We considered a consensus sequence to be previously described if we detected a match of more than
98% nucleotidic identity with a described element in the same species.

2.4. Sequence Analysis

A multiple sequence alignment of Bov-B LINE sequences was generated with sequences from
other vertebrates and insects sourced from the NCBI GenBank database and from the snake genome
sequences, as mentioned above (Table 2), using the default parameters of MEGA X software [53].
All unalignable sites and gap-containing sites or missing data were carefully removed from the data
set manually. Numbers of insertions and deletions (indels) were manually checked for each sequence
of snake species using the multiallelic mode of DNAsp 6.0 [58]. Transitions and transversions were
identified using the “strataG” function in R version 3.5.1 software [59]. Phylogenetic analysis was
performed using maximum likelihood (ML) with the best-fit model and settings as mentioned above.
Intraspecific nucleotide diversity (π value) among Bov-B LINE sequences at the clade level was
analyzed using DNAsp 6.0. The degree of sequence divergence between species or between clades
was estimated using uncorrected pair-wise distances (p-distances) as implemented in MEGA X [46].
Within- and between-families p-distance of the sequences were calculated using the function “rdist” in
the package “rdist” in R [60]. Wilcoxon’s ranked-sign test was performed to compare the p-distances
between and within families using the function “wilcox.test” in R [59,61]. Subsequently, Tukey’s honest
significant difference test was used to detect genetic differentiation among Bov-B LINE families within
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and between clades, using the function “TukeyHSD” in R [62]. AMOVA [63] was performed to clarify
the degree of genetic differentiation among clades by determining molecular variance and calculating
F-statistics using ARLEQUIN version 2.000 with 1000 permutations [64]. For each species, nucleotide
sequences were determined for at least four Bov-B LINE fragments amplified with the corresponding
primer sets and/or derived from genome sequences, and the consensus sequences were generated
based on the total alignment of units in each species using the BioEdit sequence alignment editor
version 7.2.5 [65] by choosing the most frequent nucleotide at each position. Analysis of molecular
variance (AMOVA) was also used to analyze the degree of genetic differentiation among species
using ARLEQUIN 2.000 with 1000 permutations [64]. Synonymous (Ks) and nonsynonymous (Ka)
substitution rates between species or between clusters and their standard errors were calculated in
accordance with the Nei–Gojobori method [66] with Jukes–Cantor correction [67]. Simultaneously,
we also tested whether the pattern of mutations observed between each copy, and the consensus
sequence was significantly different from the expected value if the sequence had evolved neutrally,
using the codon-based Z-test in MEGA X with the Nei–Gojobori method and Jukes–Cantor correction
(1000 bootstrap replicates).

Table 2. Percentage of Bovine-B long interspersed nuclear element (Bov-B LINE) retrotransposon in
the snake genome determined using BLASTN.

Species Family Accession No. Percentage of Bov-B in
Genome

Python bivittatus Pythonidae AEQU00000000.2 0.00115
Protobothrops flavoviridis Viperidae BFFQ00000000.1 0.01406

Crotalus Pyrrhus Viperidae JPMF00000000.1 0.00003
Vipera berus beru Viperidae JTGP00000000.1 0.01983
Crotalus horridus Viperidae LVCR00000000.1 0.00137

Ophiophagus hannah Elapidae AZIM00000000.1 0.00307
Naja kaouthia Elapidae PRJNA506318 0.00276

Pantherophis guttatus Colubridae JTLQ00000000.1 0.00121
Thamnophis sirtalis Colubridae LFLD00000000.1 0.00093

2.5. Divergence Time Estimation and Mutation Rate between Bov-B LINE, COI, and BDNF

In addition to Bov-B LINE, pairwise distances between the snake species included
in this study were calculated for COI and BDNF sequences. For COI and BDNF,
distances were calculated between sequences generated during this study or available
in GenBank for the species. DNA fragments of COI and BDNF sequences were
amplified using gene-specific primers (COI-F: 5′-TCAGCCATACTACCTGTGTTCA- 3′ and COI-R:
5′-TAGACTTCTGGGTGGCCAAAGAATCA-3′ and BDNF-F: 5′-CAGCTTGGCTTATCCTGGTC-3′

and BDNF-R: 5′-CTTTGTGCTGCACTTGGTCTC-3′) [47,68]. PCR amplification was performed as
mentioned above and in accordance with PCR protocols for each gene described by Tawichasri et al. [43]
and Makowsky et al. [68]. The PCR products were visualized by electrophoresis in 1% agarose gel
and molecularly cloned using the pGEM-T Easy Vector (Promega Corporation, Madison, WI, USA).
Nucleotide sequences of the DNA fragments were determined using the DNA sequencing services
of First BASE Laboratories Sdn Bhd (Seri Kembangan, Selangor, Malaysia). The BLASTn program
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to search for nucleotide sequences in the NCBI
database to confirm the identity of the amplified DNA fragments. All sequences were deposited in the
DNA Data Bank of Japan (DDBJ) (Tables S1 and S2). Multiple sequence alignments of COI and BDNF
sequences were generated using the default parameters of MEGA X software [53]. All unalignable
sites and gap-containing sites or missing data were carefully removed from the data sets.

