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Abstract: Background: Several experimental models of polyglutamine (polyQ) diseases have been
previously developed that are useful for studying disease progression in the primarily affected central
nervous system. However, there is a missing link between cellular and animal models that would
indicate the molecular defects occurring in neurons and are responsible for the disease phenotype
in vivo. Methods: Here, we used a computational approach to identify dysregulated pathways shared
by an in vitro and an in vivo model of ATXN1(Q82) protein aggregation, the mutant protein that
causes the neurodegenerative polyQ disease spinocerebellar ataxia type-1 (SCA1). Results: A set of
common dysregulated pathways were identified, which were utilized to construct cerebellum-specific
protein-protein interaction (PPI) networks at various time-points of protein aggregation. Analysis
of a SCA1 network indicated important nodes which regulate its function and might represent
potential pharmacological targets. Furthermore, a set of drugs interacting with these nodes and
predicted to enter the blood–brain barrier (BBB) was identified. Conclusions: Our study points to
molecular mechanisms of SCA1 linked from both cellular and animal models and suggests drugs that
could be tested to determine whether they affect the aggregation of pathogenic ATXN1 and SCA1
disease progression.
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1. Introduction

The polyglutamine (polyQ) disease spinocerebellar ataxia type-1 (SCA1) is a lethal, progressive,
autosomal dominant neurodegenerative disorder caused by a CAG trinucleotide expansion in the
ataxin-1 (ATXN1) gene [1]. This mutation produces a longer polyQ tract in the pathogenic protein
which gradually misfolds into an abnormal conformation and forms protein inclusions within the
nuclei of neurons [2]. Cerebellar neurons that coordinate movement are particularly sensitive to
ATXN1 aggregation; their gradual dysfunction and loss are responsible for the characteristic symptoms
of SCA1, including loss of coordination and ataxia [3,4].

Formation of polyQ inclusions is the main feature of SCA1 pathology; however, other factors
also affect the progression of the disease. Several studies have shown that ATXN1 interacts with
transcription regulators, RNA splicing factors and other nuclear receptors [5–8], suggesting that
alterations of these interactions by the polyQ expansion in the mutant protein might drive cerebellar
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pathology [9]. To develop treatments for this disease, it might beneficial to employ approaches from
network medicine, which studies disease in terms of the pathological effects of altered protein interaction
networks [10–12]. Neurodegenerative diseases characterized by protein aggregates, which spread in
the nervous system [13], have been studied from this point of view [14,15].

In order to gain insights into the pathogenesis of SCA1, various experimental models of the
disease have been previously generated, including induced pluripotent stem cells [16] and transgenic
mice expressing human ATXN1, with an expanded polyQ tract [17,18]. SCA1 B05 mice are widely
used for modeling this disease in vivo, since they develop Purkinje cell degeneration, indicating that a
mouse model can be established simply by introducing CAG repeat expansions in a wild-type protein.
Purkinje cells gradually accumulate nuclear inclusions which increase with age; approximately 90%
of these neurons contain polyQ inclusions by week 12. In parallel, mice at increasing ages, (week 5,
12 and 28) show symptoms corresponding to mild, moderate and severe ataxia, respectively [17].
Recent studies showed that ATXN1 expression levels are regulated by miR760 binding to a conserved
region in its 5’ untranslated region [19], while the ATXN1-Capicua (CIC) protein complex is the main
driver of pathology in the cerebellum through a gain-of-function mechanism [9]. Furthermore, analysis
of the cerebellar transcriptome of SCA1 B05 mice indicated gene networks whose expression profiles
correlate with disease progression in the cerebellum [20]. These networks were also dysregulated in a
different SCA1 in vivo model [18] and differ considerably to other regions of the brain, including the
medulla [21].

We previously developed an inducible cellular model of ATXN1(Q82) protein aggregation in human
mesenchymal stem cells (Tet-On YFP-ATXN1(Q82) MSCs), in which the pathogenic protein gradually
forms insoluble intranuclear inclusions. These inclusions cause oxidative and nucleolar stress, affect the
assembly of the ribosome and eventually lead to cell necrosis. Furthermore, a number of transcriptional
changes were identified which correlate with the gradual aggregation of polyQ-expanded ATXN1 in
human SCA1 cerebellum, as well. These include dysregulation of the protein synthesis machinery and
pathways involved in focal adhesion or oxidative phosphorylation [20]. This inducible model offers
the possibility to identify specific molecular changes in vitro which may contribute to the selective
neuropathological phenotype in vivo.

