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Abstract: Spermatogenesis is a complex cellular-differentiation process that relies on the precise
regulation of gene expression in spermatogonia, meiotic, and postmeiotic germ cells. The Ring 1
and YY1 binding protein (Rybp) is a member of the mammalian polycomb-group (PcG) protein
family that plays multifunctional roles in development. Previous findings indicate that Rybp may
function as an important regulator of meiosis. However, its expression in the testes and function in
spermatogenesis have not been examined. In this study, we investigated Rybp expression in postnatal
mouse testes using qRT-PCR and immunohistochemistry. We also examined the function of Rybp
in spermatogenesis by using a conditional-knockout approach. Results showed that the relative
expression of Rybp mRNA was significantly upregulated in the testes of postnatal day (PD) 6 mice.
Immunofluorescent staining revealed that Rybp was enriched in the spermatocytes. Surprisingly,
a conditional deletion of Rybp in fetal germ cells did not affect the fertility or normal development of
spermatogenic cells. Further analysis revealed that Rybp deletion resulted in a decreased expression of
meiosis-related genes, but that meiosis progression was normal. Together, these findings suggest that
Rybp expression was enriched in spermatocytes, but that it was not required for spermatogenesis.
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1. Introduction

Spermatogenesis is a complex differentiation process that includes three different cellular
events—spermatogonial mitosis, spermatocyte meiosis, and spermiogenesis [1]. Meiosis is
a germ-cell-specific event that is essential for generating new allelic combinations through
recombination [2]. Programs regulating gene expression in germ cells must be tightly controlled to
ensure the initiation, progression, and completion of meiosis [3]. Currently, the molecular basis of
meiosis initiation and progression is poorly understood in mammals.

Polycomb-group (PcG) proteins play important roles in establishing and maintaining
gene-expression patterns during cell differentiation and proliferation [4]. PcG proteins form two
polycomb repressive complexes, PRC1 and PRC2 [5]. PRC1 includes a chromobox (Cbx2, Cbx4,
Cbx6, Cbx7, or Cbx8), polyhomeotic-like protein (PHC1, PHC2, or PHC3), very interesting new gene
1A/B (Ring1A/B), polycomb group RING finger proteins (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, or
PCGF6), and YY1-associated factor 2 (YAF2) [6,7]. PRC1 possesses ubiquitin E3 ligase activity that
targets H2AK119. This modification usually induces chromatin compaction and inhibits transcriptional
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elongation. Recent studies showed that it can also activate gene expression [8]. Accumulated evidence
has revealed indispensable roles for PRC1 in spermatogenesis. Sex comb on midleglike 2 (SCML2),
a germline-specific subunit of PRC1, acts in concert with histone H2A ubiquitination to regulate
the postmeiotic development of male germ cells. Deletion of Scml2 results in the accumulation of
ubiquitinated H2AK119 and the dysregulation of postmeiotic genes [9]. RING finger protein 2 (RNF2,
also known as RING1B) is required for meiosis, and Rnf2-deficient germ cells arrest at the midpachytene
stage [10].

Other components of PRC1 also play different roles in meiosis. MYC family proteins (MAX) are
newly recognized regulators of meiosis initiation. A loss of Max in embryonic stem (ES) cells activates
germ-cell-related genes and leads to cytological changes resembling the leptotene and zygotene stages
of meiosis [11]. Polycomb group RING finger 6 (PCGF6) is predominantly expressed in spermatocytes
and spermatids. It interacts with heat shock-related 70-kDa protein 2 (HSPA2), which is an essential
factor in male meiosis [12]. Chromobox homolog protein 2 (Cbx2) plays a critical role in germ-cell
viability, meiosis initiation, and homologous chromosome synapsis in the mammalian germline [13].
Functional roles of other PRC1 members in spermatogenesis remain unexplored.

