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Abstract: The OTOA gene (Locus: DFNB22) is reported to be one of the causative genes for non-
syndromic autosomal recessive hearing loss. The copy number variations (CNVs) identified in this 
gene are also known to cause hearing loss, but have not been identified in Japanese patients with 
hearing loss. Furthermore, the clinical features of OTOA-associated hearing loss have not yet been 
clarified. In this study, we performed CNV analyses of a large Japanese hearing loss cohort, and 
identified CNVs in 234 of 2262 (10.3%, 234/2262) patients with autosomal recessive hearing loss. 
Among the identified CNVs, OTOA gene-related CNVs were the second most frequent (0.6%, 
14/2262). Among the 14 cases, 2 individuals carried OTOA homozygous deletions, 4 carried 
heterozygous deletions with single nucleotide variants (SNVs) in another allele. Additionally, 1 
individual with homozygous SNVs in the OTOA gene was also identified. Finally, we identified 7 
probands with OTOA-associated hearing loss, so that its prevalence in Japanese patients with 
autosomal recessive hearing loss was calculated to be 0.3% (7/2262). As novel clinical features 
identified in this study, the audiometric configurations of patients with OTOA-associated hearing 
loss were found to be mid-frequency. This is the first study focused on the detailed clinical features 
of hearing loss caused by this gene mutation and/or gene deletion. 
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1. Introduction 

Hereditary hearing loss affects approximately one in 500–600 infants in developed countries, 
and genetic causes account for at least 50% of all childhood hearing loss [1]. Approximately 100 genes 
have been recognized as causative for sensorineural hearing loss (SNHL) [2]. Next-generation 
sequencing (NGS) analysis has become a powerful tool for finding variants in many rare genes, and 
has allowed genetic epidemiology to be clarified [3,4]. We have recently reported a series of studies 
on various relatively rare genes in the Japanese population, including POU4F3 [5], WFS1 [6], OTOF 
[7], and STRC [8]. The study was performed as one in a series of findings on specific genes that were 
published based on the same cohort. 

In general, most of the causal mutations in these genes are small insertions/deletions (indels) or 
single nucleotide variants (SNVs). Recently, copy number variations (CNVs), that is, the alteration 
through deletion, insertion and/or duplication of more than 1 kbp, involving the genes associated 
with hearing loss have been observed in several patients with hearing loss (HL) [8,9]. Shearer et al. 
reported that 143 CNVs were identified in 16 of 89 deafness-associated genes from 686 patients, with 
the greatest number of CNVs identified in the STRC and OTOA genes, comprising 73% and 13% of 
all identified CNVs, respectively [9].  

The OTOA gene (Locus: DNFB22) was first reported as one of the responsible genes for non-
syndromic autosomal recessive hearing loss by Zwaenepoel et al. in 2002 [10]. OTOA is located on 
chromosome 16p12.2, and encodes otoancorin, a protein required for limbal attachment of the 
tectorial membrane, which is important for conditioning proper stimulation of the inner hair cells 
[11,12]. 

To date, 27 different variants [9,10,12–22] and 24 long or whole gene deletions 
[9,13,15,16,19,20,23–25] in the OTOA gene have been reported to cause SNHL in various ethnic 
groups, mainly in the Middle-Eastern countries. Although previous papers reported on the SNVs, 
indels, splicing variants, or CNVs, the detailed clinical characteristics of patients with OTOA variants 
still remain unclear.  

In the present study, we aimed to clarify the prevalence and the clinical characteristics of OTOA-
associated SNHL by using the NGS platform to identify small variants and CNVs in the OTOA gene, 
and confirmed their existence via direct sequencing or high-resolution array genomic hybridization 
(aCGH) analysis. 

2. Materials and Methods  

2.1. Subjects 

This study was undertaken using data from a total of 2262 Japanese autosomal recessive 
sensorineural hearing loss (ARSNHL) probands (including sporadic cases) registered from 67 
otorhinolaryngology departments in Japan between May 2013 and November 2018. The ages of the 
probands ranged from 0 to 86 years (mean 21.3 years). To participate in this study, written informed 
consent was obtained from all patients or the family members of the proband. All procedures were 
approved by the Shinshu University Ethical Committee as well as the respective ethical committees 
of the other participating institutions. All methods were in accordance with the Shinshu University 
Ethical Committee for Human Genetic Research guidelines and regulations.  

This study was conducted in accordance with the Declaration of Helsinki, with the protocol 
approved by the Ethics Committee of Shinshu University School of Medicine No. 387-4 September 
2012 and No. 576-2 May 2017. 