Here we attempted to identify common molecular changes in Tet-On YFP-ATXN1(Q82) MSCs
and SCA1 B05 mice. Proteins participating in dysregulated pathways at different time—points of
polyQ aggregation were used for the construction of perturbed cerebellum-specific protein-protein
interaction (PPI) networks. Our analysis indicates important nodes of a SCA1 PPI network affected
by the gradual aggregation of pathogenic ATXN1. Pharmacological targeting of these proteins may
modify polyQ aggregation and SCA1 disease progression.

2. Materials and Methods

2.1. Datasets of SCA1 B05 Transgenic Mice and Tet-On YFP-ATXN1(Q82) MSCs

RNA-seq datasets from the cerebellum of three age groups (n = 3 animals per group) of SCA1 B05
transgenic mice (week 5, week 12 and week 28) and age-matched control FVB mice were retrieved from
the literature [21]. The GEO accession number of these RNA-seq data is GSE75778. The DIOPT (DRSC
Integrative Ortholog Prediction Tool) tool, which integrates ortholog predictions from 11 commonly
used orthology tools [22], was used to map human orthologs of murine genes. Only human genes
with a high rank score were selected.

RNA-seq datasets from Tet-On YFP-ATXN1(Q82) MSCs at three different time-points of
polyQ-expanded protein aggregation (Day 2, Day 5 and D10) and a control time-point (Day 0)
(n = 3 samples per time point) were selected. These data are publicly available [20]. The final list
contained only genes that are specifically dysregulated by the expression of pathogenic ATXN1.
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2.2. Differential Gene Expression Analysis

Gene expression levels were measured in “fragments per kilobase of exon model per million
mapped reads” (FPKM) values [23]. A mean FPKM value from the experimental triplicates was
calculated for each gene. For differential gene expression analysis, a fold change (FC) for each gene
was calculated using the following equation and FC data were log2 normalized.

FC = [FPKM g (SCA1)]/[FPKM g (control)]

Genes from SCA1 B05 transgenic mice (week 5–week 28) were compared to FVB control mice at
the same age; genes from Tet-On YFP-ATXN1(Q82) MSCs at Day 2–Day 10 were compared to cells
at Day 0. A t-test was applied to compare FPKM levels between a group and its respective control.
Genes with |log2FC| > 0.5 and p-value < 0.05 were considered as DEGs (differentially expressed genes)
and used for further analysis. Differential expression analysis was performed using R version 3.6.1
programming software (RStudio Team 2016).

2.3. Pathway Enrichment Analysis

DEGs were used for pathway enrichment analysis in the online tool Enrichr (version 2.1) [24].
Dysregulated pathways in SCA1 B05 transgenic mice and Tet-On YFP-ATXN1(Q82) MSCs were
identified using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and were ranked by
p-value, as calculated by the EnrichR platform. KEGG pathways from mice and cells were compared
and common pathways at each time-point with a p-value < 0.05 were selected.

2.4. Construction of PPI Networks

Protein components of the common dysregulated pathways were used for the construction of PPI
networks using the STRING database [25] in Cytoscape (version 3.7.2) [26]. Only genes expressed in the
nervous system (score of 4.8 using the relevant tissue filter) [27] and high confidence protein interactions
(score of 0.950 or above) were utilized. Unconnected nodes were deleted. Statistical significance for the
networks was measured using the Motif Discovery plug-in of Cytoscape (version 0.0.3). A z-score
for 4-node motifs was calculated for each network after comparison with 1000 random networks.
The topological properties of the networks were calculated using the Network Analyzer plugin of
Cytoscape [28] and were visualized using the GraphPad Prism software.