The evolutionary rate and 95% highest posterior density (HPD) of the nucleotide sequences of
the three genomic regions were estimated using BEAST 2.0 [69]. The analysis was conducted using
the HKY85 substitution model and the strict molecular-clock model. Four calibration points were
applied for COI and BDNF evolutionary rate estimation: 91.0 million years ago (MYA) for the time to
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the most recent common ancestor (TMRCA) of all sequences, 45 MYA for the TMRCA of Colubridae,
35 MYA for the TMRCA of Elapidae, and 24 MYA for the divergence time between Enhydris and
Homalopsis. These divergence times were obtained from Vidal et al. [70]. We used two calibration
points to estimate the BovB substitution rate: 64 MYA for the TMRCA of the sequences belonging
to Colubroidea (Clade II in our phylogenetic tree), and 90 MYA for the TMRCA of the sequences
belonging to Henophidia (Clade IA in our phylogenetic tree). Bayesian searches were conducted using
the Markov chain Monte Carlo (MCMC) method for 30 million generations. The initial three million
generations were discarded as the burn-in. Tracer version 1.6 [71] was used to check the convergence
of the MCMC chains. The initial 25% saved trees were removed as the burn-in, and a maximum
credibility tree based on the remaining trees was generated using TreeAnnotator version 2.0.2 (part of
the BEAST version 2.0.2 package). A time-calibrated tree with 95% HPD was visualized and edited
in FigTree version 1.3.1 [72]. Using a complete COI sequence (about 1000 bp) might be insufficient
for estimations of deep divergences (>100 million years) [73]; however, we estimate the divergence
time range based on BDNF and Bov-B LINE. A similar case of short size COI sequences was used to
estimate divergence time in Sitalcina sura species group [74].

2.6. Quantification of Variation in Bov-B LINE Copy Number Based on Quantitative Real-Time Polymerase
Chain Reaction (qPCR)

Quantification of Bov-B LINE in each snake species was performed by qPCR using an absolute
quantification approach [75]. Bov-B LINE sequences were amplified using specific primers: F-BovB_VA2
and R-BovB_VA2. The qPCR amplification was performed using 10 µL of 2× KAPA SYBR® FAST
qPCR Master Mix (Kapa Biosystems, Cape Town, South Africa), 0.25 µM primers, and 25 ng genomic
DNA. The PCR conditions were as follows: initial denaturation at 95 ◦C for 10 min, followed by
40 cycles of 95 ◦C for 15 s, 40–45 ◦C for 15 s, and 72 ◦C for 15 s, with a final extension at 72 ◦C for
5 min. A melting curve was plotted over a temperature range of 60 to 95 ◦C after each run to verify the
absence of nonspecific product amplification. Amplification specificity was confirmed by dissociation
curve analysis. In addition, specificity of the amplified product was examined by electrophoresis in 1%
agarose gel. No template control was included in any run. Reactions were conducted in a 96-well optical
plate, and a melt curve was generated to evaluate primer specificity. qPCR reactions of all specimens
were performed with three technical replicates. For absolute quantification, a 10-fold serial dilution
series of the clones (plasmid DNA harboring the Bov-B LINE clone) ranging from 1 × 109 to 1 × 104

