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Abstract: Pancreatic ductal adenocarcinoma is an extremely aggressive disease with a high metastatic
potential. Most patients are diagnosed with metastatic disease, at which the five-year survival rate
is only 3%. A better understanding of the mechanisms that drive metastasis is imperative for the
development of better therapeutic interventions. Here, we take the reader through our current
knowledge of the parameters that support metastatic progression in pancreatic ductal adenocarcinoma,
and the experimental models that are at our disposal to study this process. We also describe the
advantages and limitations of these models to study the different aspects of metastatic dissemination.
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1. A Brief Introduction to Pancreatic Cancer

1.1. Epidemiology and Clinical Outcome of PDA

Pancreatic cancer can either be exocrine or neuroendocrine (endocrine tumors), depending on
the cell of origin. About 93% of pancreatic cancers are exocrine tumors, the most common type being
pancreatic ductal adenocarcinoma (PDA). The remaining 7% are neuroendocrine tumors (PNET),
also called islet tumors, which often grow more slowly than their exocrine counterparts [1,2]. In addition
to the low frequency of cases, PNET are mostly characterized as indolent. While 40%–80% of patients
with PNET are metastatic at presentation, usually involving the liver (40%–93%) [3], treatment options
do exist and include locoregional therapy, chemotherapy, as well as liver transplant [4]. A detailed
review on the metastasis of PNET can be found in [5]. Herein, we will focus on the metastasis of PDA.

PDA is a highly aggressive malignancy with limited treatment options and a dismal prognosis.
PDA represents the fourth leading cause of cancer death worldwide, and the 12th most common cancer
in the world [6,7]. The detrimental outcome is related to delayed diagnosis, often a consequence of
non-specific symptoms such as abdominal pain, jaundice and weight loss. The retroperitoneal location
of the pancreas also means there are no external lumps that can be palpated during an annual routine
physical exam, such as may be the case for breast cancer. Further, the aggressive nature of the disease
is associated with a high potency of metastatic dissemination to adjacent organs such as the liver and
the gallbladder [7–9], which is often already detected at diagnosis [10]. In these cases, surgery is rarely
a viable option. Even with intended curative surgical resection of the primary tumor with no tumor
margin (R0) and no evidence of metastasis at resection, 75% of the patients die of metastatic disease
within 5 years after surgery [7,11].

The current standard of care for patients with PDA includes chemotherapeutic cocktails that
are highly toxic with limited specificity. Despite many attempts to optimize the chemotherapeutic
regimens for PDA in clinical studies, the increase in the overall survival rate is poor. As the majority of
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PDA patients die of metastatic disease, this underscores the urgent need to develop novel therapeutics
that targets not just the primary tumor but also the biological vulnerabilities of metastatic PDA cells.

1.2. Genetic and Molecular Classification of PDA

Oncogenic activation of KRAS is the most frequent genetic alteration in PDA (>90%) [12]. While
activating mutations of KRAS downstream signaling pathways, including BRAF-MAPK and PI3K-AKT,
have also been observed, they are less frequent [13–15]. Mutations of tumor suppressor genes found in
PDA include CDKN2A/p16 [16], TP53 [17,18], and SMAD4/DPC4 [19,20]. Over 90% of early PanIN-1
have KRAS mutations, and mutations in KRAS, BRAF, p16/CDKN2A or GNAS are present in over 99%
of early lesions [21]. Despite extensive genomic characterization, individual DNA mutations are yet to
provide theranostic information for PDA. This has prompted efforts to perform in-depth molecular
profiling of PDA to identify its transcriptional classifiers [22].

Using bulk tumor samples, several studies have identified various subtypes of ductal pancreatic
tumor [23–25]. In general, it was found that PDA includes at least two groups distinguished by
markers of epithelial differentiation state, with the more poorly differentiated (“basal-like”, “squamous”,
or “quasi-mesenchymal”) exhibiting reduced survival relative to well-differentiated subtypes (“classical”
or “progenitor”) [23–25]. More recently, these sub-classifications were unified by a study led by Maurer
et al. in which laser capture microdissection RNA sequencing on PDA epithelia and adjacent stroma was
performed [26]. This work revealed the presence of two tumor epithelial subtypes (basal and classical)
and two activated stromal subtypes (immune signaling and matricellular fibrosis). Importantly, these
results indicate the linkage between epithelial and stromal subtypes, thus revealing the potential
interdependence of the evolution of tissue compartments in PDA [26]. This highlights the importance
of understanding the biology of both the cancer cells and their surrounding microenvironment in the
process of tumor progression and metastasis to advance therapeutic development and prognostication
in the coming years.