2.5. Selection of Genes Analysis

The online tool Génie was used to select mouse genes associated to the biomedical research in
protein aggregates in the brain [29]. Basically, this tool uses a user-defined query to PubMed to retrieve
a non-specific set of records that is used to define a score for the words enriched in the set. In a
second search, PubMed records are evaluated for their content in the enriched words and genes from
a species linked to those records are ranked. Génie also allows gene selection via orthologs. Here,
we used Génie with default thresholds, using the query “protein aggregation brain” to rank mouse
genes, using human orthologs to extend the literature.

2.6. Network Analysis

NetworkAnalyzer was used to compute the topological centralities of PPI networks. Genes were
extracted based on three criteria: (a) degree centrality (DC), (b) betweenness centrality (BC) and (c)
closeness centrality (CC).

DC of each node, i, was defined as:

D(i) = Σjm(i,j)

where m(i,j) = 1 if there is a link from node i to node j.
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BC referring to the frequency of node i appearing at nodes j and k was calculated by the equation:

B(i) = Σa, bgjik/gjk

where i , j , k, gjk is the number of the shortest pathways between nodes j and k, gjik is the number of
the shortest pathways containing i.

CC of a node i in a graph was calculated by the equation:

C(i) = Σjd(i,j)

where i , j, dij is the shortest pathway between nodes i and j.
Important nodes/proteins were identified based on topological networks analysis.

2.7. Drug-Protein Interaction Network

A drug-protein interaction network was constructed for selected proteins (coefficient score of 0.5)
using the Cytoscape plugin CyTargetLinker [30]. Drug-protein interactions were retrieved from the
DrugBank database [31]. The online tool Blood Brain Barrier Predictor [32] was utilized to assess
whether selected drugs can penetrate the blood-brain barrier (BBB).

3. Results

3.1. Identification of Dysregulated Pathways in Tet-On YFP-ATXN1(Q82) MSCs and SCA1 B05
Transgenic Mice

First, we attempted to identify dysregulated pathways in two different experimental models of
polyQ-expanded human ATXN1, which show a consistent dysregulation in gene expression due to
the aggregation of the mutant protein. The computational workflow used here is summarized in
Figure 1. Gene datasets were selected from an in vitro cell model and an in vivo mouse model of protein
aggregation, namely, Tet-On YFP-ATXN1(Q82) MSCs and SCA1 B05 transgenic mice, respectively.
Several of the selected DEGs, at least in the in vitro cell model, were independently validated by
quantitative MS [22]. Importantly, both models expressed full length human ATXN1 harboring the
same pathogenic polyglutamine length. In order to compare the two datasets, murine genes from
the SCA1 B05 transgenic mice were first converted into their human orthologs. Then, the change in
their expression levels was calculated at three different time-points of protein aggregation [week 5
(W5)—early, week 12 (W12)—middle and week 28 (W28)—late] compared to the respective age-matched
control group (FVB mice). Genes with a mean |log2FC| > 0.5 and < 0.05, indicating a consistent expression
among triplicates, were considered as DEGs and were used for further analysis. Similarly, using the
same criteria, DEGs were selected from Tet-On YFP-ATXN1(Q82) MSCs at three different time-points of
protein aggregation [Day 2 (D2)—early, Day 5 (D5)—middle and Day 10 (D10)—late] (Supplementary
Table S1). These cells gradually accumulate insoluble polyQ-inclusions compared to control [Day 0
(D0)] Tet-On TFP-ATXN1(Q82) MSCs. The majority of selected DEGs in both Tet-On YFP-ATXN1(Q82)
MSCs and SCA1 B05 transgenic mice were downregulated, as previously described [20,21]. The two
datasets shared 143 genes which showed a significant agreement in the direction of fold change with
38 genes upregulated in at least one time-point in both models (p-value 0.011): these 38 upregulated
genes were functionally enriched for genes involved in extracellular matrix organization (Benjamini
corrected p-value 1.7× 10−6), but not the 33 genes with downregulation in both models or the remaining
ones. Furthermore, these 143 common genes are enriched in binding sites for the ETV4 transcription
factor (Supplementary Table S2) whose activity is regulated by CIC, the main driver of pathogenesis in
SCA1 [33].
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Figure 1. Data workflow for the construction of PPI networks associated to protein aggregation in
Tet-On YFP-ATXN1(Q82) MSCs and SCA1 B05 transgenic mice.

