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Abstract: The buffalo (Bubalus bubalis L.) is prevalent in China and the increasing demand for meat
production has changed its role from being a beast of burden to a meat source. The low fat deposition
level has become one of the main barriers for its use in meat production. It is urgent to reveal
factors involved in fat deposition in buffalo. This study performed RNA sequencing to investigate
both long noncoding RNAs (lncRNAs) and mRNAs of adipose tissues in young and adult buffalos.
A total of 124 lncRNAs and 2008 mRNAs showed differential expression patterns between young
and adult samples. Coexpression analysis and functional enrichment revealed 585 mRNA–lncRNA
pairs with potential function in fat deposition. After validation by qRT-PCR, we focused on a lncRNA
transcribed from the ubiquinone oxidoreductase subunit C2 (NDUFC2) antisense (AS) strand which
showed high correlation with thyroid hormone responsive protein (THRSP). NDUFC2-AS lncRNA
is highly expressed in adipose tissue and maturation adipocytes and mainly exists in the nucleus.
Functional assays demonstrated that NDUFC2-AS lncRNA promotes adipogenic differentiation by
upregulating the expression levels of THRSP and CCAAT enhancer binding protein alpha (C/EBPα)
in buffalo. These results indicate that NDUFC2-AS lncRNA promotes fat deposition in buffalo.
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1. Introduction

Adipogenesis is influenced by a multitude of factors. In addition to a number of protein-coding
genes [1], noncoding RNAs, such as microRNAs (miRNAs) [2] and long noncoding RNAs (lncRNAs) [3],
can be prominent modulators of adipogenesis. Protein-coding genes and miRNAs are well studied
and they are highly conserved across species. lncRNAs are a class of transcripts with more than
200 nucleotides that are not translated into proteins. They can act as gene expression regulators
with relatively low conservation [4,5]. Though multiple lncRNAs have been identified as significant
regulatory factors of adipogenesis, most of them were studied in rodents and humans. The first lncRNA
(steroid receptor RNA activator) was reported to enhance adipogenesis and adipocyte function through
multiple pathways in both ST2 mesenchymal precursor cells and 3T3-L1 cells [6]. Several other lncRNAs
had been discovered to regulate adipogenesis, such as lncRNA NEAT1 in 3T3-L1 cells [7] and Blnc1 in
mice [8]. In humans, lncRNA ADINR promotes adipogenesis by activating the transcription of CCAAT
enhancer binding protein alpha (C/EBPα) [9]. The lncRNA H19 inhibits adipocyte differentiation
during the commitment of bone marrow mesenchymal stem cells into adipocytes [10]. The lncRNA
MEG3 was reported to be involved in the balance between adipogenic and osteogenic differentiation in
human adipose-derived stem cells [11]. Recently, several lncRNAs that modulate adipogenesis in pigs
and cattle have been identified. Sirtuin 1 (Sirt1) AS lncRNA was found to promote Sirt1 translation
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via combination with Sirt1 mRNA, forming an RNA duplex in pigs [12]. ADNCR was shown to
suppress adipogenic differentiation by targeting miR-204 in cattle [13]. To date, lncRNAs involved
in adipogenesis and even the characteristics of lncRNAs expression profile have not been reported
in buffalos.

Buffalos (Bubalus bubalis) are abundant in China [14]. Traditionally, buffalos were raised for
draught power. In recent years, the utility of buffalos in agriculture has gradually decreased due to
increasing agricultural mechanization, which suggests there can be a conversion of the role of buffalos
into a meat source. Fat deposition is one of the most important traits for meat animals. However,
fat deposition level in buffalo is very low due to the long-term breeding for draught power. Thus,
investigation of lncRNAs involved in fat deposition is important for buffalo breeding.

In this study, high throughput RNA sequencing of adipose tissues was performed using the
Illumina HiSeq 3000 platform. Tissues were obtained from buffalos at different development stages.
Coexpression analysis and functional enrichment were performed to yield candidate lncRNAs with a
putative role in fat deposition. Further qRT-PCR validation and functional assays demonstrated that a
lncRNA, which transcribed from the ubiquinone oxidoreductase subunit C2 (NDUFC2) antisense (AS)
strand, promotes adipogenic differentiation in buffalo adipocytes. This study provides transcriptome
information for further studies on buffalo fat deposition and proposes novel biomarker for aiding in
the improvement of fat deposition in buffalo breeding.

2. Materials and Methods

2.1. Animal Ethics

All animal protocols were approved by the Institutional Animal Care and Use Committee (IACUC)
of Xinyang Normal University. All animals were raised according to the feeding and management
standards of buffalo production, and all efforts were made to minimize suffering.