2. Factors Governing Metastasis

Next-generation genome sequencing of treatment-naïve pancreatic primary tumors and
patient-matched metastasis has revealed that cells initiating distant metastasis are genetically identical,
and that the different metastatic lesions share identical driver gene mutations [27]. This suggests
that transcriptional or post-transcriptional changes are central to supporting the complex series of
biological hurdles that must be surpassed for pancreatic cancer to metastasize [28,29]. These hurdles
include detachment of the cancer cell from the basement membrane, invasion of surrounding tissue,
intravasation (i.e., entering circulation), survival in circulation, extravasation into the parenchyma of
distant tissues, and outgrowth into macrometastatic lesions. In PDA, it has been shown that metastasis
can occur through early dissemination, even before the formation of a primary tumor mass [30,31].
Early disseminated cancer cells remain dormant with an increased resistance to current therapies [30,31]
and exhibit clonal diversity on the basis of the site of metastatic invasion [32]. Specifically, lineage
tracing analysis revealed that metastases in the peritoneum and diaphragm exhibit polyclonality,
whereas those in the lung and liver tend to be monoclonal [32]. These observations suggest that
heterotypic interactions between tumor subclones as well as site-specific selective pressures are both
central to influencing metastatic initiation and progression.

Dissemination of neoplastic cells can occur through the blood vessels or the lymphatic
system. The latter usually involves the invasion of lymph nodes, starting with the sentinel node
(i.e., the closest) [33]. Several factors determine the method of dissemination, including physical
restrictions and accessibility of the different vasculature [33]. Here, we will focus on our understanding
of metastatic events through the vasculature and summarize the important advances that have
contributed to the identification of the factors involved in the dissemination and metastasis formation
in PDA.
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2.1. Epithelial to Mesenchymal Transition and Invasion

In order for cancer cells to leave the primary tumor site and disseminate, they must
acquire “pro-metastatic traits”. One of the most extensively studied “pro-metastatic traits” is the
epithelial-to-mesenchymal transition (EMT), the transition of epithelial cells into motile mesenchymal
cells, which plays an important role in embryogenesis, cancer invasion, and metastasis [34]. This process
is associated with the loss of epithelial characteristics, including polarity and specialized cell–cell
contacts, and the gain of a mesenchymal migratory behavior, allowing them to move away from their
epithelial cell community and to integrate into surrounding or distant tissues [29,35]. In PDA, the EMT
program has also been shown to increase tumor-initiating capabilities [36] and drug resistance [37–39].
More recently, it has been shown that the PDA EMT program consists of an intermediate cell state coined
“partial EMT” [40–43]. The partial EMT phenotype is characterized by the maintenance of an epithelial
program at the protein level, in contrast to a complete EMT phenotype which is characterized by the
lack of epithelial marker expression both at the mRNA and protein levels [43]. Moreover, the partial
EMT phenotype is characterized by the re-localization of epithelial proteins (including E-cadherin)
to recycling endosomes. Interestingly, partial EMT cells migrate as both single and collective cells,
in contrast to complete EMT cells that mainly migrate in isolation [43]. This is in contrast to the
conventional notion that cells from connective tissue tumors such as fibrosarcoma and glioma tend to
migrate individually, whereas cells from melanoma and carcinoma often migrate collectively [29,44–46].
The different modes of cancer dissemination (single vs. clusters) seem to influence the metastatic
potential of cancer cells, as several studies have shown that tumor clusters have a higher metastatic
potential than single cells [45,47–49]. Cell clusters can also be heterogeneous [50] and composed of
cells from the tumor stroma co-migrating with cancer cells to distant sites. For example, pancreatic
stellate cells (PSCs) co-injected orthotopically with pancreatic cancer cells can be identified in distant
metastasis [51].

The induction of EMT by TGF-β was first recognized in cell culture [52]. The TGF-β-induced
activation of the receptor complex leads to activation of SMAD2 and SMAD3 [53]. Activated SMAD2
and SMAD3 form a heterotrimer with SMAD4, and translocate into the nucleus, where they associate
and cooperate with DNA-binding transcription factors to activate or repress the transcription of target
genes such as SLUG, SNAIL1 and TWIST [53]. Interestingly, in a genetically engineered mouse model
(GEMM) of PDA, it was previously reported that SNAIL and TWIST may actually be dispensable
for PDA dissemination and metastasis [54]. Other factors contributing to EMT include alterations
in mucin expression [55]. Indeed, matched sets of tissues obtained from autopsy patients revealed
significant differences in the expression of both membrane-associated and secreted mucins harboring
different glycosylation modifications from early lesions to metastasis [56]. Sonic hedgehog (SHH)
produced by the pancreatic epithelia, has been shown to enhance angiogenesis in vivo and contribute
to tumor metastasis, particularly to the lymph nodes [57]. More recently, transcriptome and enhancer
landscape profiling of murine primary tumors and metastatic organoids have suggested that enhancer
reprogramming promotes pancreatic cancer metastasis and implicates FOXA1 to be a major driver of
invasiveness [58].

2.2. Surviving Oxidative Changes in the Circulation and Distant Parenchyma

Successful metastatic outgrowth requires cancer cells to undergo adaptations to survive the highly
oxidative environment in circulation and in the parenchyma. The oxygen levels in peripheral tissues is
reported to be around 38 mmHg (ranging between 57 mmHg and 30 mmHg depending on the tissue),
whereas in arterial blood the concentration can be as high as 70 mmHg [59]. The oxygen tension in
PDA is reportedly 19.1 times lower than that in normal tissue [60]. Therefore, disseminated PDA cells
must engage adaptive mechanisms to survive this drastic change.

