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Abstract: Host defense peptides (HDPs) are multifunctional immune molecules that respond to
bacterial and viral pathogens. In the present study, bone marrow-derived cells (BMCs) and chicken
embryonic fibroblasts (CEFs) were cultured from a Leghorn line (Ghs6) and Fayoumi line (M15.2),
which are inbred chicken lines relatively susceptible and resistant to various diseases, respectively.
The cells were treated by lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid (poly(I:C)) and,
subsequently, mRNA expression of 20 chicken HDPs was analyzed before and after the stimulation.
At homeostasis, many genes differed between the chicken lines, with the Fayoumi line having
significantly higher expression (p < 0.05) than the Leghorn line: AvBD1, 2, 3, 4, 6, and 7 in BMCs;
CATH1, CATH3, and GNLY in CEFs; and AvDB5, 8, 9, 10, 11, 12, 13 in both BMCs and CEFs. After LPS
treatment, the expression of AvBD1, 2, 3, 4, 5, 9, 12, CATH1, and CATHB1 was significantly upregulated
in BMCs, but no genes changed expression in CEFs. After poly(I:C) treatment, AvBD2, 11, 12, 13,
CATHB1 and LEAP2 increased in both cell types; CATH2 only increased in BMCs; and AvBD3, 6, 9, 14,
CATH1, CATH3, and GNLY only increased in CEFs. In addition, AvBD7, AvBD14, CATH1, CATH2,
GNLY, and LEAP2 showed line-specific expression dependent upon cell type (BMC and CEF) and
stimulant (LPS and poly(I:C)). The characterization of mRNA expression patterns of chicken HDPs
in the present study suggests that their functions may be associated with multiple types of disease
resistance in chickens.
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1. Introduction

Thousands of host defense peptides (HDPs), also known as antimicrobial peptides, have been
identified in various organisms including bacteria, fungi, plants and animals [1,2]. HDPs exhibit
antimicrobial activities against bacteria, fungi and viruses by damaging their cell membranes or
organelles, or by disrupting their physiological activities [2–4]. In addition, HDPs of humans, animals
and plants may act as signaling molecules in innate immune defense, chemokine induction, chemotaxis,
inflammation and wound healing. [5–8].

The primary avian HDPs studied to date are the defensins, cathelicidins, liver-expressed
antimicrobial peptide 2 (LEAP2), and NK-lysin [9–14]. Of the three main defensins (α-, β-, and
θ-defensins), birds have only β-defensins, which are regarded as the ancestor of the others [15–17].
Chickens have 14 avian β-defensin (AvBD1-14) and 4 ovodefensin (OvoDA1, 1–2, 3, and B1) genes
clustered on chromosome 3 [18,19]. Transcripts of AvBDs were first found in leukocytes and bone
marrow [20,21] and they have since been reported in immune-related tissues, the respiratory tract, and
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the reproductive tract [9,10] while ovodefensin was only expressed in egg white and the oviduct [19].
Chickens have four cathelicidin (CATH1, CATH2, CATH3, and CATHB1 also known as fowlicidin-1,
-2, -3 and chCATH-B1) genes clustered on chromosome 2. The avian cathelicidins have a conserved
signal peptide and cathelin domain similar to mammalian cathelicidins [22,23]. CATH1, 2, and 3
are expressed in various tissues including the respiratory tract, gastrointestinal tract and multiple
lymphoid organs, while CATHB1 shows specifically higher expression in bursa compared to other
tissues [10,24,25]. The LEAP2 gene is on chicken chromosome 13. Chicken LEAP2 has approximately
60% homology to mammalian LEAP2 and is expressed in liver, intestine, gall bladder, kidney, and
multiple reproductive organs [26,27]. Chicken NK-lysin (GNLY) has been recently reported to have
antimicrobial and anticancer activities. Additionally, GNLY is overexpressed in immune-related organs
and the gastrointestinal tract, such as spleen and duodenal loop in chickens [10,11].

The Leghorn line Ghs6 was highly inbred from a cross of Leghorn lines; the Leghorn breed
originated in Europe and provided the foundation stock for many commercial layer lines [28–30].
The Fayoumi line M15.2 was segregated from the Egyptian Fayoumi breed, has been highly inbred, and
has large genetic distance from broiler and Leghorn lines [29,31]. From past comparisons between inbred
Fayoumi and Leghorn chickens, the Fayoumi line has shown more resistance against various pathogens
and stressful environments, suggesting superior immune responses [29,30,32,33]. In previous studies,
Fayoumis have been demonstrated to have different expression of several HDPs [34] and association
of genetic variants with disease response [35]. In addition, chicken bone marrow has been regarded as
a secondary lymphoid organ interacting with thymus and bursa of Fabricius (bursa) [36–38].