In order to identify dysfunctional pathways associated with gradual protein aggregation,
DEGs in each dataset and time-point were used for enrichment analysis using the KEGG database.
Only pathways with a p-value < 0.05 were considered as significantly dysregulated at each time-point
(Figure 1). Using the DEGs at D2 cells (n = 687) and W5 mice (n = 357), this analysis identified 28 and
18 pathways, respectively, that were dysregulated at an early time-point of polyQ protein aggregation
in the two experimental models. Similarly, DEGs at D5 cells (n = 789) and mice at W12 (n = 1204) were
categorized in 36 and 58 pathways, respectively. Finally, DEGs (n = 801 at D10 cells and n = 1063 at
week 28 mice) indicated 32 pathways in each experimental model that were associated with a late stage
of polyQ-expanded ATXN1 protein aggregation (Supplementary Table S3).

We hypothesized that the gradual aggregation of ATXN1(Q82) into insoluble inclusions in MSCs
may have similar molecular characteristics to progressive ataxia observed in B05 mice with aging.
Therefore, we matched the selected time-points from cells and mice (D2 MSCs to W5 mice, D5 MSCs to
W12 mice and D10 MSCs to W28 mice) and asked which dysregulated pathways were common in both
protein aggregation models at each time-point. Three pathways, protein digestion and absorption,
ECM-receptor interaction and PI3K-Akt signaling pathway were identified at an early stage of protein
aggregation. Interestingly, these pathways were dysregulated at all further time-points in both models.
At a middle stage, five more pathways were identified, including ribosome biogenesis, Alzheimer’s
and Parkinson’s disease. Two of them, Rap1 signaling pathway and focal adhesion were dysregulated
also at a later time-point. Furthermore, regulation of actin cytoskeleton and AGE-RAGE signaling
pathway specifically featured the later stage, when polyQ-expanded ATXN1 forms terminal inclusions
(Table 1)
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Table 1. Common dysregulated pathways in cells and mice at matched time-points associated with
protein aggregation.

Cells Mice

Enrichment Term Overlap p-Value Overlap p-Value

A. Day 2 (D2) Cells vs. Week 5 (W5) Mice

Protein digestion and absorption 8/90 0.012 6/90 0.005
ECM-receptor interaction 14/82 >0.001 5/82 0.016

PI3K-Akt signaling pathway 26/341 >0.001 12/341 0.002

B. Day 5 (D5) Cells vs. Week 12 (W12) Mice

Ribosome 38/137 >0.001 17/137 0.003
ECM-receptor interaction 18/82 >0.001 12/82 0.003

Focal adhesion 24/202 >0.001 21/202 0.009
PI3K-Akt signaling pathway 29/341 >0.001 30/341 0.022

Protein digestion and absorption 12/90 0.001 11/90 0.018
Alzheimer’s disease 15/168 0.002 18/168 0.011

Rap1 signaling pathway 16/211 0.001 21/211 0.015
Parkinson’s disease 11/142 0.024 14/142 0.045

C. Day 10 (D10) Cells vs. Week 28 (W28) Mice

AGE-RAGE signaling pathway 9/101 0.019 11/101 0.012
ECM-receptor interaction 13/82 >0.001 9/82 0.03

Focal adhesion 21/202 >0.001 17/202 0.042
PI3K-Akt signaling pathway 26/341 0.001 27/341 0.026

Protein digestion and absorption 8/90 0.027 9/90 0.05
Rap1 signaling pathway 16/211 0.01 22/211 0.002

Regulation of actin cytoskeleton 18/214 0.002 22/214 0.002

The Table shows the common dysregulated pathways at (A) early, (B) middle and (C) late stage of protein
aggregation in Tet-On YFP-ATXN1(Q82) MSCs and SCA1 B05 transgenic mice and the overlap with the components
of the pathways. The analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