Reactive oxygen species (ROS) are byproducts of cellular metabolism that could act as signaling
molecules to regulate cellular metabolism itself [61]. There is a very delicate balance between the
levels of ROS and their function as tumor promoters versus cell toxicity. While low levels of ROS can
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promote tumorigenesis [62], at high levels they can also induce cell death [63,64]. Extensive reviews
on the role of ROS in cancer can be read elsewhere [65–67]. Previous studies demonstrate a role
for ROS scavenging in protecting cells against anoikis [68]. Consistently, in experimental models of
melanoma [69,70], breast [71], and lung cancer [72], treatment with antioxidants enhances metastasis.

Within the primary tumor, it has been shown that PDA cells can engage different mechanisms
to regulate the levels of intracellular ROS. These include increased glucose flux through the pentose
phosphate pathway (PPP) [73,74] and increased glutamine metabolism [75,76]. Both of these
mechanisms result in a net increase in the levels of the reducing equivalent NADPH, which maintains
the levels of intracellular reduced glutathione [77]. PDA cells can also counteract the high levels of
ROS accumulation by upregulating NFE2l2/NRF2, a master regulator of redox homeostasis. NRF2 has
been shown to have a role in PDA initiation [78], tumor maintenance [79] and possibly metastasis [80].
The specific redox defense mechanisms involved in supporting PDA metastatic dissemination remains
to be determined.

2.3. Interactions with the Tumor Microenvironment

The pancreatic tumor microenvironment (TME) is composed of stromal cells and extracellular
matrix (ECM) components [81]. The predominant populations of stromal cells in PDA include
cancer-associated fibroblasts (or activated PSCs), regulatory T cells, and tumor-associated
macrophages [81]. Soluble factors from activated PSCs can prime the primary tumor for metastasis
and cell migration. For example, PSC-derived hepatocyte growth factor (HGF) [82], insulin growth
factor 1 (IGF-1) [82], and interleukin-6 (IL-6) [83] can induce EMT in PDA cells. In addition to
facilitating EMT, secreted factors from PSCs such as matrix metalloproteases [84], collagen I [85],
IL-6 [86], and galectin-1 [87] can also directly stimulate PDA cell migration. Besides directly activating
pro-metastatic properties in the primary tumor, stromal factors also contribute to preparing a
pre-metastatic niche in distant organ sites to facilitate the seeding of metastatic cells [88,89]. In an
orthotopic model of PDA, it was shown that monocytes are recruited to the liver to prepare a
supportive niche during cancer progression [90]. Similarly, hepatocyte-derived IL-1 contributes to
creating an inflammatory environment to support PDA metastatic seeding and development in the
liver [91]. The desmoplastic nature of PDA also results in limited oxygen availability [92]. The hypoxic
environment that ensues has been shown to induce the expression of the transcription factor BLIMP
in a subset of cancer cells, contributing to the tumor heterogeneity, and providing these cells with a
transient metastatic potential [93].

Cancer stem cells (CSCs) characterized by the expression of CD133 and CXCR4 markers have been
identified at the invasive front of pancreatic tumors [94]. These cells are characterized by a dependency
on oxidative metabolism and reduced metabolic plasticity, determined by a decrease in c-MYC
expression compared to non-CSCs [95]. Interestingly, this dependency on oxidative phosphorylation
(OXPHOS) seems to be shared by a subpopulation of dormant tumor cells [96], thus raising the
possibility of targeting these cells with OXPHOS inhibitors. As the availability of nutrients is different
in each organ site [97], the metabolic adaptations required for cancer cells to establish at different
organs sites are also expected to be different. In vitro comparison of primary PDA cell lines and
matched distant metastasis revealed enhanced glucose entry into both glycolysis and the oxidative arm
of the pentose phosphate pathway (PPP) in metastatic lines [98]. Several studies in other solid tumors
such as melanoma [99], prostate [100] and breast [101] have shown that mitochondrial metabolism is
linked to cancer metastasis. This dependency remains controversial, given that both mitochondrial
dysfunction and the activation and inhibition of mitochondrial biogenesis have been shown to promote
metastasis [99–101]. Differential dependency may be organ-site-specific, given that cancer cells that
metastasize to the lung or lymph nodes have been reported to rely more heavily on mitochondrial ATP
production [102–104], whereas those that metastasize to the liver seem to favor non-mitochondrial
ATP production [104–106]. Taken together, these studies highlight the potential contribution of the
TME to PDA metastatic progression, warranting further investigation.
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2.4. Dormancy

Metastatic dormancy can be defined as the time between the dissemination of cancer cells and the
manifestation of a metastatic lesion. It is still unclear whether cancer cells leave the primary tumor
in a dormant state, or if they disseminate in a pre-malignant state. Factors that govern dormancy
and immune evasion remain elusive. A recent study suggested the involvement of endoplasmic
reticulum (ER) stress in establishing dormancy in pancreatic cancer cells in vivo [107]. Specifically, these
quiescent disseminated cancer cells (DCCs) exhibit unresolved ER stress along with a downregulation
of the major histocompatibility complex class I (MHCI). In this setting, the use of small molecules
to relief ER stress in combination with T cell depletion led to outgrowth of metastases in vivo [107].
This study has several implications in the development of therapies to prevent metastatic outgrowth in
patients after removal of the primary tumor. In fact, data from this study suggest that post-operative
hyperalimentation [108] (by balancing the levels of plasma cortisol after the surgery, and inducing an
intact immune system), together with chemical chaperones, might play a role in clearing latent DCCs
and suppressing the formation of metastasis after the removal of the primary tumor.

