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Abstract: Genetic dissection of yield components and seed mineral-nutrient is crucial for understanding plant
physiological and biochemical processes and alleviate nutrient malnutrition. Sesame (Sesamum indicum L.)
is an orphan crop that harbors rich allelic repertoire for seed mineral–nutrients. Here, we harness this
wide diversity to study the genetic architecture of yield components and seed mineral–nutrients using a
core-collection of worldwide genotypes and segregating mapping population. We also tested the association
between these traits and the effect of seed nutrients concentration on their bio-accessibility. Wide genetic
diversity for yield components and seed mineral–nutrients was found among the core-collection.
A high-density linkage map consisting of 19,309 markers was constructed and used for genetic
mapping of 84 QTL associated with yield components and 50 QTL for seed minerals. To the best of our
knowledge, this is the first report on mineral–nutrients QTL in sesame. Genomic regions with a cluster
of overlapping QTL for several morphological and nutritional traits were identified and considered
as genomic hotspots. Candidate gene analysis revealed potential functional associations between
QTL and corresponding genes, which offers unique opportunities for synchronous improvement of
mineral–nutrients. Our findings shed-light on the genetic architecture of yield components, seed
mineral–nutrients and their inter- and intra- relationships, which may facilitate future breeding efforts
to develop bio-fortified sesame cultivars.
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1. Introduction

Mineral elements play essential roles in almost every aspect of plants development, cellular,
biochemical and physiological processes. In grain-crops, minerals are stored mainly in the seeds and
affect germination and early seedling establishment. Mineral–nutrients are also essential for animal
and human welfare, and their deficiencies are a widespread problem, known as the “hidden hunger”.
More than two billion people across the world, mostly in low- and middle- income countries, suffer
from micronutrient malnutrition as consequence of a single crop-based diet. Dietary micronutrient
deficiencies, impair human health and development and expressed in various symptoms, including
anemia, susceptibility to infectious diseases, blindness, impaired physical and cognitive development,
growth retardation, depressed immune system and higher mortality rates [1,2]. Accessibility of sufficient
amounts of nutrients in the human diet depends primarily on their composition in plants (especially
seeds). Improving mineral–nutrients content in plant-based food is an imminent priority facing
agricultural research. Enhancement of seed nutrients (i.e., bio-fortification), either through agronomic
practices (soil or foliar fertilization) or genetically (breeding and biotechnology) offers a cost-effective,
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long-term and sustainable solution to alleviate malnutrition and related health problems (reviewed
by [3]).

While enhancement of seed mineral-nutrient content is important, nutrient bio-accessibility (i.e.,
dietary intake of a nutrient that is absorbed and available to physiological functions) is a key factor
for nutrient intake in plant-based diets. Bio-accessibility mainly depends on the chemical form and
amount consumed, digestion, interaction between nutrients and organic compounds, and absorption
in the gastrointestinal tract [4]. For example, phosphorus (P) is stored in the seeds mainly as phytic acid
(or phytate), which is known to have an adverse effect on nutrient bio-accessibility, and considered as
anti-nutrient as consequence of the chelation with cationic minerals such as zinc (Zn2+), iron (Fe2+

or Fe3+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), and manganese (Mn2+) [5,6]. Hence,
understanding the genetic architecture of seed minerals, and their genetic and phenotypic associations
with one another and with other agronomic traits, will promote breeding efforts to enhance nutrient
content and increase their bioavailability.

Sesame (Sesamum indicum L.; genome 2n = 2x = 26), which belongs to the Pedaliaceae family, is an
important oilseed-crop worldwide. It is an erect to semi-erect indeterminate annual plant with a simple
or branching rigid stem. The stem shape is round or square, with ovate to lanceolate leaves and leaf
margins ranging from entire to serrate. Sesame growth period commonly ranges from 12–16 weeks,
in which flowering begins about 30–40 days after sowing and blooming continues until maturity. Its
yield components include number of plants per unit area, number of branches per plant, number of
capsules per leaf axil, seeds per capsule and seed weight. Complex tradeoffs between yield component
traits, significantly affect the final seed yield [7]. Indeterminate plant growth habit and seed shattering
at maturity led to poor adaptation to modern farming techniques, such as mechanical harvesting) [8].
Currently, sesame is cultivated using traditional practices, primarily in tropical and subtropical regions
of Asia, Africa, and South America.

Sesame seeds are used in a variety of food industries, such as oil production, cooking and baking,
and in the pharmaceutical industry (reviewed by [9]). Seed oil and protein content showed a wide
variation in sesame ranging from 33–58% and 14–30%, respectively [10]. Sesame has a high quality
seed oil which makes it the “queen of oilseeds”, and is rich in unsaturated (UFA), polyunsaturated fatty
acids (PUFAs), and antioxidants, such as sesamol, sesamin, sesamolin and sesaminol [11,12]. Sesame
seeds are also traditionally known as a “health-food” due to their high nutritional values (e.g., iron,
calcium, iodine and zinc; [13,14] and vitamins (e.g., thiamin, riboflavin, niacin, folic acid, vitamin E
and B6; reviewed by [15]).

Wide genetic diversity for various morphological and physiological traits was found in the sesame
genepool [16–18]. Here we harness this wide diversity to uncover the genetic architecture of yield
components and seed mineral–nutrients in sesame. The current study aimed to (i) characterize the
genetic diversity for yield components and seed quality traits in core-collection of worldwide sesame
genotypes, (ii) determine the chromosomal locations and phenotypic effects of QTL associated with
sesame yield components and seed quality, and (iii) study the phenotypic and genotypic association
between the various traits and their effect of nutrient bio-accessibility. Our findings shed light on
sesame genetic architecture of yield components and seed quality as well as their interactions, which
serve as a basis for future breeding programs aiming to develop bio-fortified sesame cultivars.

2. Materials and Methods

2.1. Plant Material and Growth Conditions

A core-collection of 30 sesame genotypes was establish from our large sesame collection, based on
geographic passport data, to represent various environmental conditions (Table S1). All genotypes had
an indeterminate growth habit and a dehiscent capsule phenotype, except S-343 (determinate growth)
and S-91 (indehiscent capsule). A complete randomized, one way, block design with 30 genotypes was
carried out in an open field at the experimental farm of the Hebrew University of Jerusalem in Rehovot,
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Israel (34◦47′ N, 31◦54′ E; 54 m above sea level). The soil at this location is brown-red degrading sandy
loam (Rhodoxeralf, American Soil Science Society classification) composed of 76% sand, 8% silt and
16% clay. The plots were drip irrigated up to field capacity according to the protocol developed in
Gadri et al. [7]. Plants were treated with pesticides to avoid pathogens or insect pests and weeded
manually once a week. Each plot consisted four rows of six plants (a total of 24 plants) spaced 20 cm
between plants, with five replicates (total of 150 plots).

