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Abstract: Human midfacial clefting is a rare subset of orofacial clefting and in severe cases, the cleft
separates the nostrils splitting the nose into two independent structures. To begin to understand the
morphological and genetic causes of midfacial clefting we recovered the Unicorn mouse line. Unicorn
embryos develop a complete midfacial cleft through the lip, and snout closely modelling human
midfacial clefting. The Unicorn mouse line has ethylnitrosourea (ENU)-induced missense mutations
in Raldh2 and Leol. The mutations segregate with the cleft face phenotype. Importantly, the nasal
cartilages and surrounding bones are patterned and develop normal morphology, except for the
lateral displacement because of the cleft. We conclude that the midfacial cleft arises from the failure
of the medial convergence of the paired medial nasal prominences between E10.5 to E11.5 rather than
defective cell proliferation and death. Our work uncovers a novel mouse model and mechanism for
the etiology of midfacial clefting.

Keywords: midfacial clefting; Unicorn; medial nasal prominences; nasal septum; Raldh2; Leol

1. Introduction

Orofacial clefting (OFC) is the most common congenital craniofacial anomaly present at birth.
OFC is a group of anomalies that has many subtypes with much phenotypic variation. The most
frequently observed anomaly is the lateral cleft lip and palate, which occurs in approximately 1/700 live
births [1]. By comparison, midfacial clefting (Tessier type 0) are exceptionally rare, with an estimated
prevalence of 5/100,000 live births [2]. In humans, the spectrum of midfacial clefting phenotypes
can range from a mild phenotype with isolated midline notched upper lip to the severe phenotype
with a midline cleft extending from the upper lip, through the philtrum and nasal septum resulting
in independent nostrils and hypertelorism [2]. The milder phenotypic forms are likely not reported
because they do not require surgical intervention resulting in an underestimation of the true prevalence
of midfacial clefting. Still, the disparity in prevalence rates between lateral facial clefting relative to
midline clefting has resulted in considerably more research attention being focused on the former.
Accordingly, while much light has been shed on the genetic and molecular etiology of lateral cleft lip
and palate (reviewed in [3,4]), far less is known about the mechanisms underlying midline clefting.

Embryonic facial development is a highly coordinated process involving paired facial prominences
that fuse into a distinct structures through epithelial to mesenchymal interactions [5]. The structures
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in the adult face that are disrupted in midfacial clefts (the nose, philtrum, midline of the upper lip,
and the primary palate) develop from the paired medial nasal prominences (MNP) in the embryo.
The process of MNP merging is completed by the seventh week of human gestation, or by embryonic
day 11.5 (E11.5) in the mouse. The location of the cleft and the morphology of the skeletal elements that
are affected in midfacial clefting support the hypothesis that medial convergence of MNP is necessary
for normal midfacial development. However, the genetic and morphological processes that contribute
to the development of the midline of the face is not well studied.

At embryonic day (E)10.5 in mice, the mesenchyme within the maxillary prominences begins
to rapidly proliferate, thus pushing the MNPs toward the midline of the face [4]. The MNPs are
composed of an inner core of mesenchyme that is surrounded by an outer epithelial layer. At least
two epithelial signaling centers provide patterning information to the MNPs-the nasal pits, and the
frontonasal ectodermal zone (FEZ) [6-8]. The most posterior region of MNPs is made of the FEZ,
a region of ectoderm that expresses Sonic Hedgehog (Shh) and Fibroblast growth factor-8 (Fgf§), and
determines the direction, orientation, and width of the midline of the face [6,7]. The nasal pits secrete
signaling information to induce the surrounding bones and cartilages [8]. In addition to HH signaling
in the FEZ, increased hedgehog (HH) signaling is associated with hypertelorism, and in some cases the
development of a midfacial cleft [9-13]. The final step for midfacial convergence is the disappearance
of the epithelial seam surrounding the MNPs permitting mesenchymal merging [4].