2.2. Short Variant Analysis Including SNVs, Indels, and Splicing Variants 

We developed amplicon libraries, using an Ion AmpliSeq™ Custom Panel (ThermoFisher 
Scientific, Waltham, MA, USA), for 68 genes previously reported as genetic causes of non-syndromic 
hearing loss (Supplementary Table S1), and performed emulsion PCR and sequencing, in line with 
the manufacturer’s instructions. The detailed procedures have been described in our published paper 
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[26]. NGS was performed with an Ion Torrent Personal Genome Machine (PGM) system using an Ion 
PGM 200 Sequencing Kit and an Ion 318 Chip (ThermoFisher Scientific ) or Ion Proton™ system using 
the Ion PI™ HiQ™ Sequencing 200 Kit and Ion PI™ Chip (ThermoFisher Scientific). We mapped the 
sequence data against the human genome sequence (build GRCh37/hg19) with a Torrent Mapping 
Alignment Program. After sequence mapping, the DNA variant regions were stacked with Torrent 
Variant Caller plug-in software. After variant detection, we analyzed their effects using ANNOVAR 
software [27]. The variants (missense, nonsense, insertion/deletion and splicing variants) affecting 
the amino acid sequence were selected from among the identified variants. Variants were further 
selected as less than 1% of (1) the ExAC [28], (2) gnomAD [29], (3) 3.5KJPN [30] databases, and (4) the 
333 in-house Japanese normal hearing controls. We employed direct sequencing to confirm the 
selected variants. 

The pathogenicity of a variant was evaluated based on the criteria of the ACMG (American 
College of Medical Genetics) standards and guidelines [31]. For missense variants, in particular, 
functional prediction software, including Sorting Intolerant from Tolerant (SIFT) [32], Polymorphism 
Phenotyping (PolyPhen2) [33], Likelihood Ratio Test (LRT) [34], Mutation Taster [35], Mutation 
Assessor [36], Rare Exome Variant Ensemble Learner (REVEL) [37], and Combined Annotation 
Dependent Depletion (CADD) [38] were used on the ANNOVAR software. We also evaluated the 
conservation of the variant site in 170 vertebrates from HGMD Professional. [39]. Segregation analysis 
was performed for each proband and family members (if samples were obtained or available) by 
direct sequencing.  

2.3. Copy Number Variations (CNVs) Analysis 

We performed a CNV detection method with Ion AmpliSeq sequencing and multiplex PCR-
based targeted genome enrichment. The detailed protocol has been described elsewhere [40]. The 
read depth data was used for copy number analysis. From the results of the CNVs analysis of the 
2262 probands, we picked up 14 patients with OTOA gene CNVs. 

We designed a custom aCGH for 68 genes previously reported as genetic causes of non-
syndromic hearing loss using the Agilent web software (Agilent SureDesign, Agilent Technologies, 
Santa Clara, CA, USA), with the probes covering specific chromosomal regions of those genes at 150–
200 bp intervals as a design-setting on the Agilent 8 × 60 K platform (Agilent Technologies, Santa 
Clara, CA, USA) [41]. There were 235 probes laid across the OTOA region (chr16:21,740,000–
21,772,500). We used the same DNA samples as used for the amplicon resequencing, with quality 
assessment also performed. Five micrograms of genomic DNA were fragmented, and labeled with 
cyanine-3 for reference DNA samples and cyanine-5 for subjects, and then hybridized. We performed 
scanning of the array with a G2600D SureScan Microarray Scanner (Agilent Technologies) according 
to the manufacturer’s recommended protocols, and analyzed scanned aCGH data using 
CytoGenomics software version 3.0.6.6 (Agilent Technologies). 

2.4. Clinical Evaluations 

Clinical information including the age of onset of SNHL, the result of newborn hearing screening 
(NHS), pedigree, the presence of subjective progression in SNHL, and episodes of vertigo/dizziness 
were collected from each proband from a review of the medical charts.  

Hearing loss was evaluated using pure-tone audiometry and severity of SNHL was classified by 
a pure-tone average (PTA) over 500, 1000, 2000 and 4000 Hz. If an individual did not respond to the 
maximum hearing level at a frequency, 5 dB was added to the maximum hearing level. The severity 
of HL was classified as follows: mild (PTA: 20–40 dB HL), moderate (41–70 dB HL), severe (71–95 dB 
HL), and profound (>95 dB HL). Audiometric configuration was categorized into low-frequency, 
mid-frequency (U-shaped), high-frequency (gently or steeply sloping), or flat based on a previous 
report [42]. 