A mapping population was developed from a cross between S-91 (♀) and S-297 (♂) to obtain F1

seeds, followed by self-fertilization to obtain F2 seeds. S-91 was selected based on high mineral–nutrients
composition and indehiscent capsule, and S-297 is widely used in our lab as a high-yield cultivar.
The F2 mapping population, consisting of 149 plants, was grown in an insect-proof screen-house
(0.27 × 0.78 mm pore size), together with five plants of each parental line. The soil was covered with a
black weed mat to avoid weeds.

For bio-accessibility assay, a complete randomized block design, with two genotypes (S-91 and
S-297), four replicates each, was carried out at the experimental farm of the Hebrew University of
Jerusalem. Each plot consisted one row of six plants with a spacing of 15 cm between plants.

2.2. Phenotypic Characterization

Phenological traits: Flowering date (FD), was calculated for F2 population as the number of days
from planting till first flower, and for the core-collection from planting till flowering of 50% of the
plants in the plot. First flowering node (FN), number of nodes (NN), internode length (IL), plant height
(PH) and number of secondary branches (SB) were measured either for individual F2 plant or as means
of five plants from each plot. When plants on a plot reached physiological maturity (i.e., first capsule
change color from green to yellow), plants from the middle rows were harvested, oven-dried (42oC
for 48 h) and weighted. Number of capsules per plant (NCPP) and number of seeds per plant (SPP)
were measured for core-collection. Capsule dehiscence was characterized, at maturity, using an index
(CDI) ranging from one (indehiscent) to five (dehiscent). Capsule width (CW) and length (CL) were
measured with a digital caliper, in seven replicates from each plant. Thousand seed weight (TSW) was
calculated from the total seed weight. A sub-sample of 50 seeds for each line were scanned (HP Scanjet
G2710) and images were analyzed by GrainScan software [19], to obtain the seed length (SL), width
(SW), perimeter (SP), and area (SA). Seed color (SC) was calculated as the mean of obtained red (R),
green (G), and blue (B) values.

2.3. Seed Nutrient Concentration Analysis

Seed micronutrients (zinc, Zn; iron, Fe; copper, Cu; and manganese, Mn) and macronutrients
(calcium, Ca; magnesium, Mg; potassium, K; phosphorus, P; and sulfur, S) concentration were
determined by a radial Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES, ARCOS,
Spectro Analytical Instruments GmbH, Kleve, Germany), equipped with a cross-flow nebulizer and
Scott spray chamber. Seeds were ground into powder, and 250 mg of dry material was digested in 20 mL
of 65% HNO3 and 2 mL of 30% H2O2. Internal standard Yttrium (Y) was used to control digestion
process quality and possible matrix effects. Measurements of mineral–nutrients were calibrated with
standards for ICP from Merck. Element concentrations that exceeded the linear dynamic range were
diluted using calibrated pipettes and re-analyzed.

2.4. In-Vitro Digestion Analysis

Seeds (5 g) from each parental line (S-91 and S-297) were crushed using a mortar and pistil followed
by homogenization with 10 mL dH2O, with four replicates. The obtained sesame seed paste was used
for mineral–nutrients bio-accessibility evaluation. An in vitro gastro-intestinal digestion model was
employed with some modifications [20]. The concentration of Zn, Fe, Ca, Mg and P, were analyzed
using ICP in the undigested raw sample and digestion samples: pellet (solid) and supernatant (liquid)
fractions of both simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) phases. To test the
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iron bio-accessibility in other food sources, we analyzed, whole bread wheat (Triticum aesrivum L.)
flour, cornflakes cereals (Unilever Israel), chickpea (Cicer arietinum L.) seeds, chicken (Gallus gallus
domesticus) liver, corn (Zea mays L.) seeds, and spinach (Spinacia oleracea L.), as described above.

2.5. QTL Analysis

DNA was extracted from the young leaf tissue (~50 mg) of five weeks-old plants of both parental
lines and 149 individuals of F2 population (S-91 × S-297) using the CTAB protocol [21]. DNA was
diluted to ~100 ng/µL and used for sequencing (Illumina high-seq 2500; A&M AgriLife Research,
College Station, TX, USA). The raw sequences were used for genotypic by sequencing (GBS) marker
development (3030 SNP (single nucleotide polymorphism) and 16,279 INDEL (insertions and deletions)).
The markers were anchored to the sesame reference genome S_indicum_v1.0 [22] to produce a physical
genetic map. QTL analyses were performed by NRGene LTD (Ness Ziona, Israel) based on the
phenotyping and GBS data of 149 individual F2 plants. QTL visualization was conducted with IGV
2.3 software [23]. Correspondence between the QTL of different traits was determined using the
hypergeometric probability function according to Peleg et al. [24]:

P =

(
l
m

)(
n− l
s−m

)
(

n
s

) (1)

where n is the number of comparable intervals; m is the number of ‘matches’ (QTL of two traits with
>50% overlap between their confidence intervals) declared between QTL; l is the number of QTLs
found in the larger sample and s is the number of QTLs found in the smaller sample.

Major genomic regions (i.e., several overlapping QTLs) were genetically characterized for candidate
genes (CG) identification. Emphasis was given to QTL associated with seed Zn and Fe concentrations.
The genomic regions aligned to the sesame reference genome (S_indicum_v1.0) and genes within the
interval were screened using NCBI Genome browser. The major genomic regions were re-sequenced
to validate polymorphism between the two parental lines as well.

2.6. Statistical Analyses of Phenotypic Data

The JMP® Pro ver. 15 statistical package (SAS Institute, Cary, NC, USA) was used for all statistical
analyses. Bartlett’s test was used to examine the homogeneity of variance among treatments. All
phenotypic variables were tested for normal distribution. Differences between sesame genotypes in
quantitative traits were tested using Tukey-HSD. Pearson’s correlation coefficients were used to assess
associations between the measured phenotypic traits. Comparison between the two parental lines was
analyzed using Student’s t-test.

3. Results

3.1. Wide Phenotypic Variation in Morphological and Seed Mineral-Nutrient Concentrations

The genetic diversity for plant morphology and seed mineral-nutrient concentrations was
studied across a core-collection of 30 sesame genotypes from various geographical origins (Table S1).
In accordance of being the center of diversity for sesame, the core-collection represented mostly Asia
and Africa (25 genotypes). Analysis of variance (ANOVA) showed that most traits were not associated
with their geographical origin (Table S2). Frequency distributions indicated normal distribution for the
majority of traits, excluding plant height (PH), thousand seed weight (TSW), seed manganese (Mn) and
sulfur (S) concentration (Figure 1). Flowering date (FD) displayed the highest variation (CV = 37%),
ranging between 9.7 (S-49) and 45.3 (S-93) days after planting (DAP) and followed by the yield traits,
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seed per plant (SPP) (CV = 35.7%) and number of capsules per plant (NCPP) (CV = 26.5%) (Figure 1,
Table S3). One way ANOVA showed a significant effect of the genotypes for all traits (Table S3).Genes 2020, 11, x FOR PEER REVIEW  5 of 20 
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Fe (66.94 mg/kg) concentrations, with relatively moderate P concentration (6673.75 mg/kg), hence, it 
was selected for the further genetic dissection of seed mineral–nutrients  (Table S3). 