3. Models of Pancreatic Metastatic Disease

As discussed above, the formation of metastasis is an extremely complex process that can be
conceptually divided into three main phases: 1) intravasation of cancer cells from the primary tumor
into circulation, 2) dissemination and survival of circulating tumor cells in the bloodstream, and 3)
survival and colonization of disseminated cells in the distant site (Figure 1). In human PDA, the liver
is the most common site of metastasis (accounting for over 60% of the patients), followed by lung and
peritoneum metastasis (around 30%). Bone and adrenal secondary tumors account for approximately
10% of the metastasis in PDA patients [9,109,110].

In this section, we will provide an overview of the in vitro and in vivo models to study the
metastatic process of PDA (summarized in Figure 1).

3.1. In Vivo Models

3.1.1. Murine Models

Genetically Engineered Mouse Models (GEMMs)

Genetically engineered mouse models (GEMMs) express tumor-driving genes in an
immune-competent mouse. Thus, these models nicely recapitulate the histopathological features of
PDA. However, unlike patients, PDA GEMMs die with, not from, metastatic disease [111].

• Transgenic Models

Transgenic models involve the ectopic expression of target genes in the host mouse genome.
Tissue and/or cell type-specific promoters are often used to restrict the expression of the target gene
spatially and temporally [112]. Several pancreatic cell-lineage-specific promoters have been used
in GEMMs so far, including pancreatic and duodenal homeobox 1 (Pdx1) [112], elastase (Ela) [112],
neurog3 (Ngn3) [113], and Ptf1 [111,112], among others. A thorough revision of the most common
pancreas-specific Cre driver lines can be found in [112]. Ectopic expression of Myc under the elastase
promoter drives liver metastasis in 20% of the mice [114], whereas the expression of the mouse polyoma
virus middle T antigen in elastase-expressing cells in conjunction with the inactivation of tumor
suppressor genes such as p53, Smad4, and p16Ink4a have been shown to stimulate the formation of
highly metastatic pancreatic tumors [115]. Genetic ablation of the pigment epithelium derived factor
(PEDF) in an Ela-KrasG12D mouse has also be shown to induce invasive pancreatic cancer [116].

While transgenic mice offer the advantages of being relatively fast to develop and breed, and allow
the expression of human genes [117], the expression of the target gene occurs under foreign promoters
at levels that do not necessarily represent the physiological expression level from its endogenous
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locus [117]. These limitations can be circumvented with the use of conditional knock-in or knock-out
mouse models.

• Conditional Gene Knock-in Models

Gene knock-in strategies offer the opportunity to express desired mutations in the gene of interest
within its endogenous locus. Here, the engineered mutation lies downstream of a “Lox-STOP-Lox”
(LSL) cassette and the interbreeding of mice carrying the mutant allele with a Cre driver mouse allows
the expression of the target gene mutation in a tissue-specific manner. Mice expressing Pdx1-Cre and
LSL-KrasG12D spontaneously develop metastatic adenocarcinomas at a low frequency [118].

The combination of oncogene activation with tumor suppressor inactivation has been a fruitful
strategy in generating metastatic pancreatic disease models that closely resemble human PDA.
The combination of activated KrasG12D expression with full body deletion of p16Ink4a/p19Arf has
been reported to induce rapid progression of PanIN to invasive and metastatic PDA [119]. Similarly,
conditional deletion of p16Ink4a in the context of Pdx1-Cre-driven KrasG12D expression drives the
progression of pancreatic disease from PanIN to metastatic PDA [120]. Metastatic progression
in this model is also accompanied by the loss of the Kras wild-type allele [120]. Conditional
Tgfbr2 deletion in the context of Kras activation (Ptf1acre/+;LSL-KrasG12D/+;Tgfbr2flox/flox) leads to PDA
with prominent desmoplasia [121]. Although most of the mice had to be sacrificed at an age
in which no distant metastasis was observed, those that survived the longest demonstrated liver
and lung metastasis, along with invasion to the diaphragm and the duodenum [121]. Although
genetic loss of the p53 tumor suppressor has been associated with metastasis in PDA, a direct
comparison of mice bearing mutant p53R172H (Pdx1-Cre;LSL-KrasG12D;p53R172H/+) to conditional deletion
of p53 (Pdx1-Cre;LSL-KrasG12D;p53flox/flox) revealed that metastasis was observed only in p53R172H