Ring 1 and YY1 binding protein (Rybp) is a noncanonical PRC1 component that serves
multifunctional roles in development [6]. Loss of Rybp causes marked forebrain overgrowth,
a disruption of neural-tube closure, retinal coloboma, malformed lenses, and a failure to form
contractile cardiomyocytes [14–17]. Interestingly, several lines of evidence indicated that Rybp has a
potentially crucial role in germ-cell development and meiosis. Rybp can efficiently repress endogenous
retroviruses and germline-specific genes [18]. Dazl, Rhox6, Ddx4, Tex11, and Mov10l1 are genes that
regulate germ-cell differentiation and meiosis, and they are significantly upregulated in Rybp-mutant
ES cells [18]. These data strongly suggest that Rybp may function as an important transcriptional
regulator in meiosis. Recently, Bajusz et al. proposed that a Rybp-dependent transcriptional program
is important for germ-cell differentiation [19]. However, the expression and function of Rybp in
spermatogenesis have not been explored.

In this study, we investigated the dynamics of Rybp expression in murine testes using qRT-PCR and
immunohistochemistry. We also conditionally deleted Rybp in germ cells using Cre–Loxp methodology
in order to examine the function of Rybp in meiosis. Our results showed that, although Rybp was
expressed in murine spermatocytes and the expression of several meiosis-related genes was significantly
reduced in Ddx4-Cre+;Rybpflox/flox (designated hereafter as Rybp-cKO) mice, Rybp was not required
for spermatogenesis.

2. Materials and Methods

2.1. Generation of Germ-Cell-Specific Rybp-Knockout Mice

All animal studies were performed in accordance with guidelines from the Institutional Animal
Care and Use of Laboratory Animals, and were approved by the Animal Welfare and Ethic Committee
at the Northwest Institute, Chinese Academy of Sciences (approval code: hwipb012). Rybpflox/flox

mice (T00008, B6; 129-Rybptm1Nju) were generated by the Nanjing Biomedical Research Institute
of Nanjing University, and Ddx4-Cre mice were obtained from the Jackson Laboratory (018980,
B6; FVB-Tg (Ddx4-Cre) 1Dcas/Knwj). Rybpflox/flox females were mated with Ddx4-Cre+ males to
generate Ddx4-Cre+;Rybpflox/+ males and Rybpflox/+ females. Ddx4-Cre+;Rybpflox/+ males were then
mated with Rybpflox/flox or Rybpflox/+ females to obtain Ddx4-Cre+;Rybpflox/flox (Rybp-cKO) males and
Ddx4-Cre+;Rybpflox/+ males (controls). The tip of each mouse tail was used for genotyping. Primers
used to detect the Rybp-flox allele are listed in Table S1—the intact allele was 318 base pairs (bp) and
Rybp-flox allele was 421 bp. The primers used to detect Ddx4-Cre are listed in Table S1—the Ddx4-cre
allele was 240 bp and the wild type (WT) allele was 324 bp.
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2.2. Quantitative RT-PCR

RNA isolation and quantitative RT-PCR were performed as previously described [20]. RNA
samples were isolated using a Trizol reagent (Invitrogen, Carlsbad, CA, USA). RNA concentration and
purity were quantified using a Nanodrop 2000c Spectrophotometer (Thermo, Waltham, MA, USA),
and RNA was reverse transcribed using a High-Capacity cDNA Reverse Transcription kit (Applied
Biosystems, Foster, CA, USA). An SYBR Green Detection System was used in combination with primer
pairs (10 µM; Table S2). A ViiA7 Real-Time PCR System (Applied Biosystems, Foster, CA, USA) was
used to quantify the relative abundance of specific transcripts. The optimized parameters for thermal
cycles were as follows: activation at 95 ◦C for 2 min, followed by 40 cycles consisting of 95 ◦C for
20 s and 60 ◦C for 30 s. The temperature was then gradually increased (0.5 ◦C/s) to 95 ◦C to generate
the melting curve. In this experiment, GAPDH was used as the internal parameter for quantitative
results. The experiment was repeated 3 times for each sample with 3 biological duplicates for each
gene; mRNA expression levels were calculated using the 2−∆∆ct method.