In addition to the morphogens in the FEZ, several other morphogens such as retinoic acid (RA)
are required for normal craniofacial morphogenesis. RA is a diffusible molecule that binds to nuclear
receptors in the cytoplasm and transits into the nucleus. In the nucleus the RA in complex with
co-receptors binds to RA-response elements (RARE) in the promoters of target genes such as Fgf8
and facilitate transcription (reviewed in [14]). RA is synthesized by members of the retinaldehyde
dehydrogenase (RALDH) family and degraded by the Cyp26 family [14]. RA is teratogenic in either
high or low doses [14-16]. RALDH27" mouse mutants develop frontonasal truncation and major heart
defects, but do not survive for the evaluation of bone and cartilage development [17].

Normal facial morphogenesis also relies on the global control of transcription and nuclear
organization. Polymerase-associated factor 1 complex (Paf1C) is associated with RNA polymerase
II (RNAPII) and functions to improve transcriptional efficiency by promoting the chromatin
remodeling [18,19]. The PAF1 complex consists of five proteins Leol, Rtfl1, Cdc73, Ctr9, and Pafl.
Intriguingly, the loss of function of either rifl and ctr9 members in Zebrafish results in a defect in neural
crest, cardiac, and somite development [20]. Zebrafish leo1 loss of function mutants have decreased
chondrogenesis and a midline cleft in the ethmoid plate [21].

Midfacial clefting has not been well characterized clinically in humans postnatally, nor
mechanistically within animal models prenatally [2]. Inadequate characterization of this broad-spectrum
phenotype could be in part due to a lack of understanding of early nasal septum morphogenesis and
MNP merging. Here, we present the Unicorn mouse line as a model of human midfacial clefting. Using
the Unicorn mutants, we determined the critical period for midfacial morphogenesis, and how the
placement of the frontonasal ectodermal zone determines the angle of nostril outgrowth. The Unicorn
mouse line will help to facilitate further understanding of this rare anomaly and thus may contribute to
the eventual development of novel treatments.

2. Methods

2.1. Unicorn Mouse Line Recovery and Husbandry

In brief, the Unicorn mouse line was recovered through an ethylnitrosourea (ENU)- mutagenesis
screen for late embryonic cardiovascular phenotypes [22,23]. The original phenotyping, exome
sequencing, and cryopreservation were performed as described [23]. We recovered founder Unicorn
(b2b1941Clo) animals at Jackson Laboratory and maintained the line on an outbred C57/BL6]
background. We designed our breeding schema to first test the heritability of the midfacial cleft
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phenotype and to dilute the neutral ENU-induced mutations. Every generation we performed a sibling
intercross to ensure heritability of the midfacial cleft and to select for a productive sire. The productive
sires were bred with wildtype C57/BL6] females for the next generation. The original ENU treatment
was designed to induce 100 mutations [23], and we performed eight generations of outcrossing
to select for 1 or 2 causative mutations. We used the exome sequencing of the first generation
of phenotypic animals to design custom Invitrogen SNP assays for genotyping with the TagMan
Genotyping MasterMix and read the results on a StepONE touch machine.

2.2. Embryo Collection

We performed timed matings and designated the presence of a plug as embryonic day 0.5 (E0.5).
The pregnant dams were euthanized via CO, asphyxiation on the appropriate day and embryos were
harvested via C-section. Embryo staging was confirmed by morphology. Animal care and use was
conducted in accordance to the animal protocols approved by the Institutional Animal Care and Use
Committee of the University of Pittsburgh (protocol 17050839). Embryos were collected and fixed
overnight in 4% PFA.

2.3. Skeletal Preparations

Heads of €15.5 Unicorn and littermate control embryos were fixed in 95% ethanol and stained
with alizarin red and alcian blue using standard protocols [24]. Samples were stored and imaged in a
glycerol/ethanol solution.

2.4. Pseudo-SEM and Morphometric Analysis

E10.5 and E11.5 Unicorn and littermate control embryos were processed and imaged via
pseudo-SEM protocol (n = 3/genotype, E10.5; n = 4/genotype, E11.5). The embryos were fixed
overnight in 4% paraformaldehyde, and stained with 0.01% ethidium bromide. To ensure consistency
of embryo position for photography, we photographed them in a Sylgard-coated dish with molded
wells for embryo placement. We visualized the ethidium bromide signal using the DsRED filter on a
Leica MZFLIII. After photography, we placed twelve landmarks on the images, and used the measure
tool in Image J version 1.51w to measure the width of the face. We measured the width of several
inferior and superior regions as well as the width of the singular maxillary prominence. We normalized
each facial width measurement to the singular maxillary prominence width to account for subtle
staging differences between individuals. The Unicorn and control embryos normalized facial widths
were compared using a paired Students t-test (p < 0.05).