3.2. S-91 × S-297 Population Exhibited Range of Interrelationships between Plant Morphological and Seed 
Quality Traits 

The two parental lines exhibited significant differences in morphological and quality traits 
(Table 1, Figure S1). S-91 had an indehiscent capsule morphology, whereas S-297 had a dehiscent 
capsule. S-91 also showed significantly longer capsules and a higher TSW compared with S-297. S-
297 exhibited earlier flowering (18 ± 1.05 vs. 25 ± 1.36), at a lower node (3 ± 0.20 vs. 5 ± 0.71), with more 
nodes per plants as compared with S-91. A significantly higher seed Zn concentration (87.5±5.5 vs. 
58.4 ± 1.7 mg/kg), Fe (97.3 ± 11.2 vs. 76.4 ± 6.6 mg/kg) and Cu (23.2 ± 1.0 vs. 14.5 ± 1.0 mg/kg) were 
found in S-91 when compared with S-297 (Table 1, Figure S1).  

Figure 1. Frequency distribution of plant phenological and morphological traits (green): (A) flowering
date, (B) plant height, (C) number of capsules per plant, (D) number of seeds per capsule, Seed quality
trait (orange): (E) thousand seed weight and seed concentration of micronutrients (red): (F) zinc (G) iron,
(H) copper, (I) manganese, and macronutrients (burgundy), (J) calcium, (K) magnesium, (L) potassium,
(M) phosphorus, and (N) sulfur, in core-collection of 30 sesame genotypes.

Correlations analysis was used to evaluate the relationships between yield components and seed
mineral–nutrients traits among the core-collection. NCPP and SPP were positively correlated (r = 0.90,
p < 0.0001) and both were negatively correlated with TSW (r = −0.50, p = 0.005 and r = −0.73, p < 0.0001,
respectively) (Table S4). In accordance with their geographical origin, FD and PH were positively
correlated (r = 0.59, p = 0.001). PH was positively correlated with NCPP and SPP (r = 0.59, p = 0.001
and r = 0.69, p < 0.0001, respectively). Seed Fe concentration was positively correlated with most
bivalent cations Zn, Cu and Mg. Seed P was positively correlated with Zn, Fe, Cu, Mg and S and
showed no correlation with Mn, Ca or K (Table S4). S-91 exhibited high seed Zn (66.08 mg/kg) and Fe
(66.94 mg/kg) concentrations, with relatively moderate P concentration (6673.75 mg/kg), hence, it was
selected for the further genetic dissection of seed mineral–nutrients (Table S3).

3.2. S-91 × S-297 Population Exhibited Range of Interrelationships between Plant Morphological and Seed
Quality Traits

The two parental lines exhibited significant differences in morphological and quality traits (Table 1,
Figure S1). S-91 had an indehiscent capsule morphology, whereas S-297 had a dehiscent capsule. S-91
also showed significantly longer capsules and a higher TSW compared with S-297. S-297 exhibited
earlier flowering (18 ± 1.05 vs. 25 ± 1.36), at a lower node (3 ± 0.20 vs. 5 ± 0.71), with more nodes
per plants as compared with S-91. A significantly higher seed Zn concentration (87.5±5.5 vs. 58.4 ±
1.7 mg/kg), Fe (97.3 ± 11.2 vs. 76.4 ± 6.6 mg/kg) and Cu (23.2 ± 1.0 vs. 14.5 ± 1.0 mg/kg) were found in
S-91 when compared with S-297 (Table 1, Figure S1).

Phenotypic characterization of the F2 population in the field revealed wide variation with transgressive
segregation for most traits (Table 1 and Table S1). For example, Zn and Fe concentrations exceeded S-91
values by 19% and 16%, respectively. Normal distribution was found for most traits, except for FD, CDI,
SB, Zn and Ca. FD was positively correlated with FN and IL (r = 0.59, p < 0.0001 and r = 0.42, p < 0.0001,
respectively) and negatively correlated with NN and TSW (r = −0.46, p < 0.0001 and r = −0.21, p = 0.014,
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respectively). CW was found to positively correlate with all seed morphological traits (i.e., SL, SW,
SP, SA and TSW). CL was positively correlated with SW, SA and TSW. CW and CL did not correlate
significantly with each other (Figure 2, Table S5). CDI was found to significantly correlate with all traits
except for CW, P and S. SC was negatively correlated with FD and the seed morphological traits SL, SW,
SP and SA. TSW was positively correlated with Mg, P and S and negatively correlated with Zn, Cu and
Ca. NN was negatively correlated with all micronutrients (i.e., Zn, Fe, Cu and Mn), while IL exhibited
the opposite trend and correlated positively with all micronutrients. All micronutrients were positively
correlated with each other and so were the macronutrients, except for Ca, which correlated negatively
with the other macronutrients tested and positively with all micronutrients. Ca was also found to
correlate negatively with TSW and seed color. Seed P concentration was significantly correlated with
the micronutrients Zn and Cu and did not correlate with Fe and Mn. Significant positive correlations
were found between Fe and the bivalent cations Zn, Cu, Mn and Ca (Figure 2, Table S5).

Table 1. Mean values and ranges of plant morphological traits and seed mineral-nutrient concentration
of 149 F2 lines (S-91 × S-297) as well as the two parental lines.