2.3. Histological Analysis

Histological analysis of testicular sections was performed as previously described [21]. Briefly,
mouse testes were fixed in Bouin’s solution for 8 h. After dehydration, tissue samples were embedded
in paraffin (Leica, Mannheim, Germany). Paraffin-embedded tissue was then cut into 4 µm slices by
a microtome (Leica RM2235, Mannheim, Germany). Sections were deparaffinized, rehydrated, and
stained with hematoxylin and eosin (H&E). Images were examined using a microscope (Nikon ECLIPSE
E200, Tokyo, Japan) and captured by Charge Coupled Device (CCD) (MshOt MS60, Guangzhou, China).

2.4. Immunohistochemical Staining

Testes were fixed in 4% paraformaldehyde (PFA). After dehydration, tissue samples were
embedded in paraffin. Paraffin-embedded tissue was cut into 4 µm slices by a microtome. After
deparaffinization and rehydration, sections were boiled in 10 mM sodium citrate (pH 6.0) for 20 min
and washed in 0.01 M phosphate-buffered saline (PBS) for 5 min. This was repeated 3 times at room
temperature (RT). Endogenous peroxidase activity was blocked by 3% H2O2 for 10 min at RT. Sections
were sequentially washed 3 times and incubated with 10% normal goat serum for 1 h at RT. Primary
antibodies (Table S3) were diluted in an antibody dilution buffer and incubated overnight at 4 ◦C.
Sections were then washed in PBS and incubated with secondary antibodies for 1 h at RT. After being
washed 3 times in PBS for 10 min each time, sections were visualized using 3,3-diaminobenzidine (DAB,
ZSGB-BIO, Beijing, China) and counterstained with Ehrlich’s hematoxylin. For immunofluorescent
staining, sections were incubated with 10% normal donkey serum for 1 h at RT. After incubation with
primary antibodies, sections were washed and incubated with secondary antibodies (Table S3) for 2 h
at RT. After being washed 3 times in PBS for 10 min each time, sections were stained with Hoechst33342
(H33342) (Sigma, St. Louis, MO, USA) for 1 min and mounted in 50% glycerol before being examined
under a microscope (Leica, Mannheim, Germany).

2.5. Fertility Test

The fertility of males with genotypes Ddx4-Cre+; Rybpflox/flox (Rybp-cKO) and Ddx4-cre+; Rybpflox/+

(controls) was assessed by mating with 4 adult Rybpflox/+ females. This began at 35 days. They mated
until the male mice were 3 months old in all 3 groups. Males were then sacrificed, and their testes
and body weight were measured. Cauda epididymides were placed in 1 mL human tubal fluid (HTF)
(Merck Millipore, MA, USA), cut into pieces, then put on ice for 10 min to fully release the sperm.
Sperm was then counted by a computer-assisted sperm-analysis system (Ningbo Shengheng Optics
and Electronics Co., Ltd., Ningbo, China).
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2.6. Chromosome Spreads of Mouse Spermatocytes and Staining

Chromosome spreads of spermatocytes from 21 day old Rybp-cKO and control mice were
performed as previously described [22]. Briefly, seminiferous tubules were transferred to a hypotonic
buffer (30 mM Tris-HCl at pH 8.2, 17 mM sodium citrate, 5 mM ethylenediaminetetraacetic acid, 50 mM
sucrose, 5 mM dithiothreitol, and 0.5 mM phenylmethylsulfonyl fluoride) for 30 min at RT. Sucrose
(100 mM) was dropped onto a clean slide. Seminiferous tubules were mixed with the sucrose drop on
the clean slide and then disrupted to obtain cell suspension, which was then spread over the slide
immersed in 1% PFA. Adhesive slides with the cell suspension were put into a chamber with hot water
(90–100 ◦C at normal atmospheric pressure) overnight at RT. Slides were washed in Antibody Dilution
Buffer (ADB) (0.1% cold fish skin gelatin, 0.5% Tritonx-100, and 1% bovine serum albumin (BSA) in
PBS) for 1 h the following day. A combination of primary antibodies (Table S3) that had been diluted
in ADB and incubated overnight at 37 ◦C in a wet chamber was added. After being washed with ADB
for 30 min, we washed the slides with a new ADB for 90 min and incubated the slides with secondary
antibodies (Table S3) overnight at 37 ◦C. We then washed the slides in ADB for 30 min and PBS for 1 h.
Slides were exposed to H33342 for 1 min and mounted in 50% glycerol before being examined under a
microscope (Leica, Mannheim, Germany).