2.5. Histology Analysis

For histological analysis, E10.5, E11.5, E15.5 embryos were collected, fixed in 4% PFA overnight,
dehydrated and stored in 70% ethanol, and then embedded in paraffin wax [25]. Embryos were
sectioned frontally at 10 pm and placed on triethoxysilylpropylamine (TESPA)-coated Super-Frost
coated slides. Adjacent slides were stained with hematoxylin and eosin, or Picrosirius red and alcian
blue using standard protocols.

2.6. In Situ Hybridization

Section in situ hybridization was performed using standard protocols with digoxigenin-labelled
RNA insitu probes. After washing to reduce non-specific antibody binding, the location of in situ probes
were detected with BM Purple [26]. The following in situ probes were used: Alkaline phosphatase, Runx2,
Sox9, Ptcl, Glil, and Erm1 [24,25]. At least 3 littermates were analyzed per each RNA probe. The Leol
in situ probed was cloned from cDNA using these primers: Leol FGAAGGGTCTGAAAAAGCCCAG
and LeolR:GGACATGCTTCCATCTGACCA.
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2.7. Proliferation and Apoptotic Studies

To detect cells in mitosis we performed immunostaining for Phospho Histone H3 (PHH3).
We performed citrate buffer antibody retrieval prior to overnight incubation with Phospho Histone
H3 (Cell Signaling #9701S) antibody. The primary antibody signal was amplified using the Vectastain
amplification kit, developed in InmPACT DAB, and the slides were mounted in Thermo Scientific
mounting medium.

To detect cells in S-phase, we i.p. injected 10 mg/kg of BrdU into the pregnant dams one hour
prior to embryo collection. Enzymatic antigen retrieval was performed with Exonuclease III, Dpnl,
and Proteinase K, followed by incubation with the anti-BrdU antibody (RPN202, GE Healthcare Life
Sciences, Pittsburgh, PA, USA). We detected the antibody with Alexa Fluor 488 conjugated secondary
antibody (Invitrogen, Carlsbad, CA, USA, A11059) and the slides were mounted in Prolong-Gold with
Dapi (Invitrogen).

Apoptotic cells were detected using the terminal deoxynucleotidyl transferase dUTP nick end
labelling (TUNEL) using the ApopTag Plus Peroxidase In Situ Apoptosis Detection Kit (EMD Millipore,
Burlington, MA, USA).

The analysis of proliferation and apoptosis was performed in a cranial and a caudal region in
E10.5 and E11.5 in the MNP mesenchyme and medial epithelial regions. The proliferating cell ratio
was calculated as the number of BrdU positive cells divided by the total number of cells. TUNEL-
and PHH3- positive cells were counted on adjacent sections and the absolute number was plotted
in scatterplot. To analyze proliferation and apoptosis, we counted the positive cells from at least 3
littermates per assay and stage. We performed a Chi-squared test to evaluate the differences in PHH3
or TUNEL-positive cells between Unicorn and controls (p < 0.05). For the BrdU labeling we compared
the Unicorn and controls littermates with a paired Students t-test (p < 0.05).

2.8. Imaging

Whole mount images were captured on a Leica M165FC dissecting microscope using a DFC 450
camera and Leica LAS software. Histological images were captured on a Zeiss AXIO microscope with
an AxioCam MRc 35 camera and Zen software. Fluorescence images were obtained at the Center
for Biological Imaging at the University of Pittsburgh on an Olympus FluoView 1000 confocal and
deconvolved using NIS software. Confocal images are presented as maximal projection stacks.