The immune response of bone marrow-derived dendritic cells can be activated by various
stimulating conditions such as lipopolysaccharide (LPS) and/or heat stress [33]. Fibroblasts have
been early considered as a non-immune type cell maintaining the structural integrity of connective
tissue [39–42]. Additionally, avian immune responses have been studied by comparing between
fibroblasts and immune typed cells [43–45]. Collectively, the comparisons using these cell types can
provide insight on systemic immune responses between and within chicken lines.

LPS and polyinosinic-polycytidylic acid (poly(I:C)) are commonly used to mimic bacteria-
and virus-mediated immune responses, respectively. LPS originates from the outer membrane
of gram-negative bacteria and poly(I:C) is a synthetic molecule that has a double-stranded RNA
structure like an RNA-viral genome [46–48]. TLR4 on cell membrane and TLR3 located in endosome
vesicles are activated by LPS and poly(I:C), respectively. After the TLRs are bound, then the related
signaling pathways induce host immune responses [49–53]. Chicken cells respond to LPS and
poly(I:C) in a similar manner that is generally comparable to other species. It has been reported that
various cytokines and immune-related genes were induced in several chicken cell types by LPS and
poly(I:C) [33,54–57]. However, stimulation of HDPs by LPS or poly(I:C) is not yet well characterized
in chicken.

In this study, we analyzed the in vitro expression of the major chicken HDPs (excluding egg-specific
HDPs) after induction by LPS and poly(I:C) of fibroblast and bone marrow-derived cells from inbred
Fayoumi and Leghorn chickens. Our study using induction by bacterial and viral components may
contribute to understanding expression patterns of HDPs against various pathogens in chickens.

2. Materials and Methods

2.1. Ethical Statement

The Institutional Animal Care and Use Committee at Iowa State University (ISU) approved all
animal procedures (IACUC-19-287). All methods were performed in accordance with the relevant
guidelines and regulations outlined in this protocol. Fertilized eggs from the inbred Leghorn line Ghs6
and the Fayoumi line M15.2 were incubated in three batches to obtain in total 90 5-day-old embryos
per line and 90 day-of hatch chicks per line.
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2.2. Cell Culture

2.2.1. Chicken Embryonic Fibroblast (CEF) Culture

The head, internal organs, limbs, and tail were removed from 5-day-old embryos. The remaining
embryonic bodies were rinsed with 1× phosphate buffered saline (PBS) (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA). Thirty samples per line were pooled within line (Fayoumi or Leghorn) for each of
the 3 batches, resulting in a total of 6 pooled samples of CEF. Each pooled sample was then dissociated
using 0.05% Trypsin EDTA (TE) (Gibco) at 39 ◦C for 10 min. Subsequently, 4 × 105 of the dissociated
cells were cultured per well in multiple 6-well culture plates with 2 mL of Dulbecco’s Modified Eagle’s
Medium (DMEM) (Gibco) with 10% fetal bovine serum (FBS) (Hyclone, Logan, UT, USA) and 1%
antibiotics (1×Antibiotic-Antimycotic, Gibco) at 39 ◦C with 5% CO2 until passage 3 (P3). For passaging
each cell batch, CEFs from a single well were split into 3 wells in every subculture. CEFs were frozen in
liquid nitrogen at P3 until treatments were performed. Before treatments, equal numbers of CEFs from
all three batches were mixed, and then 5 × 105 of the mixed batch cells were cultured until passage 5
(P5). The cell viability, determined by trypan blue staining, was over 95% in every subculture.