Trait Code S-91 S-297
F2 Population

Mean Range

Flowering date (days) FD 25 ± 0.14 18 ± 0.11 17.8 14–29
Flowering Node FN 5 ± 0.7 3 ± 0.2 3.4 2–5
Node Number NN 29 ± 1.9 36 ± 1.3 34.1 20–43
Internode Length (cm) IL 4.9 ± 0.1 4.1 ± 0.2 4.1 2.7–6.5
Number of Secondary Branches SB 1 ± 0.5 0 ± 0.2 0.7 0–5
Plant Height (cm) PH 142 ± 11.7 147 ± 8.3 134.2 100–170
Capsule Length (mm) CL 42.9 ± 1.3 28.8 ± 0.7 34.5 20.6–48.0
Capsule Width (mm) CW 6.46 ± 0.22 5.71 ± 0.1 6.34 5.22–8.43
Capsule Dehiscence Index CDI 1 5 4.2 1–5
Seed Length (mm) SL 3.31 ± 0.02 3.41 ± 0.03 3.50 3.08–3.86
Seed Width (mm) SW 2.1 ± 0.0 2.1 ± 0.0 2.1 1.9–2.3
Seed Perimeter (mm) SP 10.6±0.1 10.9 ± 0.1 11.21 10.1–12.3
Seed Area (mm2) SA 5.32 ± 0.11 5.56 ± 0.10 5.80 4.75–6.90
Thousand Seed Weight (g) TSW 3.35 ± 0.14 2.97 ± 0.07 3.11 0.97–3.99
Seed Color (RGB index) SC 153.1 ± 2.3 159.1 ± 2.5 155.3 128.1–198.3
Zinc (mg/kg) Zn 87.5 ± 5.5 58.4 ± 1.7 71.1 45.5–108.6
Iron (mg/kg) Fe 97.3 ± 11.22 76.4 ± 6.6 82.9 53.8–116.0
Copper (mg/kg) Cu 23.2 ± 1.1 14.5 ± 1.0 17.2 11.5–23.5
Manganese (mg/kg) Mn 19.3 ± 0.5 17.8 ± 1.6 16.0 11.8–22.2
Calcium (mg/kg) Ca 12,591.2 ± 397.9 11,334.6 ± 947.9 10,693.6 4171.2–19,857.3
Magnesium (mg/kg) Mg 4109.7 ± 122.2 4357.9 ± 90.8 4232.9 3433.0–4749.7
Potassium (mg/kg) K 5577.2 ± 149.9 5519.8 ± 214.9 5434.4 4061.4–7201.0
Phosphorus (mg/kg) P 8574.9 ± 239.4 9165.3 ± 81.1 8945.3 7777.9–9895.5
Sulfur (mg/kg) S 3635.7 ± 64.1 3607.9 ± 183.2 3703.5 3082.6–4248.0

3.3. Constructing an High-Density Genetic Map and QTL Analysis

A high-density genetic linkage map consisting of 19,309 (3030 SNPs and 16,279 INDELs) markers
assigned to 16 linkage groups (LG), was constructed. A bin-map with 2339 bin markers accounting for
a total length of 1497 cM was created following recombination events across the population and the
combination of adjacent SNPs, possessing the same genotype in an interval, into bins. LG sizes ranged
from 17.9 to 177.2 cM, with an average of 0.9 cM between adjacent bins (Table S6). The QTL analysis
using the phenotypic data collected for 24 traits and the bin-map molecular marker data revealed
134 significant QTL across all 16 sesame LGs (Table 2 and Table S7, Figure 3). In general, each parent
contributed 50% of the favorable alleles (67 and 66 for S-91 and S-297, respectively).
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FD, flowering date; FN, First flowering node; NN, number of nodes; IL, internode length; SB, number of
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negative (red). Circle size indicates the level of significance (Data can be found in Table S5).
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Table 2. Summary of QTL detected in F2 population (S-91 × S-297) associated with plant phenology
and morphology, capsule morphology, seed morphology and seed quality traits.

Trait #QTL LOD a PVE (%) b
Favorable Allele c

S-91 S-297

Plant Phenology and Morphology

Flowering date 6 2.1–4.92 6.3–14 0 6
Flowering node 8 2.56–7.57 7.6–20.7 2 6
Node number 6 2.59–19.46 7.7–45 1 5
Internode length 10 2–14.93 5.0–31.2 1 9
Number of secondary branches 5 3.03–4 8.9–11.6 0 5
Plant height 13 2–4.66 5.3–11.9 10 3

Capsule Morphology

Capsule length 4 2.39–19.73 7.1–45.4 3 1
Capsule width 7 2.1–3.99 6.2–11.5 4 3
Capsule dehiscence index 4 2.66–95.1 6.3–76.8 4 0

Seed Morphology

Seed length 7 2–6.4 5.9–17.8 2 5
Seed width 3 2.81–5.11 8.3–14.5 1 2
Seed perimeter 6 2.45–6.35 7.2–17.7 3 3
Seed area 5 2.3–5.77 6.8–16.2 2 3

Seed Quality

Thousand seed weight 3 2.63–4.77 7.7–13.6 2 1
Seed color 4 2.14–12.09 6.3–31 0 4
Seed Zn concentration 6 2.43–19.92 7.2–45.7 5 1
Seed Fe concentration 6 2.05–7.94 6.1–21.6 5 1
Seed Cu concentration 6 2.13–11.8 6.3–30.4 6 0
Seed Mn concentration 6 2.4–8.17 7.1–22.2 4 1
Seed Ca concentration 3 2.05–7.84 6.1–21.4 2 1
Seed Mg concentration 3 2.28–4.16 6.8–12 1 2
Seed K concentration 4 2.55–3.7 7.5–10.7 2 2
Seed P concentration 6 2–2.65 5.9–7.8 5 1
Seed S concentration 3 2.45–4.34 7.2–12.5 2 1

Total 134 67 66
a LOD (logarithm of odds) scores that were found significant when comparing hypotheses H1 (There is a QTL
in the chromosome) versus H0 (There is no effect of the chromosome on the trait), using 1000 permutation test;
b Proportion of phenotypic variation explained by the QTL; c The determination of favorable alleles contributing
to a specific trait was based on the following: lower values of flowering date (i.e., earliness) and higher values of
the other phenology and morphology traits, higher values of capsule length and width, lower value of capsule
dehiscence index, higher values of seed morphology, and higher values of seed mineral-nutrient concentrations.

3.4. QTL for Phenology and Morphological Traits

Detailed biometric parameters of QTL detected for each trait are the following:
Flowering date: A total of six significant QTL were associated with FD with LOD (logarithm of

odds) scores ranging between 2.1 and 4.9 and explaining 6.3–14% of the variance (Table 2). The S-297
allele conferred higher FD in all loci (LG3, 4, 8, 11, 11, 12) (Table S7).

Plant morphology traits: Flowering node (FN), node number (NN), internode length (IL) and
number of secondary branches (SB) conferred by 8, 6, 10, and 5 QTL, respectively, with most QTL
contributed by S-297 (25 loci) (Table 2 and Table S7).

Plant height: A total of 13 significant QTL were associated with PH with LOD scores range between
2.0 and 4.7 and explain 5.3–11.9% of the variance (Table 2). Higher PH was conferred by the S-91 allele
at ten loci (LG1, 4, 5, 9, 10, 11, 11, 12, 13, 15) and by the S-297 allele at three loci (LG3, 6, 10) (Table S7).
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Capsule length: A total of four significant QTL were associated with CL with LOD scores ranging
between 2.4 and 19.7, explaining 7.1–45.4% of the variance (Table 2). Longer CL was conferred by the
S-91 allele at three loci (LG11, 13, 15) and by the S-297 allele at LG 8 (Table S7).