3. Results

3.1. Unicorn Mice Develop a Midfacial Cleft with a Bifurcated Nasal Septum

We selected the Unicorn mouse line for cryorecovery because the initial screen produced two
phenotypic embryos with a spectrum of orofacial clefting phenotypes including a midfacial cleft and
cleft palate. To fully capture the orofacial clefting phenotype and test the heritability of the orofacial
clefting phenotype we devised a breeding schema that involved the analysis of E15.5 embryos from
sibling intercrosses to test the heritability of the phenotype. We collected these embryos at E15.5,
because lip and palate development is complete and any orofacial phenotype would be obvious at
this stage.

All of the Unicorn mutants collected after the cryorecovery develop a midfacial cleft that extends
through the lip, palate, and snout (Figure 1E,F). Except for the midline cleft, the external anatomy of
the Unicorn mutants is grossly normal, including the nostrils and the lateral sides of the lip (Figure 1F).
Additionally, the patterning of the facial bones and cartilages is largely normal. However, because of
the midfacial cleft, the premaxilla and vomer of the Unicorn mutants are laterally displaced compared
to the littermate control at E15.5 (Figure 1G,H). We observed the presence of bone between the bifid
nasal septa in Unicorn mutants (Figure 1G,H).
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Figure 1. Midfacial cleft phenotype in Unicorn mutants. External and bone and cartilage morphology
at E15.5 of (A-D) littermate control and (E-H) Unicorn mutants. (A,E) Dorsal view; (B,C,F,G) frontal
view; (D,H) palatal view. (A,B,E,F) External morphology of embryos; the midfacial cleft is indicated by
arrow. (C,D,G,H) Skeletal preparations with alizarin red and alcian blue to stain the bone and cartilage
respectively. (C,G) At the proximal region of the midfacial cleft, the Unicorn mutants have developed
bone between the two nasal regions (arrowhead). Nasal conchae and Meckel’s cartilages as well as the
premaxillary, maxillary, and mandibular bones are present in Unicorn mutants. (D,H) The midline nasal
septum is apparent in the control littermate in the palatal view while it is bifid in the Unicorn mutant at
E15.5 (arrowhead). Scale bars in A = 1 mm, applies to B, E, F. in C = 1 mm and applies to D, G, H.

3.2. Genetics of the Unicorn Mouse Line

In addition to the morphological analysis, the initial two phenotypic embryos were exome
sequenced (Supplementary Materials). The exome sequencing uncovered 19 genes that had
ENU-induced damaging mutations in common (5 homozygous and 14 heterozygous). We designed
our sibling intercross heritability experiment to collect recessive phenotypic embryos at late stages of
development (E15.5), and we reasoned that the genes that were present as homozygous mutations in
the phenotypic embryos would be causative in our phenotype [23].

We developed custom Invitrogen SNP assays for genotyping five genes (Cox2, Cyp2j13, Raldh2,
Leol, and TMEM106) and genotyped the first five generations of sibling intercrosses for all genes.
By the fifth generation, the midfacial phenotype only segregated with missense mutations in Raldh2
(c.A1231T:p.M411L) and Leol (Leo1l:NM_001039522:exon11:c.T1896A:p.D632E). Leol and Raldh2 are
within 4.2 megabases of each other on mouse Chromosome 9 and we have been unable to separate
them in the Unicorn line.

Raldh2 synthesizes retinoic acid and is involved in the development of the frontonasal process,
secondary palate, and skull vault in mouse embryos [17,27,28]. Leol is a subunit of the RNA polymerase
II complex, and the IMPC phenotyping reported that homozygotes have a pre-weaning mortality.
All phenotypic Unicorn mutants are homozygous for both Leol and Raldh2 ENU-induced mutations.
We sought to determine if Leol and Raldh2 expression patterns overlapped in the developing face.
At E10.5. Raldh2, and Leol are expressed in and around the converging medial nasal prominences
(Figure 2).
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Leo1

Raldh2

Figure 2. Leol and Raldh2 are expressed in the facial prominences at E10.5. (A,B) Leol is expressed
strongly in the brain and heart tissue, as well as the medial nasal prominence mesenchyme (arrow).
(C,D) RALDH?2 is expressed in the maxillomandibular cleft (arrow) and the brain at E10.5.