2.7. Statistical Analysis

All quantitative data are presented as mean± Standard Error of Mean (SEM) for at least 3 biological
replicates. Differences between means were examined using the general linear-model one-way ANOVA
or t-test function of GraphPad Prism 5 (La Jolla, CA, USA). Differences between means were considered
significant when p < 0.05.

3. Results

3.1. Relative mRNA Expression and Protein Localization of Rybp in Postnatal Mouse Testes

First, we examined the expression of Rybp mRNA in the testes of mice at postnatal day (PD) 0, 6, 14,
21, and 35 using qRT-PCR. Results showed that the expression of the Rybp transcript was significantly
upregulated in the testes of mice at PD6 (p < 0.05; Figure 1A). We then examined the expression and
cellular localization of Rybp in testes using immunohistochemistry (Figure 1B). Results showed that
Rybp was localized to Sertoli cells and spermatogonia at PD6, and was present in spermatocytes
at PD14. The staining signal was also seen in spermatids at PD28 and PD90. In adult testes, the
Rybp signal was distributed between spermatogonia, spermatocytes, and Sertoli cells (Figure 1B).
The negative control with normal IgG did not show an immunoreactive signal (Figure 1B).

To confirm the findings of the immunohistochemical staining, we costained Rybp with
undifferentiated spermatogonial marker LIN28A [23], meiotic germ-cell markers γH2AX and
synaptonemal complex protein 3 (SYCP3) [24], and Sertoli cell marker GATA1 [25]. Results showed
that Rybp did not colocalize with LIN28A in undifferentiated spermatogonia (Figure 2A). A strong
immunostaining signal for Rybp was seen in γH2AX- and SYCP3-positive germ cells (Figure 2B).
GATA1+ Sertoli cells also stained positive for Rybp (Figure 2C). Together, these data suggest that Rybp
was expressed in both Sertoli cells and spermatocytes.
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Figure 1. Relative mRNA expression and protein localization of Ring 1 and YY1 binding protein (Rybp)
in murine testes. (A) Quantification of Rybp mRNA expression in murine testes at different stages of
development. Data were analyzed using mean ± SEM for three mice per stage. Values bearing different
superscripts significantly differed with p < 0.05. (B) Immunohistochemical staining of Rybp in murine
testes at different stages of development. Scale bar: a–d and i–l, 50 µm; e and f, 10 µm; g and h, 20 µm.