2.2.2. Bone Marrow-Derived Cell (BMC) Culture

For each batch, both thighbones were collected from 30 day-of-hatch chicks per line. Each
thighbone was split and bone marrow was scraped from the split thighbone using a sharp blade.
The bone marrows were rinsed with 1 × PBS (Gibco), then pooled within line within each of the
3 batches, resulting in a total of 6 pooled bone marrow samples. Each pooled sample was then
dissociated using 0.05% TE (Gibco) at 39 ◦C for 20 min. Subsequently, 3 × 105 of the dissociated cells
were cultured per well in multiple 6-well culture plates with 2 mL of DMEM (Gibco) with 10% FBS
(Hyclone), 5% chicken serum (Gibco) and 1% antibiotics (1 × Antibiotic-Antimycotic, Gibco) at 39 ◦C
with 5% CO2 until passage 2 (P2). For passaging each cell batch, BMCs from a single well were split
into 4 wells in every subculture. BMCs were frozen in liquid nitrogen at P2 until treatments were
performed. Before treatments, equal of BMCs from all three batches were mixed, and then 5 × 105 of
the mixed batch cells were cultured until P3. The cell viability, determined by trypan blue staining,
was over 95% in every subculture.

2.3. Immune Stimulation

2.3.1. Lipopolysaccharide (LPS) Treatment

P3 BMCs and P5 CEFs were prepared to 70~80% confluency in 6-well culture plates with 2 wells
for each experimental group before exposure to LPS treatment. To mimic an extracellular bacterial
infection, LPS (Salmonella enterica serotype typhimurium, L6143, Sigma-Aldrich, St. Louis, MO,
USA) was added to the prepared cells at concentrations of 100 or 200 ng/mL at 1, 3, 6, 12, 24, and
48 h before sampling the cultures. Within each experimental group, the cells in 2 wells were pooled
during sampling to generate sufficient material for subsequent assays. All LPS-treated groups were
simultaneously sampled at the end of the experiment. A non-LPS-treated group was also sampled
before starting the treatment and at the end of the experiment to assess the change of HDP expression
during cell incubation without stimulant. The treatment was independently performed using each
cell batch, providing three experimental replicates of each LPS- or non-treated group. In total, 168
samples (2 chicken lines × 2 cell types × 2 concentrations of LPS × 6 exposure times × 3 LPS-stimulated
replicates, plus 2 chicken lines × 2 cell types × 2 exposure times × 3 non-stimulated replicates) were
individually snap frozen using liquid nitrogen and stored at −80 ◦C until use.

2.3.2. Polyinosinic: Polycytidylic Acid (Poly(I:C)) Treatment

P3 BMCs and P5 CEFs were prepared to 70~80% confluency in 6-well culture plates with 2
wells for each experimental group before exposure to poly(I:C) treatment. To mimic an intracellular
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viral infection, poly(I:C) (Poly(IC) HMW, InvivoGen, San Diego, CA, USA) was transfected into
the prepared cells at concentrations of 10 and 50 ng/mL using lipofectamine (Lipofectamine 3000
Transfection Reagent, Invitrogen, Thermo Fisher Scientific). Within each experimental group, the cells
in 2 wells were pooled during sampling to generate sufficient material for subsequent assays. Each
poly(I:C)-treated group was sampled at 1, 3, 6, 12, and 24 h after the transfection. Non-poly(I:C)-treated
controls were also sampled at 1, 3, 6, 12, and 24 h after lipofectamine treatment without poly(I:C).
In addition, no-treatment controls (without lipofectamine) were sampled before the treatment and
at the same exposure times as the treatment groups (1, 3, 6, 12, and 24 h) to determine the HDP
expression during cell incubation. The treatment was independently performed using each cell
batch, providing three experimental replicates of each poly(I:C)-, non-poly(I:C)- or non-treated group.
In total, 252 samples (2 chicken lines × 2 cell types × 2 concentrations of poly(I:C) × 5 exposure
times × 3 poly(I:C)-stimulated replicates, plus 2 chicken lines × 2 cell types × 5 exposure times × 3
non-poly(I:C)-lipofectamine only replicates, plus 2 chicken lines × 2 cell types × 6 sampling times
(including 0 h) × 3 non-stimulated replicates) were rapidly frozen using liquid nitrogen and stored at
−80 ◦C until further use.

2.4. Analysis of Gene Expression

2.4.1. Primer Design

Primers for 20 targeted HDP genes and 3 reference genes were designed using Primer-BLAST (https:
//www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome) (Table 1). The amplicon
identity was confirmed to match the intended target gene by Sanger sequencing for all 23 primer sets.

Table 1. Primer information for host defense peptide genes and reference genes.