was used to generate a standard curve (five-point serial dilutions) (Figure S1). The concentration of the
recombinant plasmid was determined using NanoDrop™ 2000/2000c spectrophotometers (Thermo
Fisher Scientific, Waltham, MA, USA). The plasmid copy number was calculated using the following
equation: DNA (copy number) = [(6.023 × 1023) × (copy number/mol) × DNA amount (g)]/[DNA
length (bp) × 660 × (g/mol/bp)], where Avogadro’s number = 6.023 × 1023 molecules (copy number/mol)
with an average molecular weight of a double-stranded DNA molecule of 660 g/mol/bp. Total DNA
length was 3465 bp (pGEM-T Easy Vector and inserted DNA (Bov-B LINE sequences) were 3015 and
450 bp, respectively). Cycle threshold (Ct) values in each dilution were measured using qPCR to create
standard curves. A standard curve was generated by plotting Ct values against the log concentration of
Bov-B LINE. To test intra-plate repeatability, the intra-assay coefficient of variation (CV) was measured
in triplicate for plasmid DNA with the Bov-B LINE clone. The percentage CV for each sample was
calculated by determining the standard deviation (SD) of each triplicate Ct value of Bov-B LINE,
then dividing by the triplicate mean and multiplying by 100. Intra-assay percentage CVs should be less
than 10 [76–78]. In the present study, the intra-assay CV was 1.2709–8.0354 for plasmid DNA harboring
the Bov-B LINE clone. All samples fell within the concentration range generated by the standard curve.
The copy number in the total DNA sample was determined by interpolating its Ct values against the
standard curve. Absolute quantification was transformed into fold change values using the standard
curve equation and compared with a reference sample. To test intra- and inter-plate repeatability,
113 snake samples were run in triplicate on four different plates to monitor plate-to-plate variation.
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The plate mean for each triplicate value was calculated and subsequently computed to determine
overall mean, SD, and CV (%). Inter-assay CVs of less than 15% are generally acceptable [76–78].
In this study, the inter-assay CV (n = 113) was 2.37%, whereas that for the intra-assay CV was 2.22% for
Bov-B LINE. Statistical differences in copy number among snake species were examined using the
Kruskal–Wallis rank sum test implemented in the “stats” package in R [59]. Estimated values were
expressed as the mean ± standard deviation.

To examine differences in copy number of Bov-B LINE between male and female individuals,
qPCR was performed using males and females (two or three individuals per species per sex) of 12 snake
species (Cylindrophis ruffus, Xenopeltis unicolor, Python bivittatus, Python regius, Acrochordus javanicus,
Homalopsis buccata, Naja kaouthia, Naja siamensis, Bungarus candidus, Ahaetulla prasina, Coelognathus
radiatus, and Ptyas mucosa) from genomic DNA selected from the samples available. The PCR conditions
and quantification were performed as described above. Statistical differences in copy number between
male and female snakes were examined using a Wilcoxon signed-rank test implemented in the “stats”
package in R [59].

3. Results

3.1. Characterization of Bov-B LINE

Specific Bov-B LINE primers were used to amplify RT-specific Bov-B LINE sequences, which
yielded PCR products ranging in length from 420 to 450 bp. A total of 145 new nucleotide sequences
of monomer units (or one copy unit of Bov-B LINE) were obtained with lengths ranging from 332 to
385 bp (Table 1). Several indels were detected and all Bov-B LINE sequences showed AT-bias with an
average AT content of 58.6%. The ratio of transitions to transversions was 0.511. A BLASTn search of
Bov-B LINE sequences in the NCBI database revealed similarities, ranging from 78.62% (Xenopeltis
unicolor and Vipera ammodytes (AF332689.1) to 99.47% (Crotalus horridus (LVCR00000000.1) [30] and
Crotalus horridus (AF332671.1)), with Bov-B LINEs isolated in previous studies [79]. No similarity
was observed with other sequences deposited in the database. Partial sequences of Bov-B LINE
were also identified in the genome sequences of seven snakes. Bov-B LINE sequences were mapped
to scaffolds with the percentage of identical matches ≥ 80 and e-value ≤ 1e-50 in Python bivittatus,
Protobothrops flavoviridis, Vipera berus berus, Crotalus horridus, Crotalus pyrrhus, Naja kaouthia, Ophiophagus
hannah, Thamnophis sirtalis, and Pantherophis guttatus. Bov-B LINE sequences represented 3 × 10−5%
to 1.98 × 10−2% of the snake genome (Table 2). We obtained 37 candidate sequences for P. bivittatus,
453 for P. flavoviridis, 639 for V. berus berus, 44 for C. horridus, 1 for C. pyrrhus, 89 for N. kaouthia, 99
for O. hannah, 30 for T. sirtalis, and 39 for P. guttatus from BLASTn searches of the respective genome
assemblies. For each species, we clustered the sequence groups according to ML phylogenetic clade
topology and constructed a consensus sequence. We thus obtained six consensus sequences for P.
bivittatus, 10 for P. flavoviridis, 8 for V. berus berus, 6 for C. horridus, 1 for C. pyrrhus, 6 for N. kaouthia, 6 for
O. hannah, 6 for T. sirtalis, and 6 for P. guttatus. All consensuses represented new families of Bov-B LINE.
These results indicate that many of the identified sequences correspond to new elements from known
families in snake genomes but have never previously been identified from the database. This implies
that a large number of unidentified sequences remain to be discovered in the databases.

