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Abstract: In silico tools to predict genotoxicity have become important for high-throughput 
screening of chemical substances. However, current in silico tools to evaluate chromosomal damage 
do not discriminate in vitro-specific positives that can be followed by in vivo tests. Herein, we 
establish an in silico model for chromosomal damages with the following approaches: (1) re-
categorizing a previous data set into three groups (positives, negatives, and misleading positives) 
according to current reports that use weight-of-evidence approaches and expert judgments; (2) 
utilizing a generalized linear model (Elastic Net) that uses partial structures of chemicals (organic 
functional groups) as explanatory variables of the statistical model; and (3) interpreting mode of 
action in terms of chemical structures identified. The accuracy of our model was 85.6%, 80.3%, and 
87.9% for positive, negative, and misleading positive predictions, respectively. Selected organic 
functional groups in the models for positive prediction were reported to induce genotoxicity via 
various modes of actions (e.g., DNA adduct formation), whereas those for misleading positives were 
not clearly related to genotoxicity (e.g., low pH, cytotoxicity induction). Therefore, the present 
model may contribute to high-throughput screening in material design or drug discovery to verify 
the relevance of estimated positives considering their mechanisms of action. 

Keywords: in silico prediction model; chromosomal aberration; generalized linear model; organic 
functional groups 

 

1. Introduction 

In silico prediction tools for toxicological evaluations have become increasingly important 
owing to the demand for high-throughput evaluation in drug discovery and chemical substance 
design without animal testing. Especially in the cosmetics field, efficient evaluation using in vitro and 
in silico methods is required to achieve high predictivity of chemical toxicities [1,2], since animal 
testing is no longer available [3]. 

Genotoxicity is an important endpoint to predict the carcinogenicity of chemicals [4]. In general, 
bacterial reverse mutation assays (especially the Ames test) and in vitro mammalian cell tests that 
were developed to evaluate gene mutations and chromosomal damages are commonly used in a 
battery evaluation to achieve high sensitivity for carcinogenicity predictions [5]. Although 
genotoxicity is normally a knockout criterium, in vitro mammalian cell tests sometimes detect in 
vitro-specific positives, which are misleading or irrelevant positives [5]. Thus, in vivo studies, such 
as in vivo micronucleus tests, have been used to follow up misleading positives. However, they are 
low-throughput and have been restricted in terms of animal welfare. Thus, to verify misleading 
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positives, in silico tools that can immediately identify structural alerts in target chemicals are 
considered promising alternatives to in vivo follow-up studies. Nevertheless, current models for 
chromosomal damage do not focus on misleading (and irrelevant) positives. Moreover, chemical 
features related to misleading positives are still unclear. Therefore, models that can predict 
misleading positives and provide modes of actions are needed for the preparation of adequate follow-
up approaches during the early stages of research and development. 

Consideration of misleading positives in in vitro mammalian cell tests may also increase the 
accuracy of in silico tools. Whereas in silico tools for the Ames test show acceptable performance and 
are used for the genotoxicity evaluation of impurities or by-products [6], in silico tools for the in vitro 
test for chromosomal damages do not have sufficient predictivity [7]. Morita et al. reported the 
prediction performance of the current in silico tools for chromosomal damages [7]. In their paper, 
although MultiCase showed the highest sensitivity among in silico tools, low specificity was reported 
for both in vitro and in vivo micronucleus test prediction [7], implying a trade-off relationship [8], 
likely caused by the quality of the training data [2,7,9,10]. Misleading positive chemicals, which are 
not genotoxic substances, are included in the positive compound list; hence, this noise can affect the 
performance of in silico tools. Therefore, discrimination between misleading positives and positives 
in training sets may improve performance. 