Gene Entrez ID Forward Primer (5’–3’) Reverse Primer (5’–3’) Amplicon Length (bp)

AvBD1 395841 ACAGACGTAAACCATGCGGA GACTTCCTTCCTAGAGCCTGG 99
AvBD2 395840 GGGTGTCCCAGCCATCTAAT TCCAAGGCCATTTGCAGCAG 70
AvBD3 395363 CTCTTGTTTCTCCAGGGTGCT GCTCCCAACACGACAGAATC 75
AvBD4 414342 CAGTCTGCCTTCTGCCATGA GGTCCCGCGATATCCACATT 124
AvBD5 414340 GTCATGTCCTCCAGGGATCG CGTGAAGGGACATCAGAGGC 101
AvBD6 407776 GGGTTGGATCATGTGGCAGT AGTGCCAGAGAGGCCATTTG 120
AvBD7 407777 GGGATCTGTCGAAGGCCATA TTCCCAGAAGTCAGGGAGGT 105
AvBD8 414875 CTTGGCCGTTCTCCTCACTG ACTGTGCCTCGTTGTTAGGT 71
AvBD9 414343 ACACCGTCAGGCATCTTCAC GTCTTCTTGGCTGTAAGCTGG 129

AvBD10 414341 TCAGGGGAATTTCTGCCGTG CTTACTGCGCCGGAATCTTG 107
AvBD11 414876 ATGCTCTTGGCGTCAGAAAAC GGAGATACGCAATGGCCCC 87
AvBD12 414339 CTGCTCGCTCACGGAAGCA TATTCCCCAGGGTTGCAGTTC 89
AvBD13 414877 AGCTGCTCTTTGCCATCGTT CAGTGGCCATGGTTGTTCCT 97
AvBD14 100858701 GGCGACACGACAATGTCAAC TTGCCCTTCATCTTCCGACA 119
CATH1 414337 GACTCCATGGCTGACCCTGT ATCGCCCGGTAGAGGTTGTA 89
CATH2 420407 CGACTGCGACTTCAAGGAGAA GATCTCGGGAGTGTCCTGC 79
CATH3 100858343 GATGTCACCTGCGTGGACTC TTGTAGAGGTTGATGCCCGC 107

CATHB1 100858412 GGTTGCTCAACCAGAGGATCT TCCTCCACAAGGAAGCTCAC 118
GNLY 693257 TTCTGCGTCAGTCTGGTGAA AGATACTCCTCTGGCGCCTC 118
LEAP2 414338 GTTGGAGCCTCATGTAGGGA GAGGCCGTTCTAAGGAAGCAG 80

28S 112533599 GGCGAAGCCAGAGGAAACT GACGACCGATTTGCACGTC 62
GAPDH 374193 GCAGCAGGAACACTATAAAGGC TTTGCCAGAGAGGACGGC 100
H6PD 428188 ATGTACCGGGTGGACCACTA AACTGACGGTTCTGATCTCGAAA 80

2.4.2. Expression Analysis of Host Defense Peptide Genes

Total RNA was isolated from the samples using the RNAqueous Total RNA Isolation Kit (Ambion,
Thermo Fisher Scientific) according to the manufacturer’s protocol. RNA quantity was assessed on a
NanoDrop ND-1000 UV-vis spectrophotometer (Thermo Fisher Scientific). cDNA was synthesized
from 50 ng of each RNA sample using Reverse Transcription Master Mix (Fluidigm, South San Franciso,
CA, USA) and it was subsequently preamplified for 16 cycles using Preamp Master Mix (Fluidigm)
following manufacturer’s protocols. Each sample was assayed in duplicate using a Fluidigm 192.24

https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
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Integrated Fluidic Circuit (IFC). Real-time PCR was performed on the Biomark HD (Fluidigm) with
five independent IFCs (IFC1, 2, 3, 4, and 5). IFC1 included LPS-treated BMCs and their non-treated
controls from Fayoumi and Leghorn from all three experimental replicates (Figure 1). IFC2 included
LPS-treated CEFs and their non-treated controls in Fayoumi and Leghorn from all three experimental
replicates (Figure 1). IFC3, 4, and 5 each included one independent experimental replicate of
poly(I:C)-treated BMCs and CEFs and their non-poly(I:C)-treated and non-treated controls in Fayoumi
and Leghorn (Figure 1). The data were analyzed using the Fluidigm Real-Time PCR Analysis software.
The technical replicates of the same sample per primer set had overlapping major peaks in their melting
curves, confirming that a single product was amplified for each primer pair. Gene expression was
compared between chicken lines, between LPS-treated groups and non-treated controls (from 48 h
after incubation without LPS), or between poly(I:C)-treated groups and non-poly(I:C)-treated controls
(with lipofectamine), all using the 2(−∆∆Ct) method [58] in Excel. The relative expression of the HDPs
between lines or treatments was visualized as Log2 fold changes (Log2FC) using the gplots package in
R (https://ggplot2.tidyverse.org).
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Fluidigm 192.24 Integrated Fluidic Circuits (IFCs). p-values for each experimental variable and loaded
sample information for each IFC are shown. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