mutant-expressing PDA [122], suggesting that the R172H mutation is a p53-gain of function mutation
that promotes PDA metastasis. Mice expressing KrasG12D in the context of double heterozygosity
for p53 and p16Ink4a or heterozygosity for p19Arf and p16Ink4a in the pancreas exhibited longer
latency and higher propensity for metastasis relative to mice that express KrasG12D in the context of
the homozygous deletion of p53 or p16Ink4a/p19Arf separately, highlighting the cooperative role for
double heterozygous p16Ink4a and p19Arf-p53 in PDA progression [123]. Additional GEMMs to study
PDA metastasis are summarized in Table 1. As presented in Table 1, although GEMMs can faithfully
recapitulate the histopathological features of human primary PDA, the metastatic tropism of these
models does not fully recapitulate the human disease (Table 1).



Genes 2020, 11, 6 7 of 22

Genes 2019, 10, x FOR PEER REVIEW 12 of 22 

 
 

Figure 1 Overview of the current models to study metastatic PDA, and the major advantages and 
disadvantages of each model. Pancreatic ductal adenocarcinoma (PDA); Epithelial-to-mesenchymal 
transition (EMT); Tumor microenvironment (TME). 

Figure 1. Overview of the current models to study metastatic PDA, and the major advantages and
disadvantages of each model. Pancreatic ductal adenocarcinoma (PDA); Epithelial-to-mesenchymal
transition (EMT); Tumor microenvironment (TME).



Genes 2020, 11, 6 8 of 22

Table 1. Metastatic rate of the different GEMM models.

Model Promoter Tumor Latency % Metastasis Reference

Ela-myc Elastase 2–7 months Peritoneal 68%
Liver 20% [114]

Pdx1-Cre;LSL-KrasG12D; Ink4a/Arflox/lox Pdx1-Cre 5 weeks
Renal lymph node 4.2%

Liver 12.5%
Peripancreatic Lymph node 4.2%

[119]

p16−/−;LSL-KrasG12D;Pdx1-Cre Pdx1-Cre 6–24 weeks
Liver 31.8%

Lymph node 13.6%
Lungs 4.5%

[120]

Pdx1-Cre;LSL-KrasG12D;p53R172H/+ Pdx1-Cre 10 weeks Liver 65% [122]

LSL-KrasG12D;LSL-p53R172H/+;Pdx1-Cre Pdx1-Cre N/A

Liver 63%
Lungs 44%

Diaphragm 37%
Adrenal 22%

[124]

Ptf1acre/+;LSL-KrasG12D/+;Tgfbr2lox/lox Ptf1a-Cre N/A Liver 12%
Lung 8% [121]

Pdx1-Cre; LSL-KrasG12D;p16/p19lox/lox Pdx1-Cre 8.5 weeks 11% [123]

Pdx1-Cre; LSL-KrasG12D;p16/p19lox/+ Pdx1-Cre 34.2 weeks 69% [123]

Pdx1-Cre; LSL-KrasG12D;p53lox/lox;p16+/+ Pdx1-Cre 6.2 weeks 0% [123]

Pdx1-Cre; LSL-KrasG12D;p53lox/lox;p16+/– Pdx1-Cre 6.5 weeks 0% [123]

Pdx1-Cre; LSL-KrasG12D;p53lox/lox;p16–/– Pdx1-Cre 7.2 weeks 20% [123]

Pdx1-Cre; LSL-KrasG12D;p53lox/+;p16+/+ Pdx1-Cre 21.8 weeks 33% [123]

Pdx1-Cre; LSL-KrasG12D;p53lox/+;p16+/– Pdx1-Cre 14.7 weeks 25% [123]

Pdx1-Cre; LSL-KrasG12D;p53lox/+;p16–/– Pdx1-Cre 13.1 weeks 25% [123]

Pdx1-Cre; LSL-KrasG12D;p53+/+;p16–/– Pdx1-Cre 18.3 weeks 33% [123]

Pdx1-Cre; LSL-KrasG12D Pdx1-Cre 57 weeks 67% [123]

Ptf1a(P48)-Cre; KrasG12D/+; MUC1.Tg Ptf1a(P48)-Cre 26 weeks 60% (lung and liver metastasis) [125]

Pdx1-Cre; KrasG12D/+; RbloxP/loxP Pdx1-Cre 2 weeks–5 months 0% [126]

For each GEMM model, the promoter, tumor latency and percentage of metastasis is indicated. The percentage of metastasis is in reference to the entire n included in the study. N/A:
not available.
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Transplantation Models

Transplantation models consist of the implantation of human or mouse cells/tissues into recipient
mice. Depending on where the cells are implanted, these models can be orthotopic (i.e., in the pancreas),
or heterotopic (i.e., outside the pancreas). Cells engrafted through orthotopic transplantation can
spread from the primary tumor to distant organ sites, therefore allowing the entire metastatic cascade
to be modelled [111]. These transplant models provide the advantage of tractability and a relatively
shorter and more predictable tumor latency [127]. In addition to orthotopic transplants, cancer
cells can also be injected directly into circulation to model the steps of dissemination, extravasation,
and colonization [111,127]. Heterotopic injections can be subcutaneous, intraperitoneal, intravenous,
intra-splenic, or intra-cardiac. The site of colonization is dependent on the site of vascular injection [111].
For example, cells injected through the tail vein (intravenous) generally give rise to pulmonary
metastasis, whereas intra-splenic injection generally gives rise to hepatic metastasis. For unbiased
experimentation of tropism, intra-cardiac injection is favorable as it allows for the systemic dissemination
to multiple sites [127].