Morita et al. [11] and Kirkland et al. [12] reviewed several databases and summarized positive, 
negative, and misleading (and irrelevant) positive chemicals on the basis of weight-of-evidence 
approaches and expert judgments [11,12]. Furthermore, the Organisation for Economic Co-operation 
and Development (OECD) test guidelines for in vitro mammalian cell tests were improved in 2014 to 
avoid misleading test conditions [13,14]. Using this updated guideline, Fujita et al. successfully 
recategorized misleading positives that were probably caused by cytotoxicity from positives listed in 
Morita et al. [11,15,16]. However, recent reports that discriminate misleading positives have not been 
applied to the development of in silico tools for chromosomal damage. 

In this study, to construct a useful and precise in silico model that enables the discrimination of 
positives and misleading positives, we reclassified training data from only two categories (positives 
and negatives) into three categories (positives, negatives, and misleading positives) according to 
reliable data sources examined by experts [11,12], which are described above. Subsequently, a 
generalized linear model (GLM) with L1/L2-regularized logistic regressions, which has been used to 
identify important molecules and predict toxicity [17,18], and partial structure information (organic 
functional groups (OFGs)) of each chemical were adopted to identify important structural features of 
positives and misleading positives.  

2. Materials and Methods 

2.1. Data set of Chemical Substances 

2.1.1. Data Acquisition and Classification 

In total, 317 chemicals were obtained from recent reports, including Morita et al. [11] and Fujita 
et al. [15,16,19] (248 chemicals) and Kirkland et al. [12] (69 chemicals) that listed high-quality data 
(i.e., according to or similar to OECD good laboratory practice [GLP] study) via extensive review. 
After omitting two duplicated chemicals among the 317 chemicals, 315 chemicals were classified into 
three categories (positives (108 chemicals), negatives (157 chemicals), and misleading (irrelevant) 
positives (50 chemicals)) as follows (Table S1 in Supplementary Materials). 

1. Positives: (a) chemicals with “positive results in in vitro mammalian cell genotoxicity tests” in 
Kirkland et al. [12] (25 chemicals) and (b) positive chemicals (70 chemicals) and “chemicals with 
minimal or some concern” (12 chemicals) in Morita et al [11]. Although o-Dichlorobenzene (CAS 
No. 95-50-1) had been classified into “missed chemicals with negligible concern” in Morita et al. 
[11], it was recategorized into positives because positive results were recently reported in both 
in vivo [20] and in vitro [15] micronucleus tests under the current OECD test guidelines [14]. In 
total, 108 chemicals were classified as positives. 
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2. Negatives: (a) chemicals with “negative results in in vitro mammalian cell genotoxicity tests” in 
Kirkland et al. [12] (27 chemicals) and (b) negative chemicals in Morita et al. [11] (132 chemicals). 
Since two chemicals existed in both data sets, 157 chemicals were assigned as negatives. 

3. Misleading positives: (a) chemicals that “should give negative results in in vitro mammalian cell 
genotoxicity tests, but have been reported to induce gene mutations in mouse lymphoma cells, 
chromosomal aberrations, or micronuclei, often at high concentrations or at high levels of 
cytotoxicity” in Kirkland et al. [12] (17 chemicals), (b) “chemicals with negligible concern” (25 
chemicals) in Morita et al. [11], and (c) among chemicals with negative Ames tests in Morita et 
al. [11], chemicals that were suggested to be misleading positives owing to cytotoxicity [16] and 
showed negative retest results using in vitro micronucleus test in Fujita et al. [15] (8 chemicals). 
In total, 50 chemicals were classified as misleading positives. Basically, misleading positive 
chemicals do not induce genotoxicity in in vivo conditions and induce irreverent positives in in 
vitro conditions.  

2.1.2. Reselection of Chemicals via OFG Extraction 

To understand the chemical structure related to positives or misleading positives, OFGs were 
employed as experimental variables in a GLM. Using QSAR toolbox version 3.4.0.17 [21], OFGs for 
all evaluated chemicals were exported as a matrix. Names of OFGs were kept as the original names 
derived from QSAR toolbox in order to search toxicological information in QSAR toolbox later. Since 
15 chemicals did not have OFGs (these chemicals showed “No functional group found”), they were 
eliminated (CAS Nos. 10108-64-2, 15663-27-1, 7784-46-5, 10022-68-1, 7789-12-0, 7803-57-8, 8007-18-9, 
7550-35-8, 39430-27-8, 13472-30-5, 7756-94-7, 122852-42-0, 688046-61-9, 13939-25-8, and 7782-63-0). 
Finally, 300 chemicals (Table S1 in Supplementary Materials; 102 positives, 150 negatives, and 48 
misleading positives) were used to develop the prediction model. 