3. Results 
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3.1. Identified OTOA Variants and Their Prevalence in Japanese ARSNHL Patients  

Of 2262 cases, CNVs in the 68 target genes were detected in 234 cases (10.3%, 234/2262). The 
most frequent gene with CNVs was the STRC gene (8.4%, 190/2262), followed by the OTOA gene 
(0.6%, 14/2262). Among the 14 cases with OTOA gene CNVs, two carried homozygous deletions, nine 
carried heterozygous deletions, and three carried three copies (one-copy gain). Among the nine cases 
with heterozygous deletions in the OTOA gene, four cases have possibly disease-causing small 
variants of the OTOA gene in the other allele. Additionally, we identified one case with OTOA gene 
homozygous SNVs. Finally, we identified seven probands with OTOA-associated HL in this study 
(Table 1). Thus, the prevalence of OTOA-associated HL in Japanese ARSNHL patients was calculated 
to be 0.3% (7/2262). All were sporadic cases, and there were no affected family members (Figure 1). 
No candidate pathogenic variants in the other 67 deafness genes were detected in these seven 
individuals. Unfortunately, we could not obtain un-affected sibling samples as shown in Figure 1. 
Thus, the segregation analysis was not performed for these families. 



Genes 2019, 10, 715 5 of 19 

 

Table 1. Summary of the clinical features and identified variants of individuals with OTOA variants in this study. 

       Newborn Average  Audiome
tric 

Hearing  

       Hearing Hearing 
Level 

Age at Configur
ation 

Loss Vertig
o/ 

ID  Zygosity Allele #1  Allele #2  Onset 
Screenin

g R/L 
R/L (dB) 

Audiog
ram 

R/L 
Progres

sion   
Dizzin

ess   
HL5
771 

homo whole gene 
deletion 

 whole gene 
deletion 

 3y N/A 58.75/62.5 4y MF/MF  - 

HL5
890 homo 

whole gene 
deletion 

 whole gene 
deletion 

 childh
ood N/A 77.5/72.5 69y Flat/MF 

progres
sive + 

HL0
511 

compound 
hetero 

whole gene 
deletion 

 c.235C>T  p.(Arg79
Trp) 

7y N/A 56.25/55 30y HF/MF progres
sive 

- 

HL5
722 

compound 
hetero 

whole gene 
deletion 

 c.442C>T  p.(Arg148
*) 

0m refer/refe
r 

58.75/76.2
5 

7y Flat/HF  - 

HL5
367 

compound 
hetero 

whole gene 
deletion 

 c.469C>T  
p.(Arg157

Cys) 5y N/A 55/57.5 19y MF/MF 
progres

sive - 

HL6
578 

compound 
hetero 

whole gene 
deletion 

 c.1705A>G p.(Lys569
Glu) 

0m refer/refe
r 

46.25/42.5 4y MF/MF  - 

HL4
132 

homo c.647T>C 
p.(Phe21

6Ser) 
c.647T>C 

p.(Phe216
Ser) 

0m 
refer/refe

r 
62.5/68.75 5y Flat/MF  - 

All variants were indicated in NM_144672. y: year(s), m: month(s), N/A: not applicable (not received NHS), HF: high-frequency sensorineural hearing loss, MF: 
mid-frequency sensorineural hearing loss. 
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Figure 1. Pedigree and audiograms for each family with OTOA variants. Arrows show the probands 
in each family. The ages indicated in the pedigree represent the time at which the audiogram was 
obtained. Genetic findings for each individual tested are also noted in the pedigree. 

3.2. Confirmation of CNVs and Short Variants, and The Pathogenic Interpretation of These Variants 

In this study, we detected CNVs by using NGS read data as a first screening step followed by 
confirmation with aCGH. We performed aCGH analysis to confirm the CNVs for five individuals. 
Two of them (HL5890 and HL5771) carried homozygous deletions in the OTOA gene and three 
(HL5722, HL5367, and HL6578) carried heterozygous deletions. All cases had entire OTOA gene 
deletions, and the aCGH results were consistent with the NGS-based analysis results. Furthermore, 
deletions in all cases included the METTL9 and IGSF6 genes, which are located upstream of the OTOA 
gene. Figure 2 shows the results of NGS analysis and aCGH analysis in these cases. We also 
performed aCGH analysis for a case with three copies as a technical confirmation, and the results 
were consistent with the NGS analysis results. Therefore, we believe that CNV analysis using NGS 
data is reliable, even for heterozygous deletions, homozygous deletions, and one-copy gains in the 
OTOA gene. Unfortunately, the total amount of DNA available for HL0511 was not sufficient for 
aCGH analysis, so we did not perform aCGH analysis for this patient.  
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Figure 2. The results of copy number variation (CNV) analysis. (A) The results of CNV analysis based 
on next-generation sequencing (NGS) read depth data for patients with two-copy loss (homozygous 
deletion), one-copy loss (heterozygous deletion), or one-copy gain (three copies) in the OTOA gene 
identified in the present study. (B) The results of aCGH analysis for the same patients. Black arrows 
indicate the OTOA region. Red arrows indicate deletions, and blue arrows indicate duplications. 