Capsule width: A total of seven significant QTL were associated with CL with LOD scores ranging
between 2.1 and 4.0, explaining 6.2–11.5% of the variance (Table 2). Longer CL was conferred by the
S-91 allele at three loci (LG4, 6, 10, 15) and by the S-297 allele at three loci (LG2, 5, 11) (Table S7).

Capsule dehiscence index: A total of four significant QTL were associated with CDI with LOD scores
ranging between 2.7 and 95.1, explaining 6.3–76.8% of the variance (Table 2). S-91 allele conferred
indehiscence capsule phenotype (lower CDI) for all four loci (LG6, 8, 11, 16) (Table S7).

Seed morphology traits: seed length (SL), Seed width (SW), Seed perimeter (SP) and Seed area (SA)
conferred by 7, 3, 6, and 5 QTL respectively, with most QTL contributed by S-297 (13 loci) (Table 2 and
Table S7).

3.5. QTL for Seed Quality Traits

Thousand seed weight: A total of three significant QTL were associated with TSW with LOD scores
ranging between 2.6 and 4.8, explaining 7.7–13.6% of the variance (Table 2). Higher TSW was conferred
by the S-91 allele at two loci (LG10, 14) and by the S-297 allele at LG 8 (Table S7).

Seed color: A total of four significant QTL were associated with SC with LOD scores ranging
between 2.1 and 12.1, explaining 6.3–31.0% of the variance (Table 2). The S-297 allele conferred higher
SC for all loci (LG3, 5, 6, 8) (Table S7).

Seed zinc concentration. A total of six significant QTL were associated with Zn with LOD scores
ranging between 2.4 and 19.9, explaining 7.2–45.7% of the variance (Table 2). Higher Zn was conferred
by the S-91 allele at five loci (LG 4, 6, 8, 11, 16) and by the S-297 allele at one locus (LG6).

Seed iron concentration. A total of six significant QTL were associated with Fe with LOD scores
ranging between 2.1 and 7.9, explaining 6.1–21.6% of the variance (Table 2). Higher Fe was conferred
by the S-91 allele at five loci (LG2, 3, 6, 8, 11) and by the S-297 allele at one locus (LG4) (Table S7).

Seed copper concentration. A total of six significant QTL were associated with Cu with LOD scores
ranging between 2.1 and 11.8, explaining 6.3–30.4% of the variance (Table 2). Higher Cu was conferred
by the S-91 allele at all six loci (LG1, 3, 4, 6, 8, 13) (Table S7).

Seed manganese concentration. A total of six significant QTL were associated with Mn with LOD
scores ranging between 2.4 and 8.2, explaining 7.1–22.2% of the variance (Table 2). Higher Mn was
conferred by the S-91 allele at four loci (LG1, 6, 8, 16) and by the S-297 allele at one locus (LG 3). For one
locus, qMn-5 (LG9), we could not separate the contribution of the parental lines (Table S7).

Seed calcium concentration. A total of three significant QTL were associated with Ca with LOD
scores ranging between 2.1 and 7.8, explaining 6.1–21.4% of the variance (Table 2). Higher Ca was
conferred by the S-91 allele at two loci (LG 8, 12) and by the S-297 allele at one locus (LG4).

Seed magnesium concentration. A total of three significant QTL were associated with Mg with LOD
scores ranging between 2.3 and 4.2, explaining 6.8–12% of the variance (Table 2). Higher Mg was
conferred by the S-91 allele at one locus (LG14) and by the S-297 allele at two loci (LG5, 8) (Table S7).

Seed potassium concentration. A total of four significant QTL were associated with K with LOD
scores ranging between 2.6 and 3.7, explaining 7.5–10.7% of the variance (Table 2). Each parental line
contributed the allele for higher K at two of the loci, LG 10 and 11 (S-91) and two loci on LG8 (S-297).

Seed phosphorus concentration. A total of six significant QTL were associated with P with LOD
scores ranging between 2 and 2.7, explaining 5.9–7.8% of the variance (Table 2). Higher P was conferred
by the S-91 allele at five loci (LG1, 2, 4, 10, 12) and by the S-297 allele at one locus (LG 15) (Table S7).

Seed sulfur concentration. A total of three significant QTL were associated with S with LOD scores
ranging between 2.5 and 4.3, explaining 7.2–12.5% of the variance (Table 2). Higher S was conferred by
the S-91 allele at two loci (LG 11, 13) and by the S-297 allele at one locus (LG 1) (Table S7).
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3.6. Candidate Genes Associated with Seed Mineral-Nutrient Concentration

In order to scan for putative candidate genes (CG), we focused on six hotspots containing overlapping
QTL for several traits on LG6 (13653153–13744314), LG8 (4550182–7125811), LG11 (310665–1216709,
5566003–5767772 and 14205927–14426041), and LG16 (14816–3048510), harboring 1, 53, 89, 11, 38 and 189
genes, respectively (Table S8). Out of these 381 potential CG, 285 were annotated into diverse functions,
while the other 96 were uncharacterized, with an unknown function. Focusing on CG associated
with seed nutrients and morphological traits, we selected 36 potential CG that directly matched the
established QTL effects (Table 3). Comparison between parental lines sequences revealed 13 CG that
exhibited substantial polymorphism that is likely to affect their function, while in the rest 23 CG no
sequence polymorphism was found (Table 3 and Table S9). For example, QTL qK-1 conferring seed
potassium concentration (LG8) included, SKOR-like and SKOR potassium channels (LOC105167760
and LOC105167785, respectively). SKOR is a K+ selective outward rectifying potassium channel
expressing in the root tissue and has an important role in K+ translocation from root to shoot via
the xylem [25]. A substantial deletion of 545bp was detected in LOC105167785 of S-91. QTL qZn-5
and qFe-6 affecting seed zinc and iron concentrations (LG11) include LOC105173373 (phosphate
starvation response 1-like protein; PHR1). Its homolog gene AtPHR1 in Arabidopsis was found to
be involved in regulation of iron, zinc phosphate and sulfate homeostasis [26]. Additionally, two
ferric reduction oxidases (FRO) 2 and 2-like (LOC105173155 and LOC105173156, respectively) were
also identified within this QTL. FRO2 known to reduce Fe+3 to Fe+2 which is an essential step for
Fe uptake from the soil. Overexpression of FRO2 homolog in Arabidopsis conferred tolerance to
iron deficiency [27]. Three genes encoding to a cyclic nucleotide-gated ion channel 1-like (CNGC1)
(LOC105173138, LOC105173087 and LOC105173088) were included in qZn-5, qFe-6 and qS-2 (LG11).
A missense mutation was detected at 1516bp position of LOC105173138 mRNA, which led to an amino
acid substitution from Val506 in S-297 to Leu506 in S-91. The homolog AtCNGC1 is primarily expressed
in Arabidopsis roots, and CNGC mutants were found to be related to metal ion (i.e., K+, Na+, Ca+2

Pb+2 and Ni+2) homeostasis, uptake, and transport [28]. QTL qZn-6 conferring seed zinc concentration
(LG16) includes zinc transporter 8 (LOC105178590) and zinc transporter 8-like (LOC105178589) genes
that in rice was shown to affect zinc concentration [29]. A SNP at 29bp position of the gene transcript
within the first exon of LOC105178590, resulted in an amino acid substitution of Gly10 in S-91 to
Ala10 in S-297. LOC105178589, consisted two SNP at position 154bp and 279bp of the gene transcript,
which resulted in amino acid substitutions from Ser52 and Phe102 in S-91 to Gly52 and Ser102 in
S-297, respectively.