3.3. Unicorn Nasal Septum and Surrounding Tissues Differentiate Normally

To better understand the morphological cause of the Unicorn phenotype, we assayed the histology
of bone and cartilage at E15.5. In controls at E15.5, the nasal septum was present as one midline
organ that stained strongly with alcian blue, and expressed the chondrocyte marker, Sox9. The nasal
cartilages were supported by Alkaline phosphatase positive bones. The nasal septum and palatal shelves
were continuous in controls (Figure 3A-D). The two nasal septa of the Unicorn embryos were located
within a widened frontonasal process (Figure 3E-H) and were alcian blue positive and expressed Sox9,
(Figure 3E-H). At E15.5, the Unicorn palatal shelves had elevated above the tongue, but had not yet
fused with each other or with the nasal septum (Figure 3E-H). In addition, the differentiating bony
skeleton surrounding the nasal cartilages expressed Alkaline phosphatase and had begun differentiating
in relatively normal anatomical positions within the duplicated nostrils. Combined with the skeletal
preparations and these analyses we conclude that the Unicorn mutant nasal skeleton was developing
normally, except that it was shifted laterally.
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Figure 3. The nasal septum is bifid in the Unicorn animals at e15.5. Frontal sections capturing the nose
and palate of Unicorn and control embryos, stained with (A,E) hematoxylin and eosin, (B,F) alcian
blue and sirius red, (C,G) Alkaline phosphatase (D,H) Sox9. (A,B,E,F) H&E and alcian blue and sirius
red staining reveal the nasal septum as one midline organ located in the frontonasal process in control
embryos. In Unicorn embryos, there are two individual nasal septa organs located in the frontonasal
process. (C,G) Alkaline phosphatase expression is present in the maxillary bone, vomer and superior
to the nasal conchae of Unicorn mutants. (D,H) Sox9 expression is expressed in the duplicated nasal
septum in Unicorn mutants. Scale bars = 200 pm. nc, nasal conchae; ns, nasal septum; ps, palatal
shelves; t, tongue; v, vomer.

3.4. Unicorn Patterning is Normal at E12.5

Because we observed normal bone and cartilage differentiation at E15.5, we wanted to identify
when the bifid nasal septum first arises. During normal development the paired medial nasal
prominences coalesce medially by E12.5. The premaxillary bones inferior to the nasal slits in control
and Unicorn mutant embryos expressed Runx2, an osteoblast specific transcription factor, although
the Unicorn embryos expression domains extended laterally (Figure 4A,E). In control embryos, Sox9
expression was found in the nasal septum and cartilaginous fins that extend from it (Figure 4B). However,
in Unicorn mutants, the nasal septum already consisted of two Sox9-positive organs (Figure 4F).

Runx2 _ Sox9

Unicorn

Figure 4. The Unicorn nasal mesenchyme has normal expression pattern of markers. (A,E) Runx2 is
expressed in the premaxilla of Unicorn and control embryos. (B,F) Sox9 is expressed in the control nasal
septum and in both nasal septa of the Unicorn embryos. (C,G) Similar to controls, Unicorn embryos
express Erm1 in the mesenchyme adjacent to the Sox9-positive region, but is expanded superiorly
between the oral ectoderm and cartilaginous condensations. (D,H) Glil expression surrounds the Sox9
region in both Unicorn and control animals. Scale bars are 100 pm.
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We next asked where active Fibroblast growth factor (FGF) signaling and Hedgehog (HH)
signaling is occurring at E12.5 with the expression of Erm1 and Glil expression. We observed that Erm1
was expressed at similar levels in the mesenchyme surrounding the nasal pit and the nasal septum
(Figure 4C,G). The Erm1 domain was expanded superiorly between the oral ectoderm and cartilaginous
condensations of the Unicorn embryos (Figure 4G). Gli1 was expressed in similar mesenchymal domains
of Unicorn and control E12.5 embryos (Figure 4H). These data suggest that FGF and HH signaling is
largely unchanged in the Unicorn mutant facial prominences.