Transplantation models can be syngeneic (allograft) or xenogeneic (xenograft). Allograft models
allow the interrogation of metastatic dissemination in the context of an intact immune system,
and therefore more faithfully recapitulate the TME. Tumor pieces or isolated cancer cells derived
from GEMMs can be used to generate allograft models [128–130], which are characterized by a rapid
and consistent development of tumors and up of 90% liver metastasis [129], thus making them more
time- and cost-effective than GEMMs. The high frequency of metastasis in this model is likely a
consequence of focal disease formation, which better resembles the sporadic mutations in KRAS found
in human disease.

Xenograft models involve the transplantation of human cancer cells or tumors into
immune-compromised mice. Established cancer cell lines are a common source of material for
transplant. However, since molecular and phenotypic properties may drift in culture, xenograft models
using cancer cell lines do not always predict clinical responses [111]. Patient-derived xenografts (PDXs)
represent a more favorable alternative, as they avoid in vitro selection pressures. In these models,
patient tumor tissues are directly transplanted into immune-compromised mice for propagation
in vivo [131]. Pancreatic PDXs have been shown to maintain the histology and metastatic potential of
the patient-derived tumor [132]. These models can recapitulate the complexity of the TME in PDA,
although the initial human stroma is gradually replaced with cells of the murine host [132,133]. A major
drawback of the xenograft models is the requirement for a compromised adaptive immune system in
order to prevent rejection by the host. This represents a major limitation when using these models
to study metastasis, as the adaptive immune system is now known to play an important role in the
selection of metastatic variants [134,135].

Care must be taken when selecting the appropriate model to use in a study. Subcutaneous
xenograft mouse models do not constitute a good model to study PDA metastasis, as they have
been shown to rarely metastasize [136], whereas orthotopically xenografted PDA frequently develop
metastasis [137,138]. Indeed, in a 2015 study, Dai and colleagues compared two orthotopic xenograft
mouse models with a subcutaneous tumor xenograft model and showed that the former develop
metastasis in 80% of the mice, whereas the latter exhibits no metastasis [138]. Moreover, different
commercially available pancreatic cancer cell lines exhibit varying degrees of metastatic activity,
ranging from 0 to 90% [137]. The data from these studies are summarized in Table 2.
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Table 2. Degree of metastatic activity of different cell lines in transplantation models.

Cell Line Model Liver
Metastasis

Lungs
Metastasis

Lymph Nodes
Metastasis Reference

Capan-1 Orthotopic 86% 29% 43% [137]
Capan-2 Orthotopic 56% 0% 0% [137]
HPAF-II Orthotopic 13% 0% 13% [137]
CFPAC Orthotopic 50% 20% 40% [137]
HPAC Orthotopic 14% 14% 14% [137]
Panc-1 Orthotopic 88% 0% 50% [137]
AsPC-1 Orthotopic 80% 80% 90% [137]
AsPC-1 Orthotopic 20% N/A N/A [138]
AsPC-1 Subcutaneous 0% N/A N/A [138]

MPanc96 Orthotopic 89% 56% 67% [137]
BxPC-3 Orthotopic 67% 0% 17% [137]
Hs766T Orthotopic 40% 20% 10% [137]

Models to Study PDA Early Dissemination

Classically, tumor dissemination is viewed as a late event in the disease progression, after the
formation of a primary tumor. However, emerging data support the idea that cancer cells can spread to
distant sites even before the establishment of a primary tumor [30,31]. Indeed, using the KrasG12D;p53fl/+;
Pdx1-Cre;RosaYFP (KPCY) mouse model, it has been shown that YFP-positive cells can be found in the
circulation and liver parenchyma of KPCY PanIN-bearing mice in the absence of a frank tumor. These
cells have undergone EMT and exhibit a mesenchymal phenotype, showing increased survival and
self-renewal in vitro [139]. These findings reveal that EMT precedes tumor formation and they were
further validated in a small human cohort of patients, identifying circulating pancreatic cancer cells in
33% of patients with cystic precancerous lesions and 73% of patients with PDA [140]. The molecular
characterization of pancreatic cancer cells in circulation will be central to understanding the properties
of early disseminated PDA.