All five single nucleotide variants (c.235C>T, c.442C>T, c.469C>T, c.1705A>G, and c.647T>C) 
identified in this study were evaluated according to the ACMG standards and guidelines [31]. All 
variants were novel, and were not observed or observed in very low frequency in the control 
population database (PM2) (Table 2). One mutation (c.442C>T) was categorized as a “likely 
pathogenic” variant as this variant is a nonsense variant (p.(Asp148*)) leading to the stop codon 
(PVS1). Three missense variants (c.235C>T, c.469C>T, and c.1705A>G) detected in trans with a 
pathogenic (whole gene deletion) variant (PM3) were categorized as being of “uncertain significance”. 
The remaining missense variant identified as homozygous (c.647T>C) was also categorized as of 
“uncertain significance”. All four missense variants were predicted as deleterious and have high 
CADD scores. 
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Table 2. Possible causative variant identified in this study. 
  Prediction Score Allele Frequency in  Controls   
 Amino             

Nucleotide Acid  PolyPhen  Mut_ Mut_      ACMG  

Changes Change SIFT * 2_HVAR * LRT * Taster * Assessor * REVEL * Cadd Exac Gnomad 3.5kJPN Guidelines  

c.235C>T p.(Arg79Trp) D(0.4) B(0.166) N(0.132) N(0.09) M(0.552) 0.21 23.6 0.00000824 0.00000812 N/A Uncertain Significance PM2,PM3 
c.442C>T p.(Arg148*) - - N(0.225) A(0.81) - - 35 0.0000247 0.0000163 N/A Likely Pathogenic PVS1, PM2 
c.469C>T p.(Arg157Cys) D(0.912) D(0.916) D(0.629) D(0.548) M(0.752) 0.285 34 0.0000165 0.0000203 N/A Uncertain Significance PM2,PM3 

c.1705A>G p.(Lys569Glu) D(0.427) D(0.875) D(0.629) D(0.441) M(0.567) 0.598 31 N/A N/A N/A Uncertain Significance PM2,PM3 
c.647T>C p.(Phe 216Ser) D(0.721) D(0.764) D(0.629) D(0.412) M(0.741) 0.326 24.3 N/A N/A N/A Uncertain Significance PM2 

* The Prediction Score of each algorithm included in the ANNOVAR software was converted from the original scoring system. A score closer to 1.0 indicated the 
variant was predicted to be more damaging. A, disease causing automatic (Mutation Taster); B, benign (PolyPhen2_HVAR); D, deleterious (SIFT, LRT), probably 
damaging (PolyPhen2), or disease causing (Mutation Taster); M, medium (Mutation Assessor); N, Neutral (LRT). PVS: evidence of Pathogenicity—Very Strong, 
PM: evidence of Pathogenicity—Moderate. 
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3.3. Clinical Features of OTOA-Associated SNHL Patients 

Table 1 summarizes the clinical findings of the seven affected individuals identified in this study. 
The age of onset of HL ranged from congenital to childhood. All congenital cases were identified 
through NHS, but the other childhood onset cases did not receive NHS. Most of the cases have 
bilateral symmetrical SNHL (Figure 1), and the severity of HL ranged from moderate to severe. 
Interestingly, most cases showed mid-frequency HL. Based on the audiometric configuration 
classification criteria previously reported, mid-frequency HL was observed in nine ears, flat type in 
three ears, and high-frequency HL in two ears. Progression of HL was noticed, based on the medical 
charts, for three (all adults: HL5890, HL0511, and HL5367) of the seven individuals. Serial 
audiograms could be obtained from one individual (HL5367), and the averaged hearing threshold 
(PTA) was observed to have slowly deteriorated from 41.25 dB at 4 years old to 55 dB at 19 years old. 
Vertigo/dizziness is rare among patients with OTOA-associated HL, and only one individual 
(HL5890) was found to have episodes of vertigo. 

4. Discussion  

In our cohort of 2262 Japanese ARSNHL patients, we identified seven probands with OTOA-
associated HL, including two cases with homozygous deletions, four cases with heterozygous 
deletions in trans to a SNVs, and one case with homozygous SNVs. The frequency of OTOA-
associated HL in Japanese ARSNHL patients was calculated to be 0.3% (7/2262). In a previous report 
analyzing a larger number of patients, Shearer et al. identified five probands with OTOA-associated 
HL among 686 SNHL patients from American probands, so that the frequency of OTOA-associated 
HL was calculated to be 0.7% among all SNHL patients (5/686) [9]. Sloan-Heggen et al. identified 
eight probands with OTOA-associated HL among 1119 unrelated SNHL patients from various ethnic 
populations (0.7%) [16] and also identified six OTOA-associated HL cases among 302 Iranian patients 
(2.0%) [13]. Our results were comparable with the studies on both the American patients and various 
ethnic populations, but noticeably lower than that on the Iranian patients. These differences may 
reflect differences in the ratio of consanguineous patients among each cohort.  