3.2. Perturbed PPI Networks in SCA1 Models

Following previous strategies that studied the mechanisms of neurodegenerative disease from a
network medicine perspective [14], we generated PPI networks associated with the gradual aggregation
of pathogenic ATXN1 using as input the proteins that participate in the common dysregulated pathways
of the SCA1 models. Three perturbed PPI networks were generated at each time-point (D2 cells/W5
mice: z-score = −0.981, D5 cells/W12 mice: z-score = −0.990 and D10 cells/W28 mice: z-score = −0.976),
which included only high-confidence PPIs of proteins produced in the nervous system (Supplementary
Figure S1). The largest network was observed at a middle stage of protein aggregation. The protein
nodes of these networks and the pathways in which they participate are shown in (Supplementary
Table S4). These networks were significantly enriched in genes related to protein aggregates in the brain,
particularly the middle stage network (see Methods for details) (Supplementary Figure S2). We note
that aggregation-related genes in the early network were also present in the middle and late networks,
but aggregation-related genes present in the middle network were not in the late network.

Then, PPIs of these networks were combined into a large network, which is perturbed by the
gradual aggregation of pathogenic ATXN1 (Figure 2A). The SCA1 PPI network (z-score = −0.977)
contains discrete clusters and subnetworks associated with various stages of protein aggregation,
perturbed either at all time-points (n = 50, yellow color), or specifically at a middle or late time-point
(n = 87 green or n = 38 magenta color, respectively) (Figure 2B and Supplementary Table S5). Specifically,
the yellow cluster of ATP1 proteins is involved in sodium ion transport and is perturbed at all time-points
of protein aggregation (Supplementary Table S6A). The green cluster participates in ATP synthesis
as most of these proteins are components of the mitochondrial respiratory chain (Supplementary
Table S6B). Finally, ribosomal proteins and proteins participating in G-protein signaling pathway



Genes 2020, 11, 1129 7 of 15

form highly interconnected modules within the SCA1 PPI network (Supplementary Table S6C,D,
respectively).
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Figure 2. SCA1 disease PPI network. (A) The network contains 230 nodes (proteins) and 1432 edges
(interactions). Green and magenta nodes are dysregulated at middle and late stage of protein aggregation,
respectively. Yellow color indicates nodes that are dysregulated at all time-points. The network was
constructed using the STRING database in Cytoscape. (B) Gannt chart indicating the different groups
of nodes in the SCA1 disease network. Colors indicate the same groups as in (A).

3.3. Analysis of SCA1 PPI Networks

Next, we analyzed the connectivity and functionality of the SCA1 PPI network by calculating the
degree (DC), betweenness (BC) and closeness (CC) centralities of its components at all time-points
(early, middle and late stage of protein aggregation). We identified 11 proteins (early: PPP2CA, TP53,
MTOR and PIK3R, middle: RPS6, RPL15 and RPS3, late: CDC42, RHOA, PIK3R1 and CTNNB1) with
the highest DC values, namely, the number of connections of each node. These proteins were forming
important hubs within the individual networks (Supplementary Figure S3).

However, the importance of a node in a biological network does not depend only on its number of
neighbors [34] but it may increase as a node participates in communication paths and controls the flow
of information (BC) [35] or it has a central role in the network being closer to all the other nodes (CC).
Thus, we identified important nodes with the highest BC values (early: GNB1, GNB5 and MTOR,
middle: CD44, PIK3R2 and YWHAH, late: CDC42, RHOA and GNB1) (Supplementary Figure S4).
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On the other hand, ATP1 protein subunits (ATP1A1, ATP1A2, ATP1A3, ATP1B1, ATP1B2 and ATP1B3),
which formed a discrete cluster within the network, had the highest CC values at all three stages of
protein aggregation (Supplementary Figure S5). The numerical values of DC, BC and CC for all nodes
of the SCA1 PPI network are show in Supplementary Table S7.