2.4.3. Data Imputation and Reference Gene Selection

In this analysis, 35% cycle thresholds (Cts) values of HDPs were out of the range of the Biomark
Dynamic assay. Hypothesizing that the out-of-range Cts were lowly expressed genes, these missing
Cts were tested with imputation of 31, 50, and 100 Cts, all of which are below the detection range of
1 to 30 Cts. Missing Ct values were also imputed to 1 Ct (the minimum Ct), which is the maximum
detection value. From principal component analysis (PCA), the imputations of 31, 50, and 100 Cts were
similarly clustered among experimental groups while the imputation of 1 Ct was differently clustered
(Figure S1). Collectively, the results suggested that the missing values occurred by exceeding the
maximum Cts, indicating either no or low gene expression. Thus, 31 Cts was imputed to the missing
Ct values of HDPs for downstream analysis, understanding that this may have been an overestimate
of expression for some samples.

To select between the tested reference genes (H6PD, GAPDH, and 28S), Ct variation in the reference
genes due to experimental variables was statistically tested for IFC1 and 2, or for IFC3, 4, and 5
(Figure 1). Linear regression models were fit with Ct ~ time + line + LPS concentration + IFC/cell type
(combined effect of IFC and cell type) for IFC1 and 2 and Ct ~ time + line + Poly(I:C) concentration +

cell type + IFC for IFC 3, 4, and 5. These models revealed that the Cts of GAPDH showed no significant
difference for most variables, except the combined effect of IFC and cell type in IFC 1 and IFC 2
(Figure 1), which were not statistically compared in the downstream analysis. Therefore, GAPDH was
selected as the reference gene to calculate delta Ct (dCt) values.

https://ggplot2.tidyverse.org
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2.5. Statistical Analysis

Within each cell type, multiple linear regression models were fit to the dCts using JMP 14.3.0 (SAS
Institute Inc. NC, USA) to identify the effects of LPS treatment, poly(I:C) treatment or homeostatic
differences between lines without stimulation of the cells. Because the different concentrations of LPS
or poly (I:C) did not significantly affect gene expression of most HDPs (p > 0.05, data not shown), the
following statistical analyses investigated the overall effects of treatment, combining the data from both
concentrations. Post-hoc testing of significant interactions (p < 0.05) in these models was performed
using the Tukey HSD test in JMP.

The LPS-treated BMCs and their non-treated controls (IFC1) or the LPS-treated CEFs and their
non-treated controls (IFC2) were separately fit to the linear regression model of dCt ~ Line + Treatment
+ Time[Treatment] + Line*Treatment + Line*Time[Treatment] + Replicate&Random. In the model, line
included Fayoumi and Leghorn. Treatment was categorized into LPS-treated and non-treated groups.
Time was nested within treatment and included 0, 1, 3, 6, 12, 24, and 48 h before the experiment
termination. Replicate included the 3 experimental replicates as a random effect.

To investigate homeostatic differences between the chicken lines within each cell type, the
non-poly(I:C)-treated and non-treated controls from IFC3, 4 and 5 were subset by cell type (BMC and
CEF); these subsets were separately fit with the linear regression model of dCt ~ Line + Lipofection +

Time + Replicate&Random. In the model, line included Fayoumi and Leghorn. Lipofection included the
non-poly(I:C) but lipofectamine-treated and no-treatment control groups. Time included 0, 1, 3, 6, 12,
and 24 h after the experiment initiation. Replicate included the effect of the IFCs and the 3 experimental
replicates as a random effect.