To elucidate the prevalence of OTOA CNVs in the normal hearing population, we also 
performed NGS analysis for 152 normal hearing controls (data not shown). The controls were aged 
from 20–30 years, and pure-tone audiometry was performed for each control, showing normal 
hearing. Among the 152 controls, none carried a copy number loss of the OTOA gene, but one case 
carried three copies of the OTOA gene. It was unclear whether the one-copy gain of the OTOA gene 
was pathogenic or neutral (no impact on phenotype). However, the identification of a one-copy gain 
of the OTOA gene from a control case, suggests that this one-copy gain of the OTOA gene was not 
associated with any phenotypes. Therefore, the CNVs of OTOA were rare in Japanese control 
population. 

For all OTOA gene CNVs identified in this study, the aCGH results showed that the whole 
OTOA gene as well as whole METTL9 and IGSF6 genes were deleted or duplicated. In the previous 
three reports analyzing the deletion region in detail [23,24,43], all cases carried a whole OTOA, 
METTL9 and IGSF6 gene deletion as in this study. One plausible reason for relatively large number 
of CNVs observed in this area and same types of deletion including OTOA, METTL9, and IGSF6 were 
observed even in different ethnic population, is the segmental duplications of the region in 
chromosome 16p12.2. There is a highly homologous sequences before and after chr16p12.2, including 
the OTOA, METTL9, and IGSF6 genes [23,43–45]. Further, these segmental duplication increased mis-
homologous recombination in this region, and may act as a hotspot for CNVs. As a result of this mis-
homologous recombination, the similar CNVs in this area (including the OTOA, METTL9, and IGSF6 
genes) may be commonly observed in many ethnic populations. 



Genes 2019, 10, 715 10 of 19 

 

Table 3. Summary of variants identified in this and previous studies (NM_144672). 
   Allele Frequency Prediction Score  

Nucleotid
e 

Amino Acid   GnomA
D 

 Polyphen2  Mut Mut    

Change Change 
Exo

n Exac03 Exome Sift * _Hvar * LRT * Taster * Assessor * Revel * CADD Reference 

missense/nonsense variant            

c.131T>C p.(Ile44Thr) 3 
0.000049

4 
0.000073

1 
D P D D M N/A 23.8 

Christina M. Sloan-Heggen, 2016 
[16] 

c.235C>T p.(Arg79Trp) 5 
0.000008

24 
0.000008

12 
D(0.4) B(0.166) N(0.132) N(0.09) M(0.552) 0.21 23.6 this study 

c.313A>T p.(Lys105*) 6 N/A N/A - - - - - - - 
Christina M. Sloan-Heggen, 2016 

[16] 

c.442C>T p.(Arg148*) 7 
0.000024

7 
0.000016

3 
- - N(0.225) A(0.81) - - 35 this study 

c.446C>A p.(Ala149Asp) 7 0.000016 N/A D D N P - - 28.8 Shearer, 2014 [9] 

c.469C>T p.(Arg157Cys) 7 
0.000016

5 
0.000020

3 
D(0.912) D(0.916) D(0.629) D(0.548) M(0.752) 0.285 34 this study 

c.647T>C p.(Phe216Ser) 8 N/A N/A D(0.721) D(0.764) D(0.629) D(0.412) M(0.741) 0.326 24.3 this study 
c.878A>G p.(Gln293Arg) 10 N/A N/A D P D D M - 24.2 L. He, 2018 [17] 
c.1025A>T p.(Asp342Val) 11 N/A N/A D(0.784) D(0.719) N(0.388) D(0.81) M(0.552) 0.453 26.7 Walsh, 2006 [18] 

c.1249C>T p.(Leu417Phe) 12 
0.000016

5 
0.000016

3 
D P D D M - 28.6 Tsai, 2013 [19] 

c.1282G>T p.(Val428Phe) 12 N/A N/A D P N P L - 24.7 Cabanillas, 2018 [20] 

c.1352G>A p.(Gly451Asp) 13 
0.000008

24 
0.000004

07 
D(0.912) D(0.971) D(0.439) D(0.524) M(0.567) 0.768 24.8 K Lee, 2013 [21] 

c.1705A>G p.(Lys569Glu) 16 N/A N/A D(0.427) D(0.875) D(0.629) D(0.441) M(0.567) 0.598 31 this study 

c.1728T>G p.(Ile576Met) 16 0.000033 
0.000028

4 
D P D D M - 23.8 

Christina M. Sloan-Heggen, 2016 
[16] 

c.1865T>A p.(Leu622His) 17 0.000008 N/A D P D D - - 29.1 P Fontana, 2017 [15] 

c.1807G>T p.(Val603Phe) 16 N/A 
0.000004

06 
T P N D M - 26.6 

Ammar-Khodja, 2015 [22] ; 
Christina M. Sloan-Heggen, 2016 

[16] 

c.1814G>C p.(Cys605Ser) 17 N/A N/A T P D D M - 26.8 
Christina M. Sloan-Heggen, 2016 