An ML phylogenetic tree was constructed to infer the evolutionary relationships among Bov-B
LINE sequences from all snake lineages and to identify putative evolutionary Bov-B LINE groups
using sequences from all snake species studied, other vertebrates, and insects. These groups were
defined according to a set of specific nucleotide substitutions or indels. The Bov-B LINE sequences
were grouped into two major clades. Many species were closely clustered in the ML tree despite being
taxonomically unrelated, such as C. pyrrhus, C. horridus, Homalopsis buccata, and N. kaouthia, whereas
several taxonomically closely related species showed no evidence of harboring similar Bov-B LINE
copies, such as Epicrates maurus and the majority of caenopidian snakes (Figure 1 and Table S3). Group
I contained two subgroups. Subgroup IA comprised 67 sequences from 10 snake species, of which the
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majority were henophidian snakes, with two scincid lizards and five mammalian species (Figure 1
and Table S3). Subgroup IB comprised 57 sequences from one snake species, Cylindrophis ruffus, seven
insect species, nine lizard species, three mammalian species, chicken, and one fish species (Figure 1 and
Table S3). Group II contained 158 sequences from 25 snake species; the majority were caenophidian
snakes, with one bed bug and Varanus salvator (Figure 1). Remarkably, Bov-B LINE sequences of
V. salvator were placed in subgroup IB and group II, and Bov-B LINE sequences of E. maurus, C. horridus,
H. buccata, and N. kaouthia were classified in subgroup IA and group II.
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Figure 1. Phylogenetic relationships of Bov-B LINE retrotransposon sequences among eight snake
families and outgroups inferred using maximum likelihood analysis. A colored line indicates different
groups (Bov-B group I (with subgroups IA and IB) and group II). Bov-B LINE retrotransposon sequences
of the snake lineages included Henophidian snakes (Cylindrophidae, Boidae, and Pythonidae families),
Caenophidian snakes (Acrochordidae, Viperidae, Homalopsidae, Elapidae, and Colubridae families),
and outgroups.

3.2. Sequence Variability of Bov-B LINE within and between Snake Species

Average intraspecific sequence divergence (π) was 8.64 ± 0.05% (ranging from 4.00% ± 0.01 in
P. bivittatus and P. regius to 14.00% ± 0.01 in B. flaviceps) (Table 3), whereas the average interspecific
sequence divergence (p-distance) was 8.64% ± 0.01 (ranging from 0% ± 0.00 between Echis coloratus
and V. ammodytes to 24% ± 0.06 between Agkistrodon contortrix and Acrochordus javanicus) (Table S4).
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Wilcoxon’s signed-rank test indicated that intra- and interspecific distances differed significantly
(p < 0.05). Analysis of molecular variance (AMOVA) among Bov-B LINE sequences revealed significant
variation among the species (p < 0.001, Fst = 0.19) and significant variation within a species (p < 0.001,
Fst = 0.23). The average Ka/Ks value of the Bov-B LINE sequences was 0.73 ± 0.26 (Table S5). Results of
the Z-test showed that the number of nonsynonymous substitutions accumulated in Bov-B LINE copies
since their insertion in snakes differed significantly from the number of synonymous substitutions
(Z-test p < 0.05, stat = 1.74).

Table 3. Summary of nucleotide diversity (π) for each species used in this study.

Species Length (bp) n %AT Nucleotide
Diversity (π) * Accession Number

Cylindrophis
ruffus 375–379 6 56.04 0.07 ± 0.02 LC365540-LC365545

Epicrates
maurus 332–380 10 56.36 0.10 ± 0.02 LC365530-LC365539

Xenopeltis
unicolor 375–381 8 59.26 0.10 ± 0.01 LC365508-LC365515

Python
bivittatus 377–379 7 57.25 0.04 ± 0.00 LC365523-LC365529

Python regius 379 7 56.84 0.04 ± 0.01 LC365516-LC365522
Acrochordus

javanicus 375–379 7 58.78 0.07 ± 0.01 LC365546-LC365552

Daboia siamensis 338–379 6 59.58 0.08 ± 0.01 LC365592-LC365597
Homalopsis

buccata 364–379 5 59.57 0.13 ± 0.01 LC365610-LC365614

Enhydris
enhydris 369–380 6 60.65 0.12 ± 0.01 LC365598-LC365603

Ophiophagus
hannah 369–380 4 59.59 0.08 ± 0.01 LC365640-LC365643

Naja kaouthia 371–380 5 59.91 0.07 ± 0.01 LC365617-LC365621
Naja siamensis 345–379 9 59.96 0.12 ± 0.01 LC365623-LC365631