2.2. Prediction Model Development 

A GLM that weighed explanatory variables was employed as a statistical model to identify 
important OFGs (explanatory variables in this study) related to positives and misleading positives. 
Glmnet [22] in R packages [23] was used for model development. An odds ratio (OR) was used to 
analyze the importance of OFGs in predicted results [24]. According to Szumilas et al. [24], OR = 1 
indicates that “exposure did not affect odds of outcome”, OR > 1 indicates that “exposure was 
associated with higher odds of outcome”, and OR < 1 indicates that “exposure was associated with 
lower odds of outcome.” Two hyper parameters on glmnet were used to derive L1/L2-regularized 
logistic regressions (elastic net regressions), alpha and lambda, which were optimized in the 
following scheme. The value of alpha that decides the number of explanatory variables was selected 
automatically between 0.5 and 1 at intervals of 0.1, which showed the minimum mean squared error 
(MSE). According to previous knowledge, we confirmed that the number of OFGs as variables was 
within one-fifth of total chemicals (60 out of 300), to avoid overfitting [25]. The value of lambda was 
set after the 5-fold validation using cv.glmnet (a function in glmnet). 

Imbalanced data can sometimes cause biased predictions (i.e., 100% sensitivity and 0% 
specificity). In fact, sensitivity using our imbalanced data (102 positives, 150 negatives, and 48 
misleading positives) preliminarily showed 5.9% for positives, 100% for negatives, and 0% for 
misleading positives. To solve this problem, the synthetic minority oversampling technique (SMOTE) 
in the DMwR [26] in R was adopted. SMOTE can conduct over- and undersampling based on the 
same chemical categories using the nearest neighbors method. Components of synthesized chemicals 
by SMOTE are similar to original data sets on the basis of the concept of SMOTE technique [27]. The 
number of chemicals was set to the maximum number of the three categories (=150). This means that 
positives and misleading positives were synthesized against negatives. Note that statistical testing 
was not directly possible for the glmnet method because no standard errors for parameters were 
calculated directly [28]. Finally, 10-fold internal cross-validations were conducted against the data set 
after SMOTE treatment using the optimized hyper parameters. Moreover, a model accuracy for the 
original data sets was also calculated. After OFGs were extracted for each model, we searched 
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toxicological information using the names of the OFGs in the literature. The graphical flow of in silico 
modeling in this study is shown in Figure S1.  

2.3. Performance Evaluation of Models 

According to previous studies [29,30], the confusion matrix was evaluated using the parameters 
below. 

Sensitivity (%) = (number of chemicals correctly classified for target class 
[A])/(number of chemicals in the target class) × 100 (1)

Specificity (%) = (number of chemicals correctly classified for non-target 
class [B])/(number of chemicals in non-target class) × 100 

(2)

Accuracy (%) = (A + B)/(number of all chemicals) × 100 (3)

2.4. Visualization of Structural Alerts (OFGs) 

To easily understand structural alerts related to positives and misleading positives, we 
illustrated virtual poly-clastogens using OFGs of the top 20% of OR by referring to the poly-
carcinogen illustrated by Ashby et al [31,32]. In detailed visualization, we combined selected OFGs, 
and illustrated poly-clastogens for positives and misleading positives using a drawing tool in the 
OECD QSAR toolbox. 