3.5. The Critical Period for Midfacial Clefting Is between E10.5 and E11.5

At E10.5 mouse MNPs begin to shift from a lateral to a more medial position prior to the medial
edges making contact at E11.5. We hypothesized that the midfacial cleft phenotype in the Unicorn
embryos arose in part because of the MNPs failing to fuse at the midline. To analyze the facial
morphology changes occurring at E10.5 and E11.5, we placed facial morphometric landmarks upon the
faces of at least three Unicorn and control embryos (Figure 5). We measured the facial widths between
the paired prominences at different anterior-posterior levels that included the paired MNPs, MXPs,
and LNPs. We measured the width of individual maxillary prominences, and found no difference
between the width of the maxillary prominences of control and Unicorn embryos at E10.5 and E11.5
(E10.5 WT 4.67 um + 0.20 um, n = 3; vs Unicorn 5.02 um + 0.64 um, n = 3; E11.5 WT 7.78 um + 1.09 um,
n = 4; Unicorn 6.96 um + 0.95 um, n = 4). Therefore, we normalized the facial widths to a maxillary
prominence width to account for staging and size differences in the embryos.

Control Unicorn Control D  Unicorn E

e, 52 ]y

Control Unicorn

YN

Figure 5. Critical period for midfacial clefting is between E10.5 and E11.5. (A,B,F,G) Frontal
pseudo-SEM images of E10.5 and E11.5 Unicorn and littermate control embryos. At E11.5, the medial
nasal prominences (MNPs) in the control mice have met at the midline, while the Unicorn mice have
a large internasal distance that separates the two MNPs. (C,D,H,I) Schematics of E10.5 and E11.5
of the measurements made on control and Unicorn faces. We placed 12 landmarks (black circles) on

w
o
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W|dth
=g

Normallzed
width
=N W Ao
Q Q O O O

E11.5

each face and measured the width of face between the lateral edges of the lateral nasal prominences
(FW), the width between the medial edges of the nasal pits (IN) the mouth opening width (MO), the
width of individual maxillary prominences (MX), and the width between the lateral edges of the paired
maxillary prominences (iMX). (E,J) We normalized the facial widths to the width of one maxillary
prominence to account for staging differences between littermates. By E11.5 the normalized internasal
distance (IN) is significantly wider in Unicorn mutants compared to control. The remainder of the
measurements that include the IN are also significantly wider in the Unicorn mutants. FW, facial width;
IN, internasal distance; MO, mouth opening width; iMX, intermaxillary distance. Scale bars are 100 pum.

At E10.5, the nasal pits of the Unicorn embryos faced laterally, projecting toward the sides of the
face, whereas in the littermate control, the MNPs were shifted medially toward the midline of the face
(Figure 5A,B). Importantly, the E10.5 Unicorn midfacial width is not significantly different from the
control embryos (Figure 5E).
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In the E11.5 control embryos, the MNPs had made contact at the midline of the face and are
beginning to merge together (Figure 5F). In contrast, in Unicorn mutants, MNPs had shifted toward
the front of the face, but there was already a significant distance between the medial edges of the
MNPs (Figure 5G). We found that the intranasal distance is significantly wider in the Unicorn mutants
compared to the control and every measurement that includes it is also significantly wider (Figure 5J).
These data suggest that the critical period for MNP convergence occurs between E10.5 and E11.5 in the
mouse embryo.