Bungarus
candidus 342–379 5 59.96 0.11 ± 0.01 LC365559-LC365563

Bungarus
flaviceps 369–377 6 60.79 0.14 ± 0.01 LC365633-LC365638

Oligodon
fasciolatus 366–385 6 60.91 0.11 ± 0.01 LC365574-LC365579

Ahaetulla
prasina 348–379 5 59.66 0.07 ± 0.01 LC365554-LC365558

Boiga
dendrophila 366–381 8 59.73 0.10 ± 0.01 LC365565-LC365572

Gonyosoma
oxycephalum 363–379 6 60.91 0.10 ± 0.01 LC365604-LC365609

Coelognathus
flavolineatus 370–381 6 59.33 0.11 ± 0.01 LC365586-LC365590

Coelognathus
radiatus 369–379 6 59.56 0.09 ± 0.01 LC384853-LC384858

Xenochrophis
flavipunctatus 366–381 5 60.96 0.13 ± 0.02 LC365651-LC365655

Ptyas mucosa 378–379 4 59.75 0.10 ± 0.01 LC365645-LC365648
Pantherophis

guttatus 359–385 8 59.52 0.08 ± 0.01 LC384860-LC384867

Varanus salvator 362–379 7 57.49 0.15 ± 0.02 LC365672-LC365678
Leiolepis reevesii 379 7 55.72 0.07 ± 0.01 LC365663-LC365669

Gallus gallus 372–379 6 55.98 0.04 ± 0.01 LC365657-LC365662

* Nucleotide diversity (π) ± SD of each snake species.

3.3. Sequence Variability within and between Bov-B LINE Groups

For data sets excluding the outgroup, the averageπ value of each Bov-B LINE group was 11%± 0.01
for group I, 9% ± 0.00 for group II, 10% ± 0.01 for subgroup IA, and 7% ± 0.02 for subgroup IB (Table 4).
Average sequence divergence between Bov-B LINE groups (p-distance) was 8.64% ± 0.01 (9% ± 0.01
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between groups I and II, 9% ± 0.02 between subgroups IA and IB, 9% ± 0.01 between subgroup IA and
group II, and 9% ± 0.02 between subgroup IB and group II) (Table 5). The average π value of each snake
Bov-B LINE group with the outgroup included was 22% ± 0.02 for group I and 9% ± 0.00 for group II
(Table 6). Average sequence divergence between Bov-B LINE groups (p-distance) was 15.32% ± 0.02
(18% ± 0.04 between groups I and II, 24% ± 0.04 between subgroups IA and IB, 12% ± 0.04 between
subgroup IA and group II, and 24% ± 0.04 between subgroup IB and group II) (Table 7). Tukey’s honest
significant difference test indicated that distances within subgroups IA and IB and between subgroups
IA, IB, and group II were significantly different from each other (p < 0.001), whereas distances within
subgroup IA and group II were not significantly different from each other (p = 0.79). AMOVA of Bov-B
LINE sequences revealed significant variation among families (p < 0.001, Fst = 0.15) and significant
variation within one family (p < 0.001, Fst = 0.34). Average Ka/Ks values of Bov-B LINE sequences were
0.61 ± 0.17 and 0.77 ± 0.56 for groups I and II, respectively, and 0.55 ± 0.13 and 0.70 ± 0.19 for subgroups
IA and IB, respectively. Results of the Z-test showed that the number of nonsynonymous substitutions
accumulated in Bov-B LINE copies since their insertion in snakes was significantly different from the
number of synonymous substitutions in each group (Z-test, p < 0.05, stat = 2.84).

Table 4. Nucleotide diversity (π) of Bov-B LINE retrotransposon groups with outgroups excluded.

Group n Nucleotide Diversity (π)

I 55 0.11 ± 0.01
II 153 0.09 ± 0.00
IA 49 0.10 ± 0.01
IB 6 0.07 ± 0.02

Table 5. Nucleotide sequence divergence (p-distance) between Bov-B LINE retrotransposon groups
with outgroups excluded.

Group p-Distance

I vs. II 0.09 ± 0.01
IA vs. IB 0.09 ± 0.02

Table 6. Nucleotide diversity (π) of Bov-B LINE retrotransposon groups with outgroups included.

Group n Nucleotide Diversity (π)

I 124 0.22 ± 0.02
II 158 0.09 ± 0.00

Table 7. Nucleotide sequence divergence (p-distance) between Bov-B retrotransposon groups with
outgroup included.