Centrality changes may indicate whether a node gains or loses its importance within a network [36].
Therefore, we attempted to link time-dependent changes in the centralities of the highly ranked nodes
with the dynamic changes of the SCA1 network, which trigger various cellular mechanisms as the
disease progresses. In total, 21 proteins were selected based on their DC, BC and CC values. The changes
in their centralities during polyQ protein aggregation are visualized in Figure 3. These heatmaps
indicate that CDC42 and RHOA, which are involved in the regulation of the cell cycle and the
formation of stress fibers [37], gradually increase their DC and BC (Figure 3A,B). In contrast, GNB1
and GNB5, which are involved in the transduction of various transmembrane signals in cells, including
neurons [38], show a significant decrease in their BC and CC (Figure 3B,C). Furthermore, the CC
of CD44, a cell-surface receptor involved in cell adhesion and regulating the functionality of dendritic
spines [39] is dramatically decreased (Figure 3C). In contrast, ATP1 subunits do not show any obvious
change in their centralities at all time-points (Figure 3).
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Figure 3. Centrality heatmaps of 21 nodes of the SCA1 disease network with the higher DC, BC and CC
values per time-point. (A). Degree, (B). betweenness and (C). closeness centralities at early, middle or
late time-point of protein aggregation. (B). Color range from blue (low) to red (high) indicates scaled
centrality values. Chromatic code on the left side of each heatmap indicates in which cluster of the
SCA1 network each node belongs.

3.4. Drug-Protein Interaction Network in SCA1

Several lines of evidence indicate that nodes of a network with increased DC and BC values
represent potential drug targets [40,41]. In contrast, reduced centrality may characterize nodes that
gradually lose their function and need to be stimulated. A number of SCA1 network components
(GNB1, PPP2CA, MTOR, TP53, CDC42, RHOA and ATP1A1) were further prioritized as potential
targets for pharmacological intervention. These proteins were considered important regulatory nodes of
the SCA1 network, based on the gradual change of their centralities (Figure 3). GNB1, PPP2CA, MTOR
and TP53 encode proteins with decreased BC and CC centralities, while DC, BC and CC centralities
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of CDC42 and RHOA increased over time. Additionally, ATP1A, a representative component of the
discrete cluster of the network was also selected, based on its constantly high CC value. A drug-protein
interaction network was constructed, depicting the interactions between 7 target-proteins and 32
drugs which are which are either FDA-approved or under evaluation in clinical trials (Supplementary
Figure S6). The majority of them (n = 16) bind to ATP1A1 subunit.

We then sought to investigate whether these drugs may enter the brain, which is the organ
mainly affected in SCA1. Drugs with an 8/8 positive score in the algorithm/fingerprint combinations
were predicted to cross the BBB (Supplementary Table S8). The drugs and corresponding protein
targets include: Vitamin E for PP2AC, PhiKan 083 and AZD 3355 for TP53, FARNESYL for GNB1,
and Bretylium and Ciclopirox for ATP1A1 (Table 2). These drugs may be used for pharmacological
targeting of proteins of the central nervous system which regulate the function of the SCA1 network
that is disturbed during polyQ-expanded protein aggregation.

Table 2. Drugs that interact with components of the SCA1 protein network and are predicted to
penetrate the blood brain barrier.

Target Drug Algorithm Fingerprint BBB Permeability Prediction

PPP2AC Vitamin E

ADABoost

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

SVM

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

TP53

PhiKan 083

ADABoost

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

SVM

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

AZD 3355

ADABoost

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

SVM

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

GNB1 FARNESYL

ADABoost

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

SVM

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+
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Table 2. Cont.

Target Drug Algorithm Fingerprint BBB Permeability Prediction

ATP1A1

Bretylium

ADABoost

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

SVM

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

Ciclopirox

ADABoost

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

SVM

MACCS BBB+
Openbabel BBB+
Molprint BBB+
PubChem BBB+

Table shows the score for each algorithm/fingerprint pairing of drugs which interact with selected nodes of the
SCA1 network. Drugs with an 8/8 positive score were predicted to enter BBB.

4. Discussion

4.1. Dysregulated Pathways Associated to polyQ-Expanded ATXN1 Aggregation

Even though the disease-causing mutation in SCA1 has been previously identified, the pathogenic
effects of polyQ-expanded ATXN1 are still under investigation. Our analysis indicates convergent
dysregulated mechanisms in vitro and in vivo which are associated to polyQ protein aggregation in
a time-dependent manner. Interestingly, our analysis indicates core pathways that are dysregulated
since the beginning of protein aggregation and several signaling pathways that specifically feature the
late-stage of the disease, which is characterized by irreversible disease-causing defects.