3.7. Bio-Accessibility of Seed Mineral–Nutrients

To study the connection between high mineral-nutrient concentration and their bio-accessibility
level, we conducted an in vitro bio-accessibility experiment [20]. We compared sesame seed paste iron
bio-accessibility and various plant- and animal-based food sources (whole wheat grains, corn grains,
cornflakes, chickpea, spinach and chicken liver) (Table S10). Examination of the simulated gastric fluids
(SGF) showed that within the solid fraction, chicken liver exhibited the highest iron concentration
(63.53 mg/kg), while among the plant-based sources, iron concentration of sesame paste was the highest
(33.78 mg/kg) and corn was the lowest (3.56 mg/kg). Within the SGF liquid fraction, spinach had the
highest iron concentrations (2.03 mg/kg), sesame paste was second (1.94 mg/kg) and chicken liver was
the lowest (0.16 mg/kg). Examination of the simulated intestinal fluids (SIF) showed that within the
solid fraction, cornflakes had the highest iron concentration (105.65 mg/kg), while sesame paste had
much lower concentration (16.55 mg/kg) and chicken liver had the lowest concentration (1.60 mg/kg).
Within the SIF liquid fraction, chicken liver exhibited again the highest iron concentration (3.18 mg/kg),
sesame paste iron concentration was the highest among the plant-based sources (2.67 mg/kg) and corn
was the lowest (0.34 mg/kg).
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Table 3. A list of candidate genes residing within the hotspot of multi-traits QTL intervals.

LG Interval Trait CG ID Annotated Function

LG8 4550182–7125811

FD, FN, NN, IL, SB,
CL, CDI, SL, TSW,

SC, Zn, Fe, Cu, Mn,
Ca, Mg, K

LOC105167760 Potassium channel SKOR-like
LOC105167785 Potassium channel SKOR

LOC105167762 Inositol hexakisphosphate and
diphosphoinositol-pentakisphosphate kinase 2-like

LOC105167788 Ethylene-responsive transcription factor 1B-like
LOC105167789 Ethylene-responsive transcription factor 1B-like
LOC105167791 Ethylene-responsive transcription factor 1B-like
LOC105167765 Transcription repressor KAN1
LOC105167815 Isocitrate dehydrogenase [NADP]

LG11 310665–1216709
NN, CDI, SL, SW,
SP, SA, Zn, Fe, S

LOC110012885 Ethylene-responsive transcription factor
ERF023-like

LOC105173138 Cyclic nucleotide-gated ion channel 1-like
LOC105173087 Cyclic nucleotide-gated ion channel 1-like
LOC105173088 Cyclic nucleotide-gated ion channel 1-like
LOC105173140 MYB-like transcription factor ETC3
LOC105173141 Probable WRKY transcription factor 30

LOC105173122 Heavy metal-associated isoprenylated plant
protein 39-like

LOC105173253 Probable polygalacturonase
LOC105173155 Ferric reduction oxidase 2
LOC105173156 Ferric reduction oxidase 2-like
LOC105173161 Ascorbate transporter

LG11 5566003–5767772 NN, IL, SB, PH,
CDI, Fe, Zn

LOC105173373 Protein PHOSPHATE STARVATION RESPONSE
1-like

LOC105173380 Citrate synthase

LG11 14205927–14426041
NN, SB, PH, CL,

CW, SL, P
LOC105174482 Transcription factor LHW
LOC105174515 Transcription factor MYB1

LG16 14816-3048510 CDI, Zn, Mn

LOC105178592 Transcription factor bHLH30-like
LOC105178450 Transcription factor TCP10-like
LOC105178476 Nicotianamine aminotransferase A
LOC105178598 WRKY transcription factor 6
LOC105178495 Transcription factor MYB101
LOC105178506 MYB-like transcription factor ETC1
LOC105178507 Isocitrate lyase
LOC105178516 Aconitate hydratase
LOC105178613 Calcium-binding protein PBP1-like
LOC105178537 Transcription factor MYB39-like
LOC105178559 Ethylene-responsive transcription factor 4-like
LOC105178589 Zinc transporter 8-like
LOC105178590 Zinc transporter 8

In order to test whether sesame seeds originated from different sesame lines will differ in their
mineral–nutrients bio-accessibility, we conducted a comprehensive in vitro digestion analysis of both
parental lines (S-297 and S-91) and assessed the bio-accessibility of five important mineral–nutrients
(i.e., Zn, Fe, Ca, Mg and P) (Figure 4, Table S11). The initial concentration of all mineral–nutrients in the
undigested raw sesame paste of both parental lines showed no significant differences, except for Fe (25.5
± 1.9 vs. 18.5 ± 0.7 mg/kg for S-91 and S-297, respectively). In general, for both gastric and intestinal
phases, the solid fractions contained higher mineral–nutrients concentrations as compared to the
liquid fractions. Liquid intestinal (SIF supernatant; indicator of micronutrients bio-accessibility) differ
significantly in Zn concentration between S-91 and S-297 (1.2 ± 0.1 vs. 1.4 ± 0.1 mg/kg, respectively)
and Ca concentration (71.7 ± 3.4 vs. 58.7 ± 5.3 mg/kg) (Figure 4, Table S11).
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4. Discussion

Mineral-nutrient malnutrition is a global health problem [30], as consequence of cereal-based
diets, which fail to provide sufficient amounts of mineral–nutrients. While plant breeding programs
focus on increasing yield, an equally important quest that remains a principal concern but is largely
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overlooked in breeding programs is the nutritional value of food crops. Plants biofortification is
the most promising, cost-efficient, strategy to reduce malnutrition. Here we used the wide natural
genetic diversity in sesame, to study the seed mineral-nutrient concentration and dissect its genetic
architecture. Our results demonstrate the nutritional potential of the sesame genepool as a source of
novel alleles to enhance the nutritional quality and set the basis for future sesame breeding programs.