3.6. Unicorn Embryos Have Decreased Proliferation in Caudal MNPs

We hypothesized that the difference in morphology that arises between E10.5 and E11.5 could
come about through increased proliferation in the Unicorn embryo facial prominences. We determined
the rate of cellular proliferation using two methods: phospho-Histone H3 immunohistochemistry and
the incorporation of Bromodeoxyuridine (BrdU). We chose to use phospho-Histone H3 to detect the
cell actively dividing and the BrdU to detect cells that are entering the cell cycle [29,30]. From both
E10.5 and E11.5 coronal sections, we counted the number of cells proliferating in a cranial and caudal
segment of MNP mesenchyme (Figure 6A,B,L]). To determine the level of epithelial proliferation,
we counted one area at E10.5, and two areas in the MNP medial edge epithelium adjacent to the
mesenchymal regions (Figure 6A-D).
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Figure 6. Unicorn embryos have decreased caudal mesenchymal and epithelial proliferation at E10.5.
Proliferation and apoptosis in the MNP mesenchyme and epithelium at E10.5 (C-H) and E11.5 (K-P)
during the critical period of MNP fusion. Proliferating cells detected by phospho-Histone H3 (PHH3)
and BrdU. TUNEL was used to detect apoptotic cells. (A,B,LJ) Schematics of coronal sections showing
the regions used for counting the positive cells. The cranial regions are blue, and the caudal regions are
black. (C,D) There is no difference between the number of PHH3-positive cells in the E10.5 control or
Unicorn MNP epithelium and mesenchymal cells. (K,L). There are more PHH3-positive cells in the
Unicorn MNP epithelium at E11.5 (p-value = 0.0274), and no difference in mesenchymal proliferation.
(E,F). There are fewer BrdU labeled cells in the caudal portion of the E10.5 MNP mesenchyme, however
there is no difference when the two segments are combined nor in the epithelium. (M,N) BrdU
incorporation is similar in the epithelium and mesenchyme of Unicorn and control MNPs at E11.5.
(G,H,O,P) The level of apoptosis in the MNP medial edge epithelium and mesenchyme is similar
between control and Unicorn MNP at E10.5 and E11.5. Scale bars = 100 um.
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At E10.5, Unicorn MNP mesenchyme showed significantly less proliferation within the caudal
mesenchyme when evaluated via BrdU (Figure 6D,F). By contrast, levels of phospho-Histone staining
in the same regions was unchanged. By E11.5, we detected no significant differences in proliferation
between the control and Unicorn MNP mesenchyme (Figure 6N). There was no difference in the
epithelial proliferation rate at E10.5 (Figure 6C,E). We observed significant differences within the caudal
epithelium at E11.5 when evaluated via PHH3 (Figure 6I).

In the secondary palate, there is evidence that the medial edge epithelial cells disappear via
apoptosis [31-34]. We used TUNEL (terminal deoxynucleotidyl transferase (TdT) nick end labeling)
assay to detect apoptotic cells in the MNPs. We quantified apoptotic cells in the same regions as the
proliferating cells and we did not observe any significant differences in the epithelium nor mesenchyme
of the Unicorn embryos at either timepoint (Figure 6G,H,O,P). We did observe many TUNEL-positive
cells located in the lateral lip zone of fusion (Figure 60,P).

3.7. Unicorn Frontonasal Ectodermal Zone Is Shifted Laterally

The frontonasal ectodermal zone (FEZ) is a signaling center that determines the orientation and
direction of outgrowth of the upper jaw [6,7]. The FEZ is an epithelial signaling center that expresses
complimentary domains of Fgf§ and Shh. To test the location of the functional FEZ, we evaluated the
expression of HH-responsive genes: Glioma-associated oncogene homolog 1 (Glil), and Patchedl (Ptc1), and
FGF-responsive gene: Ezrin-radixin-moesin (Erm1) at E11.5. In Unicorn mutants the domains of both
Glil and Ptc1 is shifted caudally and laterally compared to the control MNP at E11.5 (Figure 7B,C,EG).
Correspondingly, the expression of Erm1 had shifted cranially and laterally (Figure 7D,H).

Erm1

AW
u\r‘:‘%i’.‘ 'v._&iﬁn :
e

Unicorn

Figure 7. The Unicorn FEZ is shifted laterally. Wholemount images of embryos used for section in situ
hybridization to HH reporters, Ptc1, Glil, and FGF reporter, Erm1 at E11.5 in control (A-D) and Unicorn
(E-H) littermates. (A,E) Pseudo-SEM images of the face of the embryos used for the in situ analysis.
(B,F) Glil expression domain is shifted laterally in Unicorn mutants. (C,G) Ptc1 domain is more lateral
and distal to the nasal pit epithelium. (D,H) Erm1 expression domain is shifted laterally and anteriorly
in Unicorn mutants. Scale bar in A = 200 pm and applies to E; B = 100 um and applies to C, D, F-H.