A statistically significant set of upregulated genes in both models is involved in extracellular
matrix organization, one of the core dysregulated pathways which might be critical for polyQ-induced
neurodegeneration. ATXN1 plays a critical role in ECM remodeling during development, affecting lung
alveolarization. This suggests that polyQ-induced tissue abnormalities are not specifically restricted in
the brain, but might also be present elsewhere in the body [33]. Furthermore, an increasing number
of studies suggest the active involvement of ECM in neurodegeneration. ECM alterations, including
the co-deposition of ECM components, may result in loss of protective perineuronal nets, increased
neuronal cell death and synaptic deficiencies (reviewed in [42]).

Interestingly, late-stage polyQ aggregation affects the function of several signaling pathways
(e.g., regulation of actin cytoskeleton and AGE-RAGE signaling pathway), suggesting that their
dysregulation may be related to the selective loss of neuronal subtypes. This may be an indirect effect
of the mutant protein or an alteration of the interaction between the polyQ-expanded protein with
components/regulators of these signaling pathways, as shown for huntingtin, the polyQ-expanded
protein which causes Huntington’s disease (HD) [43].

4.2. Network Analysis Indicates Critical Protein Nodes for SCA1 Pathogenesis

Neurodegeneration is a complex procedure involving the parallel dysregulation of several
biological processes. These are accompanied by quantitative changes in protein interactions which
affect the molecular architecture of biological networks inside a cell [44]. To date, a variety of techniques
have been developed allowing the analysis of PPI networks [45] and can be used to study network
biology of proteins involved in neurodegeneration, including ATXN1. The SCA1 network presented
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here is cerebellum-specific and contains network motifs, i.e., small connected sub-network patterns, at
a higher frequency compared to random networks [46]. Furthermore, it is highly enriched in proteins
involved in protein aggregation, validating its relevance for SCA1.

Importantly, we identified dynamic changes in the SCA1 network which are induced by the
gradual aggregation of mutant ATXN1. Our analysis indicates the constant dysregulation of protein
complexes involved in ion transport, accompanied by the perturbation of machineries involved
in protein synthesis and oxidative phosphorylation at a middle time-point and neuronal signal
transduction at a late time-point. Furthermore, the middle-stage SCA1 PPI network has the largest size,
suggesting that this is a critical time-point and defects caused by polyQ aggregation beyond this stage
might be irreversible. It is for this middle stage that we found the largest number of genes associated
to protein aggregation in the brain.

Can we modulate disease progression by targeting critical nodes of the SCA1 network? Previous
studies have shown that important nodes and potential drug targets have high degree and betweenness
centralities [40,41] and their deletion is related to lethality [47]. To this end, we first ranked influential
nodes of the SCA1 network based on centrality measures, as previously described [48]. Our approach
indicates proteins that gradually have increased significance in the perturbed network potentially
contributing to SCA1 progression and proteins that lose their significance and role in the cerebellum
during mutant ATXN1 aggregation.

The proteins we selected participate in various critical processes in the nervous system and most
of them are involved in the pathogenesis of HD, which is also characterized by the accumulation
of protein inclusions. Rho GTPases, including CDC42 and RHOA with increased centralities in the
SCA1 network, regulate neuronal cell degeneration pathways [49] and several members of these
signaling pathways interact with huntingtin protein [50]. ATP1A1 with a constantly high CC value
is a genetic modifier of motor deficits in HD mice [51]. Similarly, nodes with decreased centralities
modulate huntingtin levels (GNB1, [52]), mediate cellular dysfunction in HD (TP53, [53]) or are
involved in the translation of CAG repeat expansion mRNAs (PP2CA, [54]). Taken together, these
data provide insights for selective neurodegenerative processes and suggest potential drug targets.
Potentially, inhibition of nodes with increased centralities or stimulation of nodes with decreased
centralities of the SCA1 network may affect the aggregation of pathogenic ATXN1.