Group p-Distance

I vs. II 0.18 ± 0.04
IA vs. IB 0.24 ± 0.04
IA vs. II 0.12 ± 0.04
IB vs. II 0.24 ± 0.04

3.4. Comparison of Bov-B LINE Copy Numbers among Snake Species

Quantification of Bov-B LINE copy number revealed differences among snake species when
assessed using absolute quantification methods (Kruskal–Wallis rank sum test, p < 0.001) (Figure 2).
The nuclear DNA content of P. bivittatus was reported by Castoe et al. [26]; the genome size is
approximately 1.44 Gbp (including gaps). Quantification revealed that at least 9%× 10−6 to 5.63%× 10−2

(approximately 1682.34 copies per haploid genome) of the snake haploid genome was composed of
Bov-B LINE sequences. A. javanicus showed the highest proportion (5.63% × 10−2 as 1814.70 copies) of
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Bov-B LINE in the genome, and C. ruffus exhibited the lowest proportion (9% × 10−6 as 2.77 × 10−1

copies) in the genome.
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Figure 2. Accumulated copy number of Bov-B LINE retrotransposons in snake species determined by
quantitative real-time PCR. Cylindrophis ruffus (CRU), Ahaetulla prasina (APR), Coelognathus radiatus
(CRA), Homalopsis buccata (HBU), Bungarus candidus (BCA), Python bivittatus (PBI), Naja kaouthia (NKA),
Xenopeltis unicolor (XUN), Naja siamensis (NSI), Ptyas mucosa (PMU), Python regius (PRE), Acrochordus
javanicus (AJA). Light blue indicates male. Light red indicates female.

3.5. Comparison of Bov-B LINE Copy Numbers between Males and Females

The qPCR method was applied to measure the Bov-B LINE copy number between male and
female individuals. Although the Wilcoxon signed-rank test showed no differentiation between sexes
in all species (Wilcoxon signed-rank test, W = 687.5, p = 0.08) (Figure 3), males tended to show a
higher copy number than females in five species (X. unicolor, P. bivittatus, H. buccata, A. prasina, and
P. mucosa). By contrast, females tended to show a higher copy number than males in four species
(C. ruffus, P. regius, A. javanicus, and C. radiatus).
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Figure 3. Boxplot showing accumulated copy number of Bov-B LINE retrotransposons between sexes in
snake lineages determined by quantitative real-time PCR. Cylindrophis ruffus (CRU), Xenopeltis unicolor
(XUN), Python bivittatus (PBI), Python regius (PRE), Acrochordus javanicus (AJA), Homalopsis buccata
(HBU), Naja kaouthia (NKA), Naja siamensis (NSI), Bungarus candidus (BCA), Ahaetulla prasina (APR),
Coelognathus radiatus (CRA), Ptyas mucosa (PMU).

3.6. Divergence Time and Mutation Rate

The timing of phylogenetic divergence was estimated from sequence datasets for the mitochondrial
cytochrome oxidase subunit 1 (COI) gene, nuclear-functional brain-derived neurotrophic factor (BDNF)
gene, and Bov-B LINE independently (Figures S2 and S3). Divergence of henophidian and caenophidian
snakes based on COI sequences was estimated to have occurred approximately 90 million years
ago (95% highest posterior density interval: 84.31–95.40) during the Upper Cretaceous, and that
based on BDNF sequences was approximately 90.86 MYA (95% HPD interval: 84.76–96.25) during
the Upper Cretaceous. The Bov-B LINE groups I and II were estimated to have diverged from
each other approximately 89.15 MYA (95% HPD interval 79.19–98.8) during the Upper Cretaceous.
The substitution rates for COI, BDNF, and Bov-B LINE were 3.09 × 10−3 (95% HPD interval:
0.002635–0.003558), 2.40 × 10−4 (95% HPD interval: 0.00016–0.00037), and 1.37 × 10−3 (95% HPD
interval: 0.001144–0.001642), respectively.

4. Discussion

Bov-B LINE fragments in the portion of RT domain showed high similarity between distantly
related species (mean similarity 84.68%± 0.01) and similarities of 88%± 0.01 for subgroup IA, 69%± 0.01
for subgroup IB, and 90%± 0.01 for group II. This result was consistent with the patchy distribution
of Bov-B LINE among vertebrates [17]. Inconsistencies between Bov-B LINE, COI, and BDNF tree
topologies with snake phylogenies derived from other sequence datasets were also noted (Figures
S2 and S3), which points to the incidence of HT events [17,19,80–82]. Furthermore, the emergence
of Bov-B LINE independently in snake lineages is suggested with large different sequence similarity
between group. Although mutation rates of Bov-B LINE were indicated to be more rapid than those
of COI and BDNF in snake lineages, Bov-B LINEs have evolved at a slow rate compared with other
TEs [9,83–87]. Average ratios of nonsynonymous to synonymous substitutions were generally less
than one, which indicates that the RT genes evolved under purifying selection. This strongly suggests
that Bov-B LINEs have been active during the evolution of snakes.
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4.1. Evolutionary History of BOV-B LINE in Snakes