3. Results 

3.1. Prediction Performances of Developed Model 

After SMOTE treatment, 150 positive, 144 misleading positive, and 150 negative chemicals were 
used for model development. In this model using the updated data set, the minimum MSE was 
observed when alpha was set to 0.5. The prediction performance (mean) in 10-fold internal cross-
validation is shown in Table 1. Regarding accuracy, each model showed 85.6% for positives, 80.3% 
for negatives, and 87.9% for misleading positives (Table 1). Sensitivities of positives, negatives, and 
misleading positives in this model were 72.6%, 71.0%, and 71.6%, respectively (Table 1). In the 
analysis that focused on original data sets in cross-validation, accuracies were calculated as 81.6% for 
positives, 74.1% for negatives, and 87.0% for misleading positives. Among 166 explanatory variables, 
60, 52, and 36 variables were selected for positive, negative, and misleading positive predictions, 
respectively, and each number of explanatory variables was under one-fifth of the chemical number. 

Table 1. Prediction performances of the developed models. 

 Accuracy (%) Sensitivity (%) Specificity (%) 
P 85.6 72.6 92.7 
N 80.3 71.0 85.2 

MP 87.9 71.6 94.8 
P: positives; N: negatives; MP: misleading positives. Average prediction rates are shown after 10-fold 
cross-validation for SMOTE data set. 

3.2. OFGs Related to Test Results 

Regarding positive predictions, 47 OFGs with positive correlations and 13 OFGs with negative 
correlations were identified. As OR is “a measure of association between exposure and outcome” 
[24], and although no standard errors for parameters can be calculated directly in glmnet [28], it can 
be expected that a higher OR is correlative to a higher contribution to results, as suggested in previous 
studies [33,34]. The OFGs identified were sorted in descending order of OR. The top 20% of OFGs 
with positive correlations (Epoxide, Fused unsaturated carbocycles, AlkoxySilane, Sulfonate ester, 
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Fused heterocyclic aromatic, N. Nitroso, Amidine, Isocyanate, and Dianilines), and the main 
toxicological effects or mechanisms likely related to the positive results, are summarized in Table 2. 
The suggested and/or reported mechanisms were as follows: (a) structures with Epoxide [35], 
AlkoxySilane [11], Sulfonate ester [35], and N. Nitroso [35] induced DNA binding, and those with 
Isocyanate [35] induced DNA acylation; (b) chemicals containing a part of Amidine [36] were DNA 
minor groove binders; and (c) structural alerts for a part of metabolites of Fused unsaturated 
carbocycles [21] and Dianilines themselves [21] induced DNA binding. In addition, chemicals with 
Fused heterocyclic aromatic [35] induced DNA intercalation. 

Table 2. OFGs related to positive prediction. 

OFG 
Odds 
Ratio 

Reported Main Toxicological Effect or  
Mechanisms Likely Related to Positive 

Results 
REF 

Epoxide 13.94 DNA binding (a) [35] 
Fused unsaturated carbocycles 10.84 metabolites: DNA binding (c) * [21] 

Alkoxysilane 10.21 DNA binding (a) [11] 
Sulfonate ester 9.16 DNA binding (a) [35] 

Fused heterocyclic aromatic 9.14 DNA intercalation (c) [35] 
N. Nitroso 9.09 DNA binding (a) [35] 
Amidine 8.34 DNA minor groove binders (b) [36] 

Isocyanate 8.34 DNA acylation (a) [35] 
Dianilines 8.28 DNA binding (c) [21] 

(a) This organic functional group (OFG) has been reported as a structural alert or causative factor. (b) 
Chemicals with a part of this OFG have been reported, although no direct information has been found 
on this OFG. (c) Structural alerts with a part of this OFG have been reported, although no direct 
information has been found on this OFG. * Metabolites were estimated for chemicals with this OFG 
using “in vivo rat metabolism simulator” in the OECD QSAR toolbox [21]. 