4. Discussion

Midfacial clefting is estimated to occur in approximately 5/100,000 live births [35,36]. In human
patients, the phenotypic spectrum ranges from a small midline notch of the upper lip to a cleft that
separates the central incisors, the medial alveolar ridge, the philtrum, and the nasal septum. The Unicorn
mouse line is a novel model that can accurately model the human midfacial clefting phenotypes.
The Unicorn midfacial cleft consists of a bifid nasal septum, and allows for the development of normal
bone and cartilage anatomy surrounding the nostrils. These phenotypic features suggest that the
Unicorn model is both a morphological and genetic tractable model for midfacial clefting.
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The nasal septum is a key growth site responsible for midfacial chondrocranial growth during
embryogenesis [37-39]. In the case of severe midfacial clefting, such as that observed in the Unicorn
embryos, we have narrowed the critical period for midfacial morphogenesis to between E10.5 and
E11.5. In mandibular development, the condensation of Meckel’s cartilage acts as a scaffold to support
the outgrowth of the mandible. The Unicorn phenotype suggests that the same principle applies to
the nasal septum and the expression of Collagen2-cre can be detected in the nasal region as early as
E9.5 [40].

The nasal septum is commonly bifurcated in severe cases of midfacial clefting. At birth, in the
mouse and chicken, the nasal midline is supported by a single strut of nasal septum cartilages, while
each Unicorn nostril is supported by a single strut of nasal septal cartilage. The unique anatomy
of the Unicorn snout suggests two potential hypotheses regarding early nasal septum development.
We hypothesize that the nasal septum may develop as two mesenchymal condensations that must
merge in the midline. The alternative is that the bifid nasal septum results from a duplication of a
single condensation in the Unicorn mutants. Although, our data cannot distinguish between these
possibilities, we favor the hypothesis that each medial nasal prominence contributes to half of the nasal
septum condensation and subsequent cell movements between E10.5 and E11.5 allow the convergence
of the condensation. We also hypothesize that the FEZ directs the morphogenetic movements medially
for the MNPs convergence (Figure 8).

Unicorn

Figure 8. Model for midfacial morphogenesis. Pseudo-SEM images of control and Unicorn embryos.
(A) at E10.5 the MNPs are converging medially followed by (B) proximal-distal outgrowth of the
merged MNPs. (C) The Unicorn mutations causes the MNPs to grow laterally rather than medially
resulting in the midfacial cleft.

Between the bifid nasal septa, we observed the presence of a bone and in histological sections we
observed ectopic condensations of bone and cartilage in Unicorn mutants (Figures 1, 3 and 4). In normal
mice, the superior aspect of the nasal conchae is covered by paired nasal bones. The nasal bones are
connected by a suture that is directly above the single nasal septum. We hypothesize that the midline
bone in the Unicorn mutants is the paired nasal bones that have collapsed into one bone because there
was no structural support from the nasal septum to maintain two individual condensations.

The phenotype of the Unicorn mutants suggests that the Unicorn Raldh2 mutation is not a full
loss of function because the phenotype is discordant from the published Raldh2~/~ knockout mice.
Importantly, the complete knockout of Raldh2~/~ results in a truncated frontonasal region and is
mid-embryonic lethal [17]. Loss of Raldh2 in the frontonasal region results in decreased fibroblast
growth factor signaling and Hedgehog signaling in the facial mesenchyme as well as lateral lip clefts,
and no midfacial clefts [27].

Leol is a subunit of the RNA polymerase II complex, and the IMPC phenotyping determined
that the mouse homozygotes have a pre-weaning mortality phenotype which precluded any further
analysis (http://www.informatics jax.org/diseasePortal/genoCluster/view/11463). In zebrafish, Leol
mutants have decreased craniofacial cartilages especially in the ethmoid plate where it develops a
midline cleft [21]. Our mouse Leol expression data suggest that Leol is not expressed ubiquitously,


http://www.informatics.jax.org/diseasePortal/genoCluster/view/11463

Genes 2020, 11, 83 12 of 14

and support the hypothesis that Leol may modulate the transcription of signaling molecules in the
telencephalon or MNPs that are required for the induction and patterning of the nasal region.

The paucity of work on normal midfacial morphogenesis and the phenotypic spectrum of
human cases further highlights the need to better understand the normal and abnormal midfacial
morphogenesis. In conclusion, the Unicorn midfacial cleft phenotype has revealed the critical period
for the midfacial morphogenesis and is a useful model for beginning to understand the etiology of
midfacial clefting.
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