At the moment, there is no available therapy for polyQ diseases, even though Rho/ROCK and
MTOR inhibitors [55,56] or compounds entering the BBB [57] are suggested to suppress the aggregation
of mutant proteins and may delay disease progression. Our approach indicates potential drug targets
which are involved in the pathogenesis of HD and might be also relevant for SCA1. With regards
to the computational analysis, we showed that identifying the structure and underlying motifs of
the network requires several steps, most of them utilizing independently executed tools. In this
context, and although efficient and reproducible, the current form of the analysis is not easily scalable,
given the level of user interaction necessary to run the entire process. This evident limitation can be
alleviated by ensuring interoperability between the different tools, as well as automating the execution
of the pipeline. This has been partially achieved through the developed code, but full automation is
planned for future iterations of the software. In conclusion, here, we propose a set of drugs that target
important nodes of a cerebellum-specific SCA1 network and can also enter the BBB. These drugs could
be further tested to determine whether they affect the aggregation of pathogenic ATXN1 in the brain.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/10/1129/s1,
Figure S1. PPI networks at three time-points associated with protein aggregation. The protein components of the
common dysregulated pathways in Tet-On YFP-ATXN1(Q82) MSCs and SCA1 B05 transgenic mice were used
for the construction of PPI networks using the STRING database. (A) The PPI network at D2/W5 consists of 65
nodes and 131 edges. (B) The PPI network at D5/W12 contains 177 nodes and 1241 edges. (C) The PPI network
at D10/W28consists of 144 nodes and 409 edges. Figure S2. The Venn diagram indicates the overlap between
100 genes selected as related to research on protein aggregates in the brain (see Methods for details) and the
early, middle and late networks. These overlaps are significant (hypergeometric test). Figure S3. PPI networks at
(A) early, (B) middle and (C) late stage of protein aggregation. Red nodes represent proteins-hubs with the 3 higher
DC values. Figure S4. PPI networks at (A) early, (B) middle and (C) late stage of protein aggregation. Red nodes

http://www.mdpi.com/2073-4425/11/10/1129/s1
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represent proteins with the 3 higher BC values. Figure S5. PPI networks at (A) early (B) middle, and (C) late stage
of protein aggregation. Red nodes represent proteins-hubs with the 3 higher CC values. Figure S6. Drug-protein
interaction network. Magenta nodes represent drugs that bind to important nodes of the SCA1 network. Red
arrows indicate approved drugs and blue arrows experimental drugs. Table S1. Gene expression in SCA1 B05
transgenic mice and Tet-On YFP-ATXN1(Q82) MSCs. Table indicates the expression of each gene at early (D2/W5),
middle (D5/W12) and late stage (D10/W28) of protein aggregation compared to its relative control in cells and mice.
Only genes with a mean |log2FC| > 0.5 and p-value < 0.05 in at least one time-point were selected for downstream
analysis. Table S2. Enrichment and promoter analysis of common dysregulated genes in SCA1 B05 transgenic mice
and Tet-On YFP-ATXN1(Q82) MSCs. Pathway enrichment analysis was performed using the Reactome database.
The Transfac and Jaspar databases were used for promoter analysis. Table S3. Dysregulated pathways at each
time-point of protein aggregation in SCA1 B05 transgenic mice and Tet-On YFP-ATXN1(Q82) MSCs. The table
also shows the dysregulated genes assigned to each pathway. Only pathways with p-value < 0.05 were selected.
Table S4. Genes used for the construction of SCA1 PPI networks. Log2FC values for gene expression in each
time-point and experimental model are shown. The table also shows the pathways in which each gene participates.
Table S5. Genes dysregulated at discrete time-points of protein aggregation. Table S6. Discrete clusters and highly
interconnected modules in the SCA1 disease network. The table shows GO BP enrichment analysis for the genes
of each discrete cluster/module Table S7. Centrality values (DC, BC and CC) of the SCA1 network components at
each time-point of protein aggregation. Genes with the higher centrality values are depicted in Figure 3. Table S8.
Drugs that interact with components of the SCA1 protein network. Table also shows whether identified drugs are
predicted to enter BBB.
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