In the same manner, 20 OFGs with positive correlations and 16 OFGs with negative correlations 
were identified for misleading positive predictions. The top 20% of OFGs related to positive 
correlations (Oxazole/Izoxazole (also generally known as Isoxazole), 
Benzthiazolinone/Benzoisothiazolinone (also generally known as Benzothiazolinone), Phosphonium, 
salt, Acetoxy, and Methacrylate) and the main toxicological effects or mechanisms likely related to 
the misleading positive results are summarized in Table 3. The suggested and/or reported 
mechanisms were as follows: (a) chemicals containing a portion of Oxazole/Izoxazole [37] or Acetoxy 
[11] induced anti-tuberculosis activity or low pH, respectively; (b) structures with 
Benzthiazolinone/Benzoisothiazolinone [38], Phosphonium, salt [39], or Methacrylate [11] induced 
reactions with the amino groups of lysine residues, cytotoxicity, or in vitro-specific DNA reactivity, 
and/or cytotoxicity, respectively. The virtual poly-clastogens for positives and misleading positives 
are illustrated in Figures 1 and 2, respectively. The OR and number of OFGs related to positives were 
higher than those related to misleading positives. Moreover, whereas OFGs related to positives 
would generally be involved in various known mechanisms of genotoxicity, OFGs related to 
misleading positives could be involved in non-genotoxic modes of action. 

In the present study, feature selection was conducted via elastic-net regression. The coefficients 
of the elastic-net model, those of the ridge model that do not perform covariate selection (α = 0), and 
the correlation coefficients are shown in Table S2 (Supplementary Materials). The elastic-net model 
did not select OFGs with extremely low correlation coefficients, which could affect model robustness. 
On the other hand, OFGs that were not selected by the elastic-net despite their high values in ridge 
regression may be confirmed carefully by expert judgement.  
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Table 3. OFGs related to misleading positive prediction. 

OFG Odds 
Ratio 

Reported Main Toxicological Effects or  
Mechanisms Likely Related to 

Misleading Positive Results 
REF 

Oxazole/Izoxazole 12.32 Anti-tuberculosis activity (a) [37] 
Benzthiazolinone/Benzoisothiazolin

one 
11.83 Reaction with amino groups of lysine 

residues (b) 
[38] 

Phosphonium, salt 7.68 Cytotoxicity (b) [39] 
Acetoxy 4.09 Low pH (a) [11] 

Methacrylate 4.05 
DNA reactivity in vitro-specific and/or 

cytotoxicity (b) [11] 

(a) Chemicals with a part of this OFG have been reported, although no direct information was found 
on this OFG. (b) This OFG has been reported as a structural alert or causative factor. 

 
Figure 1. Virtual poly-clastogens derived from OFGs related to positives. Poly-clastogens were 
described on the basis of Table 2. The names of OFGs are as follows: (1) Epoxide, (2) Fused 
unsaturated carbocycles, (3) Alkoxysilane, (4) Sulfonate ester, (5) Fused heterocyclic aromatic, (6) N. 
Nitroso, (7) Amidine, (8) Isocyanate, and (9) Dianilines. 
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Figure 2. Virtual poly-clastogens derived from OFGs related to misleading positives. Poly-clastogens 
for in vitro-specific positives are described in Table 3. The names of OFGs are as follows: (1) 
Oxazole/Izoxazole, (2) Benzthiazolinone/Benzoisothiazolinone, (3) Phosphonium and salt, (4) 
Acetoxy, and (5) Methacrylate. 

4. Discussion 

We developed a precise model (accuracy: 80.3%) that can predict results of in vitro mammalian 
cell tests especially with regard to detecting chromosomal damages, including misleading positives, 
with high sensitivity and specificity using the updated database. Statistical analysis revealed the 
OFGs and their quantitative importance (OR) that contributed to the induction of positives and 
misleading positives. The structures identified contained structures that were previously reported in 
mechanism investigations [11,39], indicating the validity of our approach. In addition, connecting 
their OFGs to existing knowledge helped us to understand and interpret the mechanisms of action 
for the induction of positives and misleading positives. 