[16] 

c.1879C>T p.(Pro627Ser) 17 0.000033 
0.000036

6 
D(0.496) D(0.916) D(0.629) D(0.548) M(0.567) 0.446 31 

K Lee, 2013 [21] ; Christina M. 
Sloan-Heggen, 2015 [13] 

c.1939G > 
C 

p.(Gly647Arg) 18 N/A 
0.000012

2 
T(0.363) P(0.604) D(0.629) D(0.478) M(0.567) 0.813 23.6 

Christina M. Sloan-Heggen, 2015 
[13] 

c.2201A>G p.(Gln734Arg) 19 
0.000008

24 
0.000004

07 
T(0.330) B(0.339) N(0.229) D(0.330) M(0.723) 0.079 8.163 

Christina M. Sloan-Heggen, 2015 
[13] 
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splicing 
variant 

            

c.151+1G>
A 

  N/A N/A - - - D(0.81) - - 26.3 
Christina M. Sloan-Heggen, 2015 

[13] 
c.1320+2T>

C 
  N/A N/A - - - D(0.81) - - 24.2 Zwaenepoel, 2002 [10] 

c.1320+5G>
C 

  N/A 0.00001 - - - D - - 21.7 Bong Jik Kim, 2019 [12] 

c.2208−1G>
A 

  0.000036 N/A - - - D(0.81) - - 22.4 
Christina M. Sloan-Heggen, 2015 

[13] 
small 

deletion 
            

c.827delT p.(Ile276fs) 9 0.000025 N/A - - - N/A - - 35 
Shearer, 2014 [9] ; Christina M. 

Sloan-Heggen, 2016 [16] ; 
Sommen, 2016 [14] 

c.1765delC p.(Gln589fs) 17 0.000025 N/A - - - D - - 28.5 Bong Jik Kim, 2019 [12] 
c.2960_296

1delAT 
p.(His987fs) 25 0.000094 N/A - - - N/A - - 25.3 Sommen, 2016 [14] 

All variants were indicated in NM_144672. 

* The Prediction Score of each algorithm included in the ANNOVAR software was converted from the original scoring system. A score closer to 1.0 indicated the 
mutation was more damaging, and that closer to 0 indicated it was more tolerant. A disease causing automatic (Mutation Taster); B, benign (PolyPhen2); D, 
deleterious (SIFT, LRT), probably damaging (PolyPhen2), or disease causing (Mutation Taster); L, low (Mutation Assessor); M, medium (Mutation Assessor); N, 
Neutral (LRT), polymorphism (Mutation Taster); P, possibly damaging (PolyPhen2), polymorphism automatic (Mutation Taster); T, Tolerated (SIFT).  
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The OTOA gene has a pseudogene located 820Kb downstream, which has a high sequence 
similarity and 99% or more homology in the exon 20–28 region of the OTOA gene [23]. Therefore, the 
mapping quality of this region was degraded and SNV detection in this region is challenging when 
using short-read NGS [46]. Except for one variant (c.2960_2961delAT), all variants identified in this 
study and previous studies were located in exon 3-19 (summarized in Table 3). 

In this study, we identified nine cases with one-copy loss of the OTOA gene. Among these nine 
cases, four cases carried one-copy loss of the OTOA gene with candidate SNVs in the trans allele; 
however, five cases carried only one-copy loss of the OTOA gene. Shearer et al. also reported five 
cases among 686 cases that carried one-copy loss of the OTOA gene without any other SNVs in the 
OTOA gene [4]. Among these cases, there might be some cases with SNVs in the exon 20–28 region 
that cause OTOA-associated HL. To confirm these cases, newer technologies such as long-read NGS 
are required. 

In this study, we used aCGH to confirm the CNVs identified from NGS results. Array CGH has 
been the gold standard for copy number analysis, but it is time-consuming and costly. Thus, now we 
employ NGS as the standard CNVs analysis method as it is possible to detect the SNVs and CNVs in 
one experiment [15]. In addition, we are currently trying to establish a social health insurance-based 
platform using NGS as standard CNV detection method as it is possible to detect SNVs and CNVs at 
the same time and it is more cost- and time-effective. 