3.2. Phenotypic Analyses of Germ-Cell-Specific Rybp-Knockout Mice

To explore whether Rybp plays a functional role in germ-cell differentiation and meiosis, we
conditionally deleted Rybp in fetal gonocytes on embryonic day (E) 14.5 by crossing Ddx4-Cre
transgenic mice and Rybpflox/flox mice. Surprisingly, we found that the testes/body-weight ratio of
three-month-old Ddx4-Cre+;Rybpflox/flox (Rybp-cKO) mice did not differ from age-matched littermate
controls (Ddx4-Cre+;Rybpflox/+) (Figure 3B,C). Fertility testing revealed that control and Rybp-cKO mice
sired a similar number of litters after mating with wildtype females for three months (Figure 3D).
As expected, sperm density in control and Rybp-cKO mice was not different (Figure 3E). Further analysis
confirmed that Rybp was completely eliminated from the germ cells of Rybp-cKO mice (Figure 3F–H),
although histological analysis of seminiferous tubules and cauda epididymides revealed normal
spermatogenesis (Figure 3I,J). These findings support the conclusion that Rybp is not required for
normal fertility and spermatogenesis in mice.
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Figure 2. Rybp expressed in spermatocytes and Sertoli cells. (A) Coimmunofluorescent staining for
Rybp and LIN28A in cross-sections of testes from adult mice. Scale bar, 100 µm. (B) Immunofluorescent
staining for Rybp, γH2AX, and synaptonemal complex protein 3 (SYCP3) in cross-sections of testes
from adult mice. Scale bar, 100 µm. (C) Immunofluorescent staining for Rybp and GATA1 (Sertoli cell
marker) in cross-sections of testes from adult mice. Scale bar, 100 µm.
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Figure 3. Germ-cell-specific Rybp-knockout mice were fertile. (A) Schematic diagram of
Ddx4-Cre+;Rybpflox/flox (Rybp-cKO) mice generated using Cre–Loxp technology with exons 2–6. (B)
Representative images of testes from three-month-old male control and Rybp-cKO mice. (C) Ratios
of testes to body weight of three-month-old male control and Rybp-cKO mice. (D) Comparisons of
litter size from three-month-old male control and Rybp-cKO mice. (E) Comparisons of sperm density
from male control and Rybp-cKO mice. (F) Quantification of Rybp mRNA expression in testes from
three-month-old male control and Rybp-cKO mice. Data were analyzed using mean ± SEM for three
mice per genotype. **** indicates a significant difference of p < 0.0001. (G) Immunohistochemical
staining for Rybp in cross-sections of testes from three-month-old male control and Rybp-cKO mice.
Scale bar, 100 µm. (H) Coimmunofluorescent staining for Rybp and DEAD-box helicase 4 (DDX4)
(a germ-cell marker) in cross-sections of testes from three-month-old male control and Rybp-cKO mice.
Scale bar, 100 µm. (I) Representative images of hematoxylin and eosin (H&E)-stained testes from
three-month-old male control and Rybp-cKO mice. Scale bar, 100 µm. (J) Representative images of
H&E-stained cauda epididymides from three-month-old male control and Rybp-cKO mice. Scale bar,
100 µm. Data were analyzed using mean ± SEM for three mice per genotype.

3.3. Analysis of Meiosis Progression and Meiosis-Related Gene Expression in Germ-Cell-Specific
Rybp-Knockout Testes

Given that the target genes of Rybp in ES cells predominantly regulate the M phase of meiosis [6],
we examined meiosis progression and the expression of several previously identified Rybp target
genes in control and Rybp-cKO mice. The meiotic chromosome spreading and immunostaining of
synaptonemal complex proteins SYCP3 (axial/lateral element) and SYCP1 (central element) were
performed to examine the progression of meiosis [26]. Results showed that spermatocytes in control
and Rybp-cKO mice had no apparent synaptic defects at different stages of prophase I (Figure 4A).
The percentage of germ cells in leptene, zygotene, pachytene, diplotene, and diakinesis was comparable
between control and Rybp-cKO testes (Figure 4B).
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4. Discussion 

Figure 4. Germ-cell-specific deletion of Rybp did not affect meiosis. (A) Coimmunostaining of
SYCP3 and SYCP1 in spermatocytes from male postnatal day 21 (PD21) control and Rybp-cKO mice.
(B) Composition of the spermatocyte population in control and Rybp-cKO spermatocytes. Data were
analyzed using mean ± SEM for three mice per genotype. ns: indicates no difference.

Interestingly, the relative abundance of transcripts known to be important in meiosis [18] was
changed by a loss of Rybp function in germ cells. Dazl, Rhox6, Ddx4, Tex11, and Mov10l1 were
downregulated by 61.21%, 62.29%, 95.94%, 61.36%, and 80.32%, respectively, in Rybp-cKO testes
compared to control testes (Figure 5). The relative expression of Pfh7 did not differ between control
and Rybp-cKO mice (Figure 5). Together, these findings suggest that Rybp deletion in germ cells altered
the expression of several meiosis-related genes, but did not impact meiosis progression.
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Figure 5. Expression of meiosis-related genes decreased in germ-cell-specific Rybp-knockout mice.
Relative mRNA expression of meiosis-related genes in male control and Rybp-cKO mice. Data were
analyzed using mean ± SEM for three mice per group. * indicates significant difference of p < 0.05.
** indicates extremely significant difference of p < 0.01. ns indicates no difference.
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4. Discussion

Rybp is a component of PRC1 that has indispensable roles in the development of several cell
lineages. Previous findings indicated that it may have an important role in germ-cell development
and meiosis. In this study, we found that Rybp was expressed in spermatocytes and Sertoli cells in
mice. To analyze its functional role in spermatogenesis, we conditionally deleted Rybp in germ cells.
Surprisingly, we found that, although the deletion of Rybp in fetal germ cells altered the expression of
several meiosis-related genes, loss of Rybp function did not influence normal spermatogenesis.