Sesame is an ‘orphan crop’ that mainly grown using traditional practices, and as a consequence,
it possesses wide allelic repertoire for desirable traits. The core-collection exhibited wide genetic
diversity for morpho-phenological traits (Figure 1). Similarly, wide diversity was found among sesame
collections for various traits, such as flowering time, plant height, branches number and seed yield
per plant [31–33]. TSW and PH showed negative correlation, which may indicate a tradeoff between
the sources invested in vegetative growth vs. seed filling, as observed in rapeseed [34]. The strong
positive correlations between PH and the traits FD, NCPP and SPP suggest that the transition to the
reproductive stage (i.e., induction of flowering), reduces vegetative growth, and as a consequence
restrict plant height [35]. The highly significant positive phenotypic correlation between NCPP and
SPP (r = 0.90, p < 0.0001) and the negative correlation between those traits and TSW (Table S4), may
indicate compensation between yield components via morphological modifications [7].

Mineral-nutrient diversity of most staple crops was shown to have narrow diversity, due to
the genetic bottleneck associated with domestication and breeding (i.e., wheat [36], maize [37] and
rice [38]). On the other hand, alleles originated in landraces and wild progenitors offer ample diversity
for seed nutrients, as was found for sesame in the current study (Figure 1), barley landraces [39], wild
wheat [40] and wild rice [41]. Zn and Fe exhibited a highly significant positive phenotypic correlation
(r = 0.65, p < 0.0001) (Figure 2, Table S5). Similarly, Zn and Fe were positively associated in wild and
domesticated wheat [40] and bean [42], which suggest common molecular mechanisms controlling
these minerals uptake and metabolism. Fe and Zn are regulated and distributed by specific mechanisms,
yet, similar chemical properties enable these two divalent cations undergo through mutual regulation
mechanisms. Moreover, the metal-transporters involved in Fe or Zn uptake, also mediate transport
of other divalent cations [43]. For example, in Arabidopsis, the iron-regulated transporter 1 (IRT1, a
member of the ZIP family of metal transporters), was also found to uptake Zn and Mn [44].

In plants, up to 85% of the phosphorus (P) is accumulated in the seeds in the form of phytate,
therefore P can be used as an indicator for phytate content [45,46]. Phytate is known to chelate metal
ions, especially Zn but also Fe, Ca, K, Mn and Mg, making them insoluble, thus, inhibiting their
digestion and absorption in the gastrointestinal tract [47,48]. A strong positive correlation between
P and the cations Zn, Fe and Mg were found in the present study (Figure 2), as well as for other
crop-plants such as wheat [36], maize [37] and bean [48].

While sesame is known as a highly nutritional food-source, genetic studies aim to uncover the
genetic architecture of seed nutrient concentration are very scarce. In general, our genetic dissection of
yield components and seed quality traits revealed numerous genomic regions and co-localizations of
different QTL affecting different traits across sesame genome. A strong phenotypic (r = −0.7, p < 0.0001)
and genotypic (p < 0.001) correlation was found between seed Zn concentration and CDI on LG6, LG8,
LG11 and LG16 (Figure 2; Figure 3, Table S5), which was also supported by traits phenotypic correlation.
In three of these loci a significant correlation was also found with seed Fe concentration and NN, which
was supported by significant phenotypic correlation as well. Interestingly, in all four loci, S-91 was the
favorable allele (higher nutrient concentration), with exception of NN which was contributed by S-297
(Table S7). The strong correlation between qCDI-2 QTL and all seed micronutrients may suggest that in
this locus there is a major regulatory CG affecting both plant development and nutrients homeostasis.

QTL conferring Zn and Fe micro-nutrients were found to co-localize at four different LG (4, 6,
8 and 11) across the genome. Similar compatibility between Zn and Fe phenotypic and genotypic
correlations was also reported for rice [49] and tetraploid wheat [24]. These findings suggest a strong
genetic association between mechanisms affecting seed Zn and Fe concentrations. In order to maintain
plant metal homeostasis, a complex network of metal uptake, trafficking, transportation, accumulation
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and sequestration mechanisms is essential. These processes are tightly regulated by several genes,
which are not necessarily selective to a specific metal.

Prominently, 16 QTLs were co-localized on LG8, to a narrow confidence interval of 2,575,630bp
with major QTL qCDI-2 (Figure 3, Table S7), including seven seed mineral–nutrients concentration
traits (i.e., Zn, Fe, Cu, Mn, Ca, Mg and K), five morpho-phenological traits (FD, FN, NN, IL and SB),
capsule morphology traits (CL) and three seed morphology traits (SL, TSW and SC). Interestingly,
higher mineral–nutrients concentration was conferred by the S-91 alleles in most QTL, except qMg-2
and qK-2. On the other hand, desirable characters of morpho-phenological traits were contributed by
the S-297 alleles in most traits (Table S7; Figure 3). Recently, the SiCL1 gene controlling leaf curling
was mapped to a similar location [50]. Hence, it is yet to be determined whether this genomic region
contains a cluster of several tightly linked genes or one pleotropic gene affecting various developmental
processes in sesame.

The identification of CG that may affect seed mineral–nutrients and morphological traits can serve
as a solid basis for future studies combining transcriptional expression, allele mining and eventually
fine mapping of promising CG. While QTL analysis cannot provide resolution at a single gene level,
we focused on several hotspots with overlapping QTL and narrowed down the interval for high
confidentiality. Despite the relatively large number of genes that reside within the six target QTL
intervals, selection according to annotation enabled us to focus on potential CG (Table 3). Further
selection upon CG polymorphism data indicated several CG with a high potential to affect mineral–
nutrients homeostasis both directly or indirectly (Table 3 and Table S9). Genes encoding metal ion
transporters can directly contribute to the increased mineral-nutrient concentration in the seeds.
The Shaker family is a major voltage dependent K+ channel protein family. One key family member is
SKOR, a selective potassium channel related to K metabolism. Within the genomic region of the major
QTL, qK-1 affects seed potassium concentration (explaining 10.7% of the variance), and two SKOR-like
and SKOR genes (LOC105167760 and LOC105167785, respectively) were found. The 545bp deletion
found in S-91 SiSKOR (LOC105167785), eliminating a part of the 7th intron and almost the entire 8th
exon, which impairs the protein’s conserved cyclic nucleotide binding domain (cNBD). This domain
is thought to mediate the interactions between the channel tetramer subunits [25]. In Arabidopsis, a
mutation in the fourth exon of AtSKOR1 resulted in a knockout mutant exhibited 50% decrease in
shoot K+ content [51]. Notably, higher seed potassium concentration values were contributed by the
S-297 allele at qK-1 locus.