The poly(I:C)-treated BMCs and their non-poly(I:C)-treated controls (IFC3, 4 and 5) or the
poly(I:C)-treated CEFs and their non-poly(I:C)-treated controls (IFC3, 4 and 5) were separately fit
to the linear regression model of dCt ~ Line + Treatment + Time[Treatment] + Line*Treatment
+ Line*Time[Treatment] + Replicate&Random. In the model, line included Fayoumi and Leghorn.
Treatment was categorized into poly(I:C)-treated and non-poly(I:C)-treated groups (with lipofectamine
only). Time included 0, 1, 3, 6, 12, and 24 h after the experiment initiation. Replicate included the effect
of the IFCs and the 3 experimental replicates as a random effect.

3. Results

3.1. Line Differences in Expression of HDPs in Homeostatic State

From the regression model on control (non-poly(I:C)-treated and non-treated) groups from the
poly(I:C) experimental sets (IFC3, 4, and 5), homeostatic HDP expression levels were mainly affected
by line, although a few HDP expression levels were affected by time and lipofectamine (Figure S2).
All HDPs with a significant difference between lines (p < 0.05) showed higher expression in Fayoumi
compared to Leghorn (Figure 2A). Among them, AvBD5, 8, 9, 10, 11, 12, 13, and CATHB1 were higher
expressed in both BMCs and CEFs while AvBD1, 2, 3, 4, 6, and 7 exhibited specifically higher expression
in BMCs and CATH1, CATH3, and GNLY exhibited specifically higher expression in CEFs (Figure 2).
Our data indicate that most HDPs are more highly expressed in Fayoumi than Leghorn, and BMCs
and CEFs showed different expression patterns of HDPs at homeostatic levels.
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Figure 2. Expression patterns of host defense peptides (HDPs) in homeostatic state comparing Fayoumi
to Leghorn within each cell type. Relative expression state (Log2 fold change (Log2FC)) of HDPs in
bone marrow-derived cells (BMCs) and chicken embryonic fibroblasts (CEFs) comparing Fayoumi to
Leghorn (A) and Venn diagram of HDPs that were significantly differentially expressed (p < 0.05) in
BMCs and CEFs (B). Red font indicates higher expression in Fayoumi compared to Leghorn.

3.2. HDPs Responded to LPS and Poly(I:C)

Regression models were also used to investigate the effect of treatment and revealed differences
in which HDPs respond significantly (p < 0.05) to LPS or poly(I:C) in BMCs or CEFs (Figure S2 and
Figure 3A). After LPS treatment, the expression of AvBD1, 2, 3, 4, 5, 9, 12, CATH1, and CATHB1
significantly increased in BMCs while no HDP expression significantly changed in CEFs (Figure 3A).
After poly(I:C) treatment, AvBD2, 11, 12, 13, CATH2, CATHB1, and LEAP2 significantly increased in
BMCs and AvBD2, 3, 6, 9, 11, 12, 13, 14, CATH1, CATH3, CATHB1, GNLY, and LEAP2 increased in
CEFs (Figure 3A). Expression of 6 of these HDPs additionally had a significant interaction between
treatment and line factors (Figure S2) and were subsequently used for a post-hoc Tukey test (p < 0.05)
(Figure 3B,C). From the post-hoc Tukey test, AvBD2 (Leghorn, p < 0.001; Fayoumi, p < 0.05) and
CATHB1 (Leghorn, p < 0.01; Fayoumi, p < 0.001) expression significantly increased in BMCs of both
lines while the expression of AvBD3 (p < 0.05), AvBD5 (p < 0.05), and CATH3 (p < 0.05) only increased
in Leghorn BMCs after LPS treatment (Figure 3B). Although AvBD3 and AvBD5 only responded to LPS
in Leghorn BMCs, their expression when stimulated still remained lower than the Fayoumi BMCs
without LPS. Similarly, while LPS increased AvBD2 expression in both lines, the Fayoumi BMCs had
greater expression than the Leghorn BMCs under both LPS- and non-treated conditions. CATHB1
had higher homeostatic levels in the Leghorn BMCs, but after LPS treatment, the Fayoumi BMCs
had higher expression. AvBD7 expression significantly increased in Fayoumi CEFs after poly(I:C)
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treatment (p < 0.01), but there was no response in the Leghorn line (Figure 3C). There were no
significant interactions between line and treatment in CEFs after LPS treatment or in BMCs after
poly(I:C) (Figure S2). Collectively, our data indicate that under our treatment conditions, poly(I:C)
stimulated various HDPs in BMCs and CEFs while LPS stimulated them in the only BMCs. Especially,
AvBD2, AvBD3, AvBD5, CATH3, CATHB1 showed an interaction between line and LPS, while AvBD7
responded to poly(I:C) in a line-dependent manner.
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Figure 3. Host defense peptides (HDPs) that responded to LPS or poly(I:C) treatment. Heatmap
for Log2 fold change (Log2FC) of each HDPs comparing the LPS- or poly(I:C)-treated cells to the
non-treated or non-poly(I:C)-treated cells in BMCs or CEFs (A). Bar graph of corrected dCts for HDPs
with a significant interaction between line and LPS in BMCs (B) and between line and poly(I:C) in
CEFs (C). Corrected dCts were calculated by 30 (maximum detected dCt)—lsmean of the targeted gene
dCt and LSmeans adjusted according to each linear model. BMCs, bone marrow-derived cells; CEFs,
chicken embryonic fibroblasts; -, with treatment; +, without treatment. Statistical significance was
indicated as a different character above each bar in graphs.