An interesting finding of the present study was that the deletion of Rybp in germ cells did not
impact normal spermatogenesis. Cre activity in Ddx4-Cre transgenic mice was detected in germ cells
as early as E14.5 [27], and we confirmed that Rybp expression was efficiently removed from all germ
cells in Rybp-cKO males. Therefore, we concluded that Rybp was not required for spermatogonial
differentiation and meiosis. However, the function of Rybp in germ-cell specification and early
germ-cell development remains undetermined. Germ-cell specification occurs around E6.25 in mice,
and primordial germ-cell migration to the genital ridges occurs by E10.5. During this period of
development, germ cells undergo extensive epigenetic reprogramming [28]. From E12.5 to E14.5,
pluripotent genes are downregulated, and germ cells differentiate into gonocytes [29]. Given Rybp is a
potent regulator of early-lineage commitment [17], we speculate that Rybp may have a functional role
in lineage specification to regulate the fate of primordial germ cells.

In addition to its role in the repression of meiosis-specific gene expression, Rybp is a component of
homologous recombination repair machinery, which is important for mitosis and meiosis [30]. Therefore,
it was surprising to find that Rybp deletion did not affect meiosis progression. YY1-associated factor 2
(YAF2) can rescue the phenotype caused by a Rybp mutation [31]; thus, it is likely that YAF2 compensates
for the loss of Rybp in spermatocytes. One key function of Rybp that is independent of YAF2 is the
regulation of H2AK119ub1 and PRC1 [32]. We concluded from the present study that Rybp-dependent
H2AK119ub1 regulation is not required for spermatogenesis, but that Rybp/YAF2-depedent PRC1
activity may still be important for meiosis and other crucial events during germ-cell development.

Although meiosis was not disrupted by Rybp deletion in fetal germ cells, the expression of
several meiosis-related genes was downregulated. We examined Rybp-regulated genes in ES cells [18]
and found that the relative abundance of all five transcripts (except Pfh7) was decreased. Deleted
in azoospermia-like (Dazl) and DEAD-box helicase 4 (Ddx4) are RNA-binding proteins that play
essential roles in primordial germ-cell migration, spermatogonial differentiation, and meiosis [33,34].
In ES cells, Rybp represses the expression of these germ-cell-specific transcripts by regulating DNA
methylation [18]. In spermatocytes, it appears that Rybp stimulates the expression of these genes.
A two-hybrid screen identified that Rybp interacts with transcription factors E2F2 and E2F3 to activate
gene expression [35], and a similar mechanism likely exists in spermatocytes. However, this regulatory
machinery is not required for meiosis progression and the development of advanced germ cells.

5. Conclusions

We showed that Rybp is expressed in spermatocytes and Sertoli cells in murine testes. Although
previous findings suggest an important role for Rybp in germ-cell differentiation and meiosis,
conditional deletion of Rybp in fetal germ cells caused decreased expression of germ-cell-specific genes,
but did not affect fertility. Further analysis showed that the development of spermatogenic cells and
meiosis were normal in Rybp germ-cell-specific conditional-knockout mice.
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Abbreviations

Rybp Ring 1 and YY1 binding protein
PcG Polycomb group
PRC1 Polycomb repressive complex 1
PRC2 Polycomb repressive complex 2
qRT-PCR Quantitative real-time PCR
H&E Hematoxylin and eosin
PBS Phosphate-buffered saline
DAB 3,3-diaminobenzidine
RT Room temperature
H33342 Hoechst33342
PFA Paraformaldehyde
BSA Bovine serum albumin
bp Base pair(s)
PD Postnatal day
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