Circulating tumor cells (CTCs) are rare cells shed by solid tumors into the systemic circulation
at an estimated frequency of 1:500,000–1:1,000,000 circulating cells, with a half-life of between 1 and
2.5 h [141]. The utility of CTCs to predict metastatic disease in human PDA disease is an area of active
research [142]. Currently, CellSearch is the only FDA-approved platform for CTC detection and is
based on EpCAM expression, which is expressed in both normal and malignant epithelial cells [142].
In the absence of molecular markers to distinguish malignant CTCs from circulating normal epithelial
cells, the molecular characterization of CTCs has remained challenging. Wnt2 has been shown to be
enriched in metastatic PDA patients and has been proposed to be a potential marker of pancreatic
CTCs [143]. Additional markers of this nature that are expressed in early stage disease will be crucial
for the detection and hence molecular characterization of early disseminated PDA. Advances in the
sensitivity of CTC capture, along with single cell-based analysis, will allow the interrogation of the
factors that mediate the early intravasation of pancreatic cancer cells into circulation, and their survival
in distant organ sites. Several reviews on the advances in the capturing and identification of circulating
tumor cells in general are available [144–147].

3.1.2. Zebrafish

The zebrafish (Danio rerio) provides many advantages in cancer research over in vivo murine
models due to its relatively low maintenance cost, work feasibility, and tractability. Many pathways of
tumor progression are shared between mammals and the zebrafish [148]. The optical transparency
of the casper zebrafish line [149] makes it possible to visualize tumor progression and metastasis
using microscopy. Lastly, due to an under-developed immune system in the zebrafish larvae, most
transplanted cancer cells can survive and form metastasis in this system [150].
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Several studies have shown the potential of using the zebrafish to study pancreatic cancer
metastasis [151–153]. In 2008, Park and colleagues used the zebrafish model to study the effects of
KRAS activation in pancreatic progenitor cells [153]. This study showed that KRAS activation leads to
the formation of invasive pancreatic cancer with a similar aggressive behavior as human pancreatic
cancer, including the propensity to metastasize. Using this model system, Weiss et al. showed that
retinoic acid receptor antagonists repress microRNA-10a, blocking the metastatic potential of pancreatic
cancer cells, and establishing a role for microRNA-10a in pancreatic metastasis formation [151]. These
results were further validated in a later study showing that microRNA-10a is overexpressed in a subset
of pancreatic patients, and that it promotes the invasiveness of the cancer cells [154].

3.1.3. Chick Embryo

The chick embryo is a simple alternative to the more complex and expensive mouse models.
Because of the thin, accessible chorioallantoic membrane (CAM), this system allows for the easy imaging
and analysis of migration and metastasis in vivo. Moreover, imaging does not require surgery or
anesthesia, as with rodent models [155,156]. Additionally, this is a naturally immune-deficient system,
which allows transplantation of tumor cells of different tissue and species origin [157]. Using this
model, Fujimura and colleagues reported that the translation initiation factor 5A (eIF5A) is necessary
for PDA metastasis, as knocking down its expression reduces the number of metastasis in the liver [158].
In a different study, inoculation of PSCs together with PANC-1 cancer cells promoted invasion of the
CAM and tumor formation, thus supporting the concept that PSCs promote the progression of PDA
metastasis [159].

3.2. In Vitro Systems

In vitro models of the different phases of the metastatic process in pancreatic cancer have been
used as cost- and time-effective alternatives to animal models. Importantly, these models allow for the
in-depth molecular interrogation of the effect of chemical, physical and mechanical parameters on cell
migration and invasion.

3.2.1. Two-Dimensional Monolayer Culture

Several methods have been developed to study the migration and invasion of 2D (monolayer)
cancer cells. One such method is the scratch healing assay, in which a central scratch is created across
a confluent monolayer of cells, and the measurement of cell migration into the wound is performed
through microscopy [160]. This method is not suited for suspension cells or for the analysis of
chemotaxis, but provides a fast and inexpensive approach to measuring migration kinetics in real time,
and to assess the interaction between tumor cells and different extracellular matrix substrates [160].
As an alternative, cell migration can also be studied through cell exclusion assays, in which cancer cells
are seeded into inserts that are removed once a confluent monolayer is formed. This avoids potential
cell damage created when making the scratch and increases reproducibility [160].

Transwell and Boyden chamber assays are widely used methods to simulate migration and
invasion of cancer cells across the epithelium [160]. In these methods, cancer cells are placed in an insert
composed of two chambers separated by a porous membrane, and their capacity to transmigrate from
one chamber to the other is evaluated [160]. To mimic tumor invasion, a layer of ECM (such as matrigel)
is included so that invasive cells must degrade the matrix to migrate [160,161]. Despite providing
several advantages over in vivo methods (including the capacity to fine-tune experimental parameters,
and being relatively inexpensive and easy to use), these methods represent endpoint studies, are
limited in their capacity to study multicellular interactions, and do not provide information beyond
the number of migrated cells [160,162]. Optical mobility assay devices such as the TaxiScan, on the
other hand, can be used to obtain additional information on migrating cells, including morphology,
directionality and velocity [163]. Using these methods, several studies have shown that only a small
fraction of pancreatic cancer cells are capable of invading the ECM [164–169]. These cells upregulate the
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expression of protein tyrosine kinase 6 (PTK6) [164], nitric oxide (NO) levels [165], and the activation
of the RhoA and PI3K-AKT pathways [166].