Plant cyclic nucleotide-gated ion channels (CNGC) comprise a plasma membrane non-selective
cation conducting channels, containing a cNBD domain, which, in contrast to SKOR channels, opens the
channel gate upon cyclic nucleotide monophosphate (cNMP) ligand binding [52]. The polymorphism
detected in LOC105173138, one of the three SiCNGC1 genes found within the mutual confidence
interval of qZn-5, qFe-6 and qS-2, led to an amino acid substitution at the protein 506 position. The 506
position in SiCNGC1 is corresponded to a highly conserved Leu residue found in the phosphate binding
cassette region of the cNBD [52]. Interestingly, S-91 possessed the conserved Leu506 while S-297
acquired Val506. Hence, the favorable allele associated with higher seed Zn, Fe and S concentrations
was contributed by S-91.

The ZIP family protein is a large family of zinc transporters that involved in Zn+2 and other divalent
metal cations (Fe+2, Mn+2, Cu+2 and Cd+2) transport [53]. Two zinc transporters, 8 (LOC105178590)
and 8-like (LOC105178589), were co-localized with qZn-6 and qMn-6 on LG16 (Table 3 and Table S7).
Previously, it was suggested that the residue at position 102 in the second transmembrane domain
(TM2) is a conserved hydrophobic residue. The hydrophobic nature is believed to be involved in the
blocking of metals at the extracellular surface [44]. In comparison to S-297 Ser102, S-91 consists a more
hydrophobic residue of Phe102. Interestingly, the favorable allele for qZn-6 and qMn-6 QTL on LG16,
was donated by S-91.

Genes encoding proteins associated with metal ion chelation can have an indirect effect on minerals
homeostasis. For example, proteins related to organic acids (e.g., phytate, citrate and ascorbate) metabolism and
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plant redox known to affect metal ion homeostasis, such as inositol hexakisphosphate and diphosphoinositol-
pentakisphosphate kinase 2-like (LOC105167762), isocitrate dehydrogenase (LOC105167815), ferric reduction
oxidases 2 and 2-like (LOC105173155 and LOC105173156, respectively), ascorbate transporter (LOC105173161),
citrate synthase (LOC105173380), nicotianamine aminotransferase A (LOC105178476), isocitrate lyase
(LOC105178507) and aconitate hydratase (LOC105178516).

An important, yet poorly investigated aspect is the impact of high seed nutrient concentration on
the bio-accessibility level, which can also be affected from the level of anti-nutritional factors. Chelation
of mineral-nutrient cations by phytate and competition between bivalent cations such as Zn2+, Mn2+,
Ca2+ and Mg2+ with Fe2+ is known to impair the absorbance of the latest [54–57]. Here we applied an
in vitro digestion approach simulating the bio-accessibility of key micro-nutrients in an attempt to test
the connection between the identified QTL and bio-accessibility. Previous studies suggested that the
major part of mineral–nutrients are being absorbed in the liquid fraction of the small intestines, that
is, SIF liquid (supernatant) is the most bio-accessible fraction for micronutrients [58]. To evaluate the
potential of sesame seeds to provide good source of iron, we tested the iron bio-accessibility of various
food sources including, chicken liver, whole wheat grains, corn, cornflakes, chickpea and spinach
(Table S10). Among all plant-based sources, sesame seed paste exhibited the highest iron liquid fraction
SIF values (2.67 mg/kg compared with average of 0.77 mg/kg), which was only second to chicken liver
(3.18 mg/kg).

A comprehensive in vitro digestion analysis of the mineral–nutrients’ bio-accessibility of the
two parental lines (S-297 and S-91) showed that the highest mineral–nutrients concentrations were
found in the solid portion of the digest in both gastric and intestinal phases (Figure 4, Table S11),
suggesting that it is less bio-accessible (which in turn can imply on their bio-availability as well).
Notably, although S-297 had lower levels of zinc in the raw sesame paste, its zinc bio-accessibility
seemed to be higher. In terms of iron, the in vitro model clearly demonstrates that the differences in
seed iron concentration between the two parental lines also expressed in the liquid and solid parts of
the digest, in both gastric and intestinal phases. Our results suggest that while pyramiding of QTL for
nutrients concentration could be an efficient strategy to improve nutritional content in plant-based
food, the nutrients are not always available. Thus, further research is needed to identify major genes
that regulate nutrient bio-accessibility.

5. Conclusions

Breeding food crops with enhance nutrient concentration in the seeds is a low-cost, sustainable
strategy to alleviate malnutrition. Increasing seed mineral–nutrients concentrations are also likely to
improve seed germination and establishment under changing climates. The sesame genepool offers
abundant genetic diversity for seed minerals. To the best of our knowledge, this is the first report
on QTL for mineral–nutrients in sesame. The identified associations between QTL affecting different
mineral–nutrients suggest physiological coupling of certain processes that govern mineral-nutrient
accumulation in sesame. Few genomic regions (LG6, 8, 11, 16; Table S8) were found to harbor QTL
clusters for several minerals. These regions offer unique opportunities for synchronous improvement
of Zn, Fe and other mineral–nutrients in sesame seeds. Nevertheless, genomic regions associated
with only one or few minerals should not be overlooked as they may confer other, mineral-specific,
mechanisms. The concurrent mapping of QTL for several minerals as well as the dissection of their
inter- and intra-relationships provide an insight into the functional basis of the physiology, genomic
architecture and evolution of mineral-nutrient accumulation in sesame and other crops.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/10/1221/s1,
Figure S1: Frequency distribution of 149 F2 (S-91 × S-297) lines, Table S1: List of sesame core-collection genotypes,
Table S2: ANOVA for the effect of continent on morphological, phenotypic and seed mineral nutrient concentrations
among 30 sesame genotypes, Table S3: ANOVA for the effect of genotype on morphological, phenotypical and
seed mineral nutrient concentrations among 30 sesame genotypes, Table S4: Coefficients of correlation (r) between
morphological, phenotypic and seed mineral nutrient concentrations among 30 sesame genotypes, Table S5:
Phenotypic and genotypic coefficients of correlation (r) between phenological, morphological and seed quality
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traits in S-91 × S-297 F2 population, Table S6: Mapping population recombination bin map containing 2339
bin markers, Table S7: Quantitative trait loci for plant phenological, morphological and seed quality traits,
Table S8: Genes found within selected multi-traits QTL intervals, Table S9: Putative candidate genes selected from
multi-traits QTL intervals, Table S10: Iron bio-accessibility in different food sources, Table S11: Mineral-nutrient
bio-accessibility of sesame seed paste in the parental.
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8. Çağırgan, M.I. Selection and morphological characterization of induced determinate mutants in sesame.
Field Crop. Res. 2006, 96, 19–24. [CrossRef]

9. Mushtaq, A.; Hanif, M.A.; Ayub, M.A.; Bhatti, I.A.; Jilani, M.I. Sesame. In Medicinal Plants of South Asia;
Hanif, M.A., Nawaz, H., Khan, M.M., Byrne, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020;
pp. 601–615.
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