Different HT events tend to show low degrees of similarity because mutations accumulate over
time [44,88,89]. Similarity of more than 80% among TE sequences is indicative of recent HT events
between species [17,19]. The Bov-B LINE from the domestic silkmoth (Bombyx mori) showed more than
80% similarity with the Bov-B LINE from C. ruffus and Coelognathus flavolineatus to bed bug (Cimex
lectularus), which suggests that HTs have recently occurred between snakes and insects (Figure 1).
Moreover, sequence similarity of 75% to 80% was observed between members of groups I and II, such
as between C. ruffus and Bungarus flaviceps or between X. unicolor and N. kaouthia, which represent the
majority of henophidian and caenophidian snakes, respectively. Interestingly, Bov-B LINE sequences
of V. salvator were placed in subgroup IB and group II, and Bov-B LINE sequences of E. maurus, C.
horridus, H. buccata, and N. kaouthia were placed in subgroup IA and group II (Figure 1). The presence
of widely divergent sequences of Bov-B LINE in the same genome may also be considered to be
indirect evidence of horizontal gene transfer. Such snails and slugs are the intermediate host between
Angiostrongylus cantonensis and A. costaricensis and Sorex araneus, the common shrew [90,91]. To
consider whether various individual TE copies appeared during independent HT events, pairwise
divergence must be calculated between all individual TE copies and an ancestral founder copy. Pairwise
divergence can be approximated from the consensus sequence of the Bov-B LINE, reconstructed using
multiple copies belonging to the same TE family from a given species. Nucleotide sequences of each
TE clade differed from each other by less than 20%, which is indicative of recent independent HT
invasions. Generally, a difference in the estimated date of TE amplification–insertion between hosts
may indicate that the TE was directionally transferred among snakes. In the present study with
the specific location of Bov-B LINE sequences, the timing of the HT events can be approximated by
estimating the divergence time and the pairwise divergence between all individual TE copies that
show invasion times ranging from 79.19 to 98.8 MYA. This suggests that multiple HTs of Bov-B LINE
in snakes, especially of henophidian and caenophidian snakes, occurred more recently within the
same evolutionary timeframe. A possible ecological connection (e.g., parasitization or feeding) exists
between insects and snakes [44]. Subgroup IB includes the majority of Bov-B LINE copies isolated from
henophidian snakes and also contains insects (Aedes aegypti, B. mori, Centruroides exilicauda, Danaus
plexippus, Heliconius melpomene, Locusta migratoria, and Solenopsis invicta), one of the bug’s (Aedes aegypti)
preferred hosts in nature found in tropical and semitropical regions of the world [92,93]. A similar
finding was noted for reptile ticks (Amblyomma limbatum), which are highly important parasites of
domestic animals [94]. The tick species was placed with cenophidian snakes and monitor lizards in
group II of the Bov-B LINE phylogeny, and the highest sequence similarity between the tick and any
other species in group II was 90.9%. This finding suggests that host–parasite interactions might have
facilitated HTs through frequent physical contact, such as between the saliva of the bug and the blood
of its hosts whilst the bug is feeding.

In the present study, we analyzed only a small number of Bov-B LINE copies for each species and a
relatively small fragment (<400 bp) of the coding sequence. Further sampling of additional Bov-B LINE
sequences and species, including blood-sucking and migratory insects capable of parasitizing snakes,
is required for more precise estimation of the time and the geographical span of HTs. Identification of
HT events between similar species or individuals of the same species using a genome-wide analysis
will also provide the best option with a better understanding of the frequency of TE transfer, although
this is complicated by the noise of vertically inherited and degraded TE copies.

4.2. Independent Copy Number Variation among Snake Species

Diversification of Bov-B LINEs in snakes has resulted in the accumulation of large numbers
of elements in a lineage-specific fashion ranging from 9 × 10−6% in C. ruffus to 5.63 × 10−2% in A.
javanicus per haploid genome, as revealed by qPCR analysis. We also determined the proportion of
each superfamily of Bov-B LINEs in the genome assemblies of each species. The same species showed
substantial difference in estimated copy number between qPCR and the global estimation of TEs from
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the genome assemblies of N. kaouthia and P. bivittatus. This suggests that overlap of Bov-B LINE
sequences might have been detected during genome assembly as the noise from high-throughput
sequencing technologies, leading to the error of copy number estimation. The proportion of Bov-B
LINEs is variable among species but is not directly associated with genome size or invasion time.
By contrast, this reflects species specificity of TE invasion. Lower or higher abundances of Bov-B
LINEs in a specific species might also be a consequence of genetic drift. However, the noise of
random biological variation/association, especially with relatively small sample sizes could not be ruled
out. Additionally, a full-length Bov-B LINE sequence is over 3kb in length [49]. Using a ranging of
330–385 bp RT domain to estimate Bov-B LINE copy number will likely retrieve most of the full-length
copies present in the genome but may miss fragments or Bov-B LINE copies with a mutated RT
domain region [17,95]. Updated genome annotation and more snake specimens are required to test
this hypothesis.