3.3. Line-Dependent Expression of HDPs Impacted by LPS and Poly(I:C) Treatments

To determine whether the line differences observed under homeostatic conditions were affected
by adding LPS- and/or poly(I:C)-stimulated groups, HDPs were compared between lines in BMCs or
CEFs using the regression models for LPS- and non-treated groups (IFC 1 and 2) or poly(I:C)- and
non-poly(I:C)-treated groups (IFC 3, 4, and 5). Comparing Fayoumi to Leghorn in BMCs with poly(I:C)
treatment (poly(I:C) + non-poly(I:C)-treated), Fayoumi BMCs had higher expression of AvBD1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and CATHB1, maintaining the difference between lines observed in the
homeostatic state (Figure 4A,B). Additionally, AvBD14, CATH2, and LEAP2 were significantly higher in
Fayoumi than Leghorn BMCs with poly(I:C) treatment, but not at homeostasis. Similarly, AvBD1, 2, 3,
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4, 5, 6, 7, 9, and 10 were expressed at greater levels in Fayoumi than Leghorn BMCs with LPS treatment
(LPS + non-treated), maintaining line-dependent expression patterns from the homeostatic state.
However, incorporating the LPS treatment (LPS + non-treated) did change some expression patterns in
BMCs; AvBD14 became significantly higher expressed in Fayoumi than Leghorn BMCs, while CATH1,
CATH2, CATHB1, GNLY, and LEAP2 were greater in Leghorn than Fayoumi BMCs only with LPS
treatment (Figure 4A,B). Comparing Fayoumi to Leghorn in CEFs with poly(I:C) treatment, Fayoumi
CEFs had significantly higher expression of AvBD5, 8, 9, 10, 11, 12, 13, CATH1, CATH3, CATHB1,
and GNLY than Leghorn CEFs, which are the same line-dependent expression patterns observed in
the homeostatic state (Figure 4A,C). Addition of the LPS treatment (LPS + non-treated) maintained
less of the homeostatic line differences in the CEFs, but AvBD5, AvBD12, AvBD13 and CATHB1 were
more highly expressed in Fayoumi than Leghorn CEFs both with LPS treatment and at homeostasis.
Additionally, AvBD7, CATH2, and LEAP2 had significantly greater expression in Fayoumi than Leghorn
CEFs only with poly(I:C) treatment (Figure 4A,C). These results suggest that AvBD7, 14, CATH1,
CATH2, CATHB1, GNLY, and LEAP2 had line differences in expression in a stimulant-dependent (LPS
and poly(I:C)) manner.
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Figure 4. Line-dependent expression of host defense peptides (HDPs) with LPS or poly(I:C) treatment.
Relative expression (Log2 fold change (Log2FC)) of HDPs comparing Fayoumi to Leghorn in LPS-
+ non-treated (LPS + NT) or poly(I:C)- + non-poly(I:C)-treated (poly(I:C) + NT) BMCs or CEFs (A),
Venn diagram for significantly differentially expressed (p < 0.05) HDP in BMCs comparing Fayoumi
to Leghorn in non-treated (NT), LPS + NT or poly(I:C) + NT. (B) Venn diagram for significantly
differentially expressed (p < 0.05) HDP in CEFs comparing Fayoumi to Leghorn in NT, LPS + NT or
poly(I:C) + NT. (C) Red font color indicates significantly higher expression in Fayoumi compared to
Leghorn. Blue font color indicates significantly higher expression in Leghorn compared to Fayoumi.
Black font color indicates higher expression in Fayoumi with poly(I:C) and in Leghorn with LPS. BMCs,
bone marrow-derived cells; CEFs, chicken embryonic fibroblasts.