The severity of the OTOA-associated HL varied from moderate to severe, but most of the cases 
showed moderate HL (86%, 6/7 individuals) in this study. Also in previous reports, the severity of 
HL varied significantly from mild to profound (summarized in Table 4). Even in cases of homozygous 
OTOA gene deletions, significant differences were observed in the severity of HL. These differences 
in the severity of HL may be due to other environmental or genetic factors including aging. The 
progress of HL in patients with OTOA-associated HL has not been specifically described in previous 
reports. In the present study, three adult cases noticed progression of HL, and the progression was 
confirmed by serial audiograms in one patient in whom the averaged hearing threshold (PTA) was 
slowly deteriorated from 41.25 dB at 4 years old to 55 dB at 19 years old. From these observations, 
progressive HL appears to be a common trend in OTOA-associated HL. With regard to the age of 
onset, three cases showed congenital HL and others showed prelingual to childhood onset in this 
study. In previous reports, the age of onset was pre-childhood in most cases, but two cases of adult 
onset were reported [9,16]. All three cases with congenital HL identified in this study were identified 
through NHS screening. Thus, we estimated that most cases of OTOA-associated HL may be 
congenital and could be identified through NHS screening. However, in cases not undergoing such 
screening, the HL was mild to moderate and progressed slowly, and was identified in childhood or 
later. 
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Table 4. Summary of clinical features associated with OTOA variants from this and previous studies. 

Heredita
ry 

Onset Average hearing level Zygosity Allele #1  Allele #2  Reference  

AR/Spo 3y moderate homo 
whole gene 

deletion 
 whole gene 

deletion 
 this study 

AR/Spo childhood severe homo 
whole gene 

deletion 
 whole gene 

deletion 
 this study 

AR prelingual N/A homo 
whole gene 

deletion 
 whole gene 

deletion 
 Shahin, 2010 [23] 

AR N/A mild to moderate homo 
whole gene 

deletion 
 whole gene 

deletion 
 Bademci, 2014 [24] 

AR 0−10y moderate to severe homo 
Whole gene 

deletion 
 whole gene 

deletion 
 Shearer, 2014 [9] 

N/A 21−30y N/A homo 
whole gene 

deletion 
 whole gene 

deletion 
 Shearer, 2014 [9] 

AR prelingual moderate to severe homo 
whole gene 

deletion 
 whole gene 

deletion 
 Christina M. Sloan-Heggen, 

2015 [13] 

N/A N/A N/A homo 
whole gene 

deletion 
 whole gene 

deletion 
 Christina M. Sloan-Heggen, 

2016 [16] 

AD adult severe to profound homo 
whole gene 

deletion 
 whole gene 

deletion 
 Christina M. Sloan-Heggen, 

2016 [16] 

Spo congenital severe to profound homo 
whole gene 

deletion 
 whole gene 

deletion 
 Christina M. Sloan-Heggen, 

2016 [16] 

AR 1−13y severe homo 58000bp deletion  58000bp 
deletion 

 Alkowari, 2017 [25] 

AR prelingual severe homo c.151+1G>A  c.151+1G>A  Christina M. Sloan-Heggen, 
2015 [13] 

AR/Spo 0m moderate homo c.647T>C 
p.(Phe216Se

r) 
c.647T>C 

p.(Phe216Se
r) 

this study 

AR prelingual moderate to severe homo c.1025A>T 
p.(Asp342v

al) 
c.1025A>T 

p.(Asp342v
al) 

Walsh, 2006 [18] 

AR prelingual moderate to severe homo c1320+2T>C  c.1320+2T>C  Zwaenepoel, 2002 [10] 

AR prelingual severe homo c.1352G>A 
p.(Gly451A

sp) 
c.1352G>A 

p.(Gly451A
sp) 

K Lee, 2013 [21] 

AR prelingual severe to profound homo c.1807G>T 
p.(Val603P

he) 
c.1807G>T 

p.(Val603P
he) 

Ammar-Khodja, 2015 [22] 
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AR prelingual severe homo c.1879C>T 
p.(Pro627Se

r) 
c.1879C>T 

p.(Pro627Se
r) 

K Lee, 2013 [21] 

AR prelingual moderate to severe homo c.1879C>T 
p.(Pro627Se

r) 
c.1879C>T 

p.(Pro627Se
r) 

Christina M. Sloan-Heggen, 
2015 [13] 

AR prelingual moderate to severe homo c.1939G C 
p.(Gly647A

rg) 
c.1939G>C 

p.(Gly647A
rg) 

Christina M. Sloan-Heggen, 
2015 [13] 

AR prelingual 
moderately severe to 

profound  
homo c.2201A>G 

p.(Gln734A
rg) 

c.2201A>G 
p.(Gln734A

rg) 
Christina M. Sloan-Heggen, 

2015 [13] 