To probe the complex interactions between cancer cells and cells of the TME in the process of
metastasis, the assays above can also be done in the context of direct or indirect co-cultures. Typical
co-culture experiments involve seeding of not only cancer cells, but also of stromal cells. In this
scenario, cancer cells can receive the physical, mechanical and biological signals from the surrounding
environment (such as cytokines and growth factors) [170,171]. Upon co-culture with patient-derived
PSCs, pancreatic cancer cells exhibit an increase in EMT markers and migration, further highlighting a
role for PSCs in pancreatic cancer metastatic progression [172].

To better mimic physiological conditions in vivo, microfluidic assays can be used to explore
the formation of metastasis in a more physiologically relevant manner. Recent advances in the
microfluidics field have allowed the investigation of three important aspects of cell migration and
metastasis development: flow/shear stress, chemical gradients, and the complex interaction between
multiple cell types [162,173]. In conjunction with microscopy-based time lapse imaging, this system is
a powerful tool to investigate the biophysical parameters that drive PDA metastasis [160,162].

3.2.2. Three-Dimensional Organoid Cultures

Despite being time- and cost-effective, cells grown in monolayer lack the structural complexity
and architecture of human tissues. Three-dimensional organoid cultures provide an alternative, given
their ability to maintain cell polarity and interaction with an extracellular matrix [174]. Currently,
different approaches to culturing pancreatic organoids from normal and tumor tissue have been
developed [175–178] and are now an invaluable resource for fundamental and applied studies of
pancreatic cancer, with great potential in drug screening, and tumor-host interaction.

As patient-derived organoids closely resemble the molecular features of the original tumor and
maintain intra-tumor heterogeneity [176,179], this also provides a unique opportunity to perform
deep molecular pairwise comparisons between murine or patient-derived primary tumors and distant
metastases ex vivo. Moreover, patient-derived organoids represent an attractive tool to study the
progression of pancreatic cancer in vivo. In fact, xenograft models involving the transplantation
of pancreatic tumor organoids have been shown to generate the full spectrum of pancreatic cancer
progression, from the initial PanIN stages, to invasive adenocarcinoma, followed by metastasis [177].

4. Future Outlook

Pancreatic cancer is a disease characterized by an early and rapid metastatic process. The early
dissemination of cancer cells can be partially explained by the localization of the pancreas close to the
spleen and kidney, as well as large blood vessels [142]. However, we currently lack deep molecular
insight into the metastatic process of pancreatic cancer.

Pancreatic cancer usually metastasizes to the liver, lungs, and peritoneum. However, very few
studies have focused on trying to understand the mechanisms behind PDA metastatic organotropism
(i.e., the development of metastasis in particular organs or tissues). This is imperative given that the
location of the metastases affects the clinical outcome for the patient as, for example, patients with lung
metastases have an improved outcome compared to those with liver metastases [109]. A previous study
by Hoshino et al. suggested that tumor-secreted exosomes are sufficient to direct cancer cells to specific
organs, due to exosomal integrin fusion with target cells in a specific organ [180]. Organoid culture and
its culture supernatant could represent a potentially useful way to further characterize the mechanism
driving this process as well as the differential cargo of disease stage-specific or organ site-specific
exosomes, and their role in tumorigenesis. Recent work by Reichert and colleagues using GEMMs to
investigate the regulation of metastatic organotropism in PDA showed that the formation of liver and
lung metastasis in PDA is dependent on p120catenin (p120ctn) [181]. In fact, the authors demonstrated
that biallelic p120ctn loss is necessary for lung metastasis and prevents liver metastasis, whereas
monoallelic p120ctn loss accelerates the formation of metastasis in the liver. Overall, the scarcity of data
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on pancreatic cancer organotropism highlights the need to better understand this process. The ability
to correctly predict the organ site of future metastasis and metastatic predisposition in pancreatic
patients will allow us to cater specific therapeutic strategies to different patient groups. Model systems
to interrogate the process of organotropism in vivo would be central towards this goal.

Much of our current understanding of PDA metastasis involves vascular migration. Lymphatic
migration, on the other hand, is very poorly studied. This is pertinent given that patients with lymph
node metastasis have worse survival rates than those without it [182]. As lymph node dissemination
has been characterized as an early event in tumor development [183], one could hypothesize that
the lymph node might act as a reservoir for further seeding into other organs. Moreover, what
makes the lymph node an ideal place for dissemination and whether the cancer cells play a role in
preparing its microenvironment there are crucial questions to which we still need to find the answers
to. The development of models to interrogate lymphatic migration, such as that described by Xiong
and colleagues [184], is a step forward towards that goal.

A major obstacle underlying the clinical challenges in pancreatic cancer is our limited
understanding of the molecular mechanisms of PDA metastasis. This has been partially attributed to the
lack of proper models to study the metastatic progression of this disease. Technological advances in this
area will be central to the development of novel therapeutics that target PDA metastatic dissemination.
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