4.3. Bov-B LINE Copy Number Variation in Males and Females

The localization of TEs on snake sex chromosomes enables us to predict specific ratios of abundance
between male and female individuals [35,36]. We addressed the question of whether the higher number
of distinct Bov-B LINEs in snake genomes correlates with the presence of sex chromosome differentiation,
representing a specific genomic context. To compare genomes of male and female individuals with the
specific amplification of Bov-B LINEs on the Z and/or W sex chromosomes, we conducted a statistical
analysis using the numbers of male versus female individuals for 12 snake species, which mostly
exhibit heteromorphic sex chromosomes [36,96,97]. No snakes showed significant differences in Bov-B
LINE copy number between males and females, possibly as a result of the low number of sample
sizes examined. Moreover, many TEs show different activation in relation to age in several organisms
(mammals and reptiles). This might result from different rates of DNA loss and insertion, and internal
physiology with involving life span [98]. In addition, only a small proportion (0.32%) of the global total
number of snake species were examined in this study, thus data for additional species and individuals
are required to enable more substantive conclusions to be drawn.

5. Conclusions

A snake phylogenetic framework with patchy distribution of Bov-B LINEs enables exploration
of multiple HT events and the determination of the family to which they belong. This will allow
additional, detailed analyses of the evolution of specific Bov-B LINE families in different species.
A high degree of sequence conservation exists between snake lineages and other vertebrates, which is
indicative of the evolutionary impact of purifying selection. Rapid speciation following the divergence
of snakes approximately 150–170 MYA [99], coinciding with Bov-B LINE invasion into snake genomes,
might lead to further hypotheses on the effect of Bov-B LINEs on genome structure and function,
including the regulatory effects on transcriptional networks. This offers new prospects for research on
the mechanisms of genomic and functional diversity. Increased annotation of available snake genome
assemblies and improved systematic screening of snakes, other squamate reptiles, and their parasites
may enhance our understanding of taxonomic and geographic spread of Bov-B LINEs, and lead to a
greater appreciation of the impact of HT on the evolution of eukaryotic genomes. However, additional
phylogenetic analyses are required based on portions of TEs other than the RT domain.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/11/1241/s1,
Table S1. Summary of BDNF sequence of each species used in this study, Table S2. Summary of COI sequence of
each species used in this study, Table S3. Phylogenetic groups of Bov-B LINE retrotransposon sequences among
eight snake families and outgroups inferred using maximum likelihood analysis, Table S4. Pairwise comparison
of nucleotide sequence divergence (p-distance) of Bov-B LINE retrotransposon among 32 snake species, Table S5.
Nonsynonymous substitution sites (Ka) per synonymous substitution site (Ks) of Bov-B LINE retrotransposon
among 32 snake species, Figure S1. Standard curve for Bov-B LINE copies amplified by specific primers. The DNA
dilution series ranged from 0.25 to 25.00 ng/µl of genomic DNA from radiated ratsnake (Coelognathus radiatus) (n=
5). The x-axis is the log-concentration of genomic DNA, and the y-axis is the cycle threshold value. Regression
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line calculated as R2 = 0.9627, p < 0.01, Figure S2. Bayesian phylognetic tree of COI gene. The number at each
node indicates the estimated divergence time. The numbers in black circles indicate four calibration points
that were used for the evolutionary rate estimation: 1) 91.0 million years ago (MYA) for the time to the most
recent common ancestor (TMRCA) of all sequences, 2) 45 MYA for the TMRCA of Colubridae, 3) 35 MYA for the
TMRCA of Elapidae, and 4) 24 MYA for the divergence time between Enhydris and Homalopsis, Figure S3. Bayesian
phylognetic tree of BDNF gene. The number at each node indicates the estimated divergence time. The numbers
in black circles indicate four calibration points that were used for the evolutionary rate estimation: 1) 91.0 million
years ago (MYA) for the time to the most recent common ancestor (TMRCA) of all sequences, 2) 45 MYA for the
TMRCA of Colubridae, 3) 35 MYA for the TMRCA of Elapidae, and 4) 24 MYA for the divergence time between
Enhydris and Homalopsis.
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