Genotoxicity tests have been developed for hazard identification of chemicals [40]; therefore, 
sensitivity tends to be more important than specificity [41,42]. The sensitivity of our in silico model 
to predict positives (72.6%) was close to those of in vitro mammalian cell tests (for genotoxic 
carcinogens: 82.6%) and existing in silico tools (for positives: 56–91%) [7,43]. In addition, our model 
showed a more balanced prediction value ( 71.0% sensitivity and 85.2% specificity) than existing 
tools—a knowledge-based tool, Derek (56.0% sensitivity and 86.9% specificity), and a statistics-based 
tool, MultiCase (91.0% sensitivity and 64.9% specificity) [7]. A direct comparison of prediction 
performances between previous and present studies is difficult because the training data set and 
prediction target were different, and other external databases do not have a misleading positives 
class. However, our study suggests that separation of misleading positive results from positive 
results may contribute to improvements found in both sensitivity and specificity. 

Although structural alerts have been developed in several tools for both in vitro and in vivo 
chromosomal damages [44,45], these models could not separate positives and misleading positives. 
By contrast, our model enabled us to find partial structures (OFGs) within target chemicals, which 
are related to positives and misleading positives, and may distinguish misleading positives from 
previously identified positive chemicals. OFG is a simple piece of structural information and is very 
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useful for predicting toxicity by toxicologists. Moreover, our virtual poly-clastogens visually 
indicated causal structures for misleading positives and positives using OFGs. In a study by Ashby 
et al. [31], poly-carcinogen and its concepts, which played crucial roles in toxicological evaluation, 
were reported using the emerging in silico tools. While not all causal factors have been considered, 
we believe that our concept of virtual poly-clastogens using OFGs will enable toxicologists to better 
understand features of chemical structures related to positives and misleading positives. 

The suggested mechanisms of OFGs in in silico evaluation can aid in deciding test protocols and 
conditions to avoid the occurrence of misleading positives. For example, when testing chemicals 
containing OFGs related to low pH, it would be effective to add a buffer to the medium in advance 
[14]. Furthermore, we can select more realistic test conditions by considering the application method, 
e.g., a 3D skin model for cosmetic ingredients [46,47]. Thus, our model can both predict the results of 
new chemicals and be used to reevaluate analogs of past positives as positives or misleading 
positives. Because misleading positives of chemicals caused by excessive toxicity [12,41], metabolic 
overload [48], and oxidative stress [12,49] could induce positive results in in vitro test conditions 
[7,15], consideration of in vitro-specific conditions such as ADME and chemical properties (pH, 
molecular weight) could be effective to improve the predictivity of misleading positives in the future. 

Although this model indicated a high level of accuracy, our model was applied only to internal 
cross-validation, and it has been calculated on the basis of an assumption that synthesized chemicals 
by SMOTE have similar properties. Since the accuracies of the model for the original data sets were 
equivalent to the synthesized chemicals, the model can predict chemical results accurately, at least 
within the range of current training data sets. However, additional modifications would be effective 
to improve the applicability of our model: (1) refining the OFG lists to decrease substances that cannot 
be analyzed and to grasp more specific structures for chromosomal damages; (2) adding data of 
tested chemicals to increase the density of the chemical space [9]; and (3) using a molecular descriptor 
to cover further chemical spaces and ADME [50]. Subsequently, external validation should be 
conducted, as previously recommended [25]. The review of data (e.g., Carcinogenicity Genotoxicity 
eXperience data set) and the recategorization of misleading positives by experts are needed, and this 
is one important step toward developing accurate in silico tools. In addition, combinatorial use with 
other in silico tools could further improve the applicability of our model [7]. 

To summarize, we developed a prediction model using OFGs and a virtual poly-clastogen and 
applied it to genotoxicity evaluation. Using the updated and reclassified training data, we achieved 
both higher sensitivity and specificity and were able to interpret mechanisms of action. The 
elimination of causal structures or substituting them with other nontoxic structures will allow us to 
develop new and safer chemicals without genotoxic concerns. Furthermore, our approach can 
contribute to future investigations of various toxicities resulting in different outcomes between in 
vitro and in vivo tests, enabling a quantitative structure–activity relationship to achieve precise in 
vitro–in vivo extrapolation.  

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/11/10/1181/s1, Table 
S1: List of chemicals. Table S2: Feature selection by elastic net model and ridge model. Figure S1: Graphical flow 
of in silico modeling in this study. 
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