AR/Spo 7y moderate 
compound 

hetero 
whole gene 

deletion 
 c.235C>T  

p.(Arg79Tr
p) 

this study 

N/A 0−10y N/A 
compound 

hetero 
whole gene 

deletion 
 c.446C>A 

p.(Ala149A
sp) 

Shearer, 2014 [9] 

AR/Spo 5y moderate 
compound 

hetero 
whole gene 

deletion 
 c.469C>T  

p.(Arg157C
ys) 

this study 

N/A 0−10y N/A 
compound 

hetero 
whole gene 

deletion 
 c.827delT p.(Ile276fs) Shearer, 2014 [9] 

Spo congenital N/A 
compound 

hetero 
whole gene 

deletion 
 c.827delT p.(Ile276fs) 

Christina M. Sloan-Heggen, 
2016 [16] 

AR childhood N/A 
compound 

hetero 
whole gene 

deletion 
 c.1282G>T 

p.(Val428P
he) 

Cabanillas, 2018 [20] 

AD congenital N/A 
compound 

hetero 
whole gene 

deletion 
 c.1728T>G 

p.(Ile576Me
t) 

Christina M. Sloan-Heggen, 
2016 [16] 

AR/Spo congenital moderate 
compound 

hetero 
whole gene 

deletion 
 c.1705A>G 

p.(Lys569Gl
u) 

this study 

Spo childhood severe to profound 
compound 

hetero 
whole gene 

deletion 
 c.1807G>T 

p.(Val603P
he) 

Christina M. Sloan-Heggen, 
2016 [16] 

Spo congenital mild to moderate 
compound 

hetero 
whole gene 

deletion 
 c.1814G>C 

p.(Cys605S
er) 

Christina M. Sloan-Heggen, 
2016 [16] 

AR prelingual severe 
compound 

hetero 
whole gene 

deletion 
 c.1865T>A 

p.(Leu622H
is) 

P Fontana, 2017 [15] 

N/A N/A N/A 
compound 

hetero 
multi exon 

deletion 
 c.1249C>T 

p.(Leu417P
he) 

Tsai, 2013 [19]t 

AR/Spo 0m moderate 
compound 

hetero 
deletion  c.442C>T  p.(Arg148*) this study 

AR prelingual N/A 
compound 

hetero 
deletion  c.2960_2961delA

T 
p.His987fs Sommen, 2016 [14] 

Spo 
before 6 

years 
moderate 

compound 
hetero 

micro deletion  c.878A>G 
p.(Gln293A

rg) 
L. He, 2018 [17] 
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Spo congenital mild to moderate 
compound 

hetero 
c.131T>C   p.(Ile44Thr) c.313A>T p.(Lys105*) 

Christina M. Sloan-Heggen, 
2016 [16] 

AR prelingual N/A 
compound 

hetero 
c.827delT p.(Ile276fs) 

c.2960_2961delA
T 

p.(His987fs) Sommen, 2016 [14] 

AR congenital moderate 
compound 

hetero 
c.1320+5G>C  c.1765delC  

p.(Gln589fs
) 

Bong Jik Kim, 2019 [12] 

AD: autosomal dominant. AR: autosomal recessive. Spo: sporadic. N/A: not available. y: year(s), m: month(s). 
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It is noteworthy that mid-frequency HL was most commonly observed in individuals with 
OTOA variants in this study. In addition, flat HL and high-frequency HL were also observed in 
some cases. In previous reports, only Alkowari et al. have provided detailed audiograms of the 
three cases from one family with homozygous OTOA deletions, and the audiometric configurations 
of these patients were mid-frequency HL [25]. Interestingly, otoancorin, encoded by the OTOA 
gene, is a protein that acts as a glycosylphosphatidylinositol (GPI) anchorage, and is important for 
limbal attachment of the tectorial membrane (TM) [11,12]. The TECTA gene (Locus: DFNA8/12) 
encoding α-tectorin, a major non-collagenous glycoprotein of TM, which is expressed in the spiral 
limbus during TM development [10,11], is also known as a genetic cause of mid-frequency HL [47–
49]. The similarities between the clinical characteristics of HL in patients with OTOA and TECTA 
gene mutations reflect the mechanism of deafness caused by TM impairment. The results of this 
study will be useful for the selection of more appropriate treatment for patients as well as the 
further understanding of the disease-causing mechanisms of OTOA-associated HL. 

5. Conclusions 

Here, we presented the detailed clinical characteristics of the seven patients with OTOA-
associated HL identified from 2262 unrelated Japanese ARNSHL patients. The prevalence of OTOA-
associated HL in Japanese ARSNHL patients was calculated to be 0.3%. This is the first report of HL 
caused by this gene mutation in Japanese patients with HL. The remarkable clinical characteristics of 
the patients with OTOA variants was congenital or early onset, progressive, mid-frequency HL. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: 68 
deafness-causative genes. 
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