4. Discussion

The inbred Fayoumi line included in this study has been shown to be relatively more resistant
against various pathogens and environmental stresses than the inbred Leghorn line or a broiler line,
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including the Fayoumi line activating immune-related signaling pathways against viral infection and
LPS treatment with/without heat stress [32,59–61]. In this study, we investigated the expression of
20 chicken HDPs before and after induction by LPS and poly(I:C) in embryonic fibroblasts and bone
marrow-derived cells from the inbred Fayoumi M15.2 and Leghorn Ghs6 chicken lines.

From comparisons between the two lines under homeostatic conditions, all HDPs except AvBD14,
CATH2, and LEAP2 showed higher expression in Fayoumi than Leghorn. HDPs are well known as
a critical component of immune responses that inhibit microbes such as bacteria and viruses and
modulate the host immune system [5,8,62]. Many studies have also suggested an association between
HDP expression and various infectious diseases [63–65], though the direct evidence for a correlation
between a HDP and disease resistance is still limited in livestock. Thus, our results suggested that
the higher expression of HDPs in the Fayoumi line at homeostasis could be associated with its innate
disease resistance.

LPS and poly(I:C) are well known as agonists of Toll-like receptors (TLRs), which recognize
microbial pathogens such as bacteria and viruses, triggering host innate immune responses. LPS and
poly(I:C) are respectively recognized by TLR4 on the host cell membrane and TLR3, which resides
in endosome vesicles [52,53]. After that, the host immune system activates various cytokines and
chemokines through serial signaling pathways. Ultimately, the chain of such immune signaling
pathways activates HDP expression, although the regulatory mechanisms of HDP expression are
still unclear in chickens [49–51]. In this study, AvBDs generally maintained higher expression in the
Fayoumi line than Leghorn line after LPS and poly(I:C) treatments, while the expression patterns of
CATH1, CATH2, CATHB1, GNLY, and LEAP2 between the two lines varied according to the stimulant
(LPS or poly(I:C)). Previous studies have reported that 14 AvBD genes are densely clustered on chicken
chromosome 3 and their functional domains are highly conserved [16,26,66–68]. Another study
suggested that there are interactions between AvBDs and other antimicrobial proteins or among
AvBD family proteins [45]. Therefore, our results suggest that the genes of the AvBD family could be
systemically upregulated after immune stimulation to cooperatively confer disease resistance to the
Fayoumi line.

In addition to the AvBDs, the CATH family genes, GNLY, and LEAP2 showed variable expression
patterns across lines, cell types, or stimulant treatments. Unlike human and mouse, which have a
single cathelicidin on their genomes, chicken has four cathelicidins (CATH1, CATH2, CATH3, and
CATHB1) [23,25]. CATH1, 2, and 3 share a typical cathelin-like domain with mammalian cathelicidins,
while CATHB1 has an uncharacteristic cathelin-like domain. CATHB1 antimicrobial activity is known
to be relatively weaker than the other cathelicidins [10,23–25]. CATH1 and CATH3 have a high
similarity of amino acid sequences compared to others (>90%), suggesting the same gene clade of
CATH gene family. In addition, CATH1, 2, and 3 can be highly expressed in chicken bone marrow [10],
while CATHB1 was characteristically expressed in the bursa [10,25]. Chicken LEAP2 can not only
be widely expressed in the liver, intestine, gall bladder, kidney, and multiple reproductive organs
but can also increase during embryo development [23,26,27,69]. Chicken GNLY was shown to be
characteristically overexpressed in spleen and the duodenal loop compared to AvBDs and CATHs [10].
Collectively, these studies suggest that these HDPs can have independent or cooperative roles in
various tissues, although their specific functions are still unclear.

5. Conclusions

In conclusion, we analyzed the expression of the major chicken HDPs and confirmed the higher
expression of most HDPs in the disease-resistant Fayoumi line compared to the disease-susceptible
Leghorn line at homeostasis and in an LPS- or poly(I:C)-stimulated state. Thus, our results suggest
that HDP functions may be associated with disease resistance mechanisms in chicken. Functions and
regulatory mechanisms of these HDPs should be further studied to understand the relationship between
specific pathogen resistance and HDPs in these inbred chicken lines and commercial populations.
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