2.2. Animals and Tissue Samples

Xinyang buffalos (bull, n = 6) were produced by different female animals and share the same
male parent. They were born within a month of each other and were randomly selected and equally
divided into two groups (young group and adult group). They were raised at the Xinyang buffalo farm
(Xinyang, Henan, China) under similar feeding and management conditions. Animals were weaned at
6 months of age and the animals in the young group (n = 3) were then slaughtered. The remaining
three individuals in the adult group received a diet of 3 kg/day concentrate until 12 months of age,
4 kg/day concentrate until 24 months of age, and followed by 4.5 kg/day concentrate until 30 months of
age. Forage was provided ad libitum. Individuals in the adult group were slaughtered at 30 months of
age (n = 3). Subcutaneous adipose tissue was sampled after slaughter and immediately frozen in liquid
nitrogen for RNA sequencing and qRT-PCR validation. In addition, other 50 buffalos with variable
months of age were also sampled for qRT-PCR validation assay.

For primary adipocyte isolation, fresh adipose tissue was sampled, kept at ~30 ◦C in phosphate
buffer saline (PBS) with 1% streptomycin and penicillin, and taken back to lab for isolation and culture
of adipocytes.

2.3. RNA Isolation and Sequencing

For RNA sequencing, two groups were designated, young (6-month-old, n = 3) and adult
(30-month-old, n = 3). Total RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA, USA), following
the manufacturer’s instructions. RNA quantity was measured with NanoDrop2000 (Nanodrop,
Wilmington, DE, USA) and 1.5% agarose gels. RNA with 1.8 < 260/280 value < 2.0 and concentration >

500 ng/µL was used for further analysis. rRNA was removed from the total RNA using the Epicentre
Ribo-zero rRNA Removal Kit (Epicentre, Madison, WI, USA). The rest of the RNA was fragmented
and reverse transcribed by adding random primers to yield double stranded cDNA. Subsequently,
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end repair, poly (A) tailing, adapters ligating, and PCR enrichment (with 10 cycles) experiments were
successively performed to generate the cDNA library. The cDNA was purified with ethanol and the
DNA quality was assessed using the Agilent Bioanalyzer 2100 system (Agilent Technologies, Palo Alto,
Cali, USA). Clustering of the sample was performed using the Quant-iT™ PicoGreen®dsDNA Assay
Kit (Life, Grand Island, NY, USA) according to the manufacture’s instruction. Finally, the cDNA library
was sequenced using the paired-end sequencing mode of the Illumina HiSeq 3000 platform (Illumina,
San Diego, CA, USA). The RNA sequencing data were deposited in the Genome Expression Omnibus
of NCBI. The accession number is GSE112744.

2.4. Quality Control and Transcriptome Assembly

Low-quality reads (>50% of the bases had Phred quality scores≤ 10) and those containing adapters
were removed to obtain clean reads using Trim Galore (Version 0.4.2, Babraham Institute, Combridge,
UK) [15]. The Phred scores, including Q20 and Q30, length of reads, and GC contents of each read
were calculated. High-quality data were used for the subsequent analysis.

Since annotation information for buffalo genome (UOA_WB_1) was not available, the cattle genome
(UMD3.1) was used. The cattle reference genome and gene model annotation files were downloaded
from the Ensemble database (http://www.ensembl.org/index.html). Each read was aligned to the
reference genome using STAR [16]. Mapped reads were assembled using Cufflinks v2.2.1 [17]. Cufflinks
was run with the following settings: ‘min-frags-per-transfrag = 0’ and ‘-library-type fr-firststrand’.
All other parameters were set to default.

2.5. Coding Potential Analysis

The mRNAs were transcripts that contained in the known genes. For lncRNAs prediction,
transcripts that were shorter than 200 bp, those with multiple exons, and those with an ORF of more
than 100 amino acids were removed. All transcripts were classified by Cuffcompare [17], based on
its position in the reference genome. The following four types of transcripts were considered as
primary lncRNAs: intergenic transcripts, transcripts overlapping known introns, antisense transcripts
overlapping known exons, and antisense transcripts overlapping known introns. Three tools were
used to assess the coding potential of the remaining transcripts, including CPC [18], PhyloCSF [19],
and CPAT [20]. Transcripts with a CPC score < 0, a PhyloCSF score < 0, and a CPAT score ≤ 0.364 were
retained. Transcripts with a potential Pfam protein domain were filtered using HMMER [21].

2.6. Differential Expression Analysis and Functional Enrichment

Fragments per kilobase of transcript per million mapped reads (FPKM) was used as an index
to calculate the expression level of each transcript in every library and was calculated using Cuffdiff
2.1.1 [17]. The expression level was indicated as log2FPKM. When the absolute value of log2(fold
change) was ≥1 and the FDR value ≤ 0.05, the transcript was considered as differentially expressed (DE)
lncRNA or mRNA in the two groups and was presented in heatmap prepared with the R package [22].

DE mRNAs were used for functional enrichment analysis. DAVID (Version 6.8, https://david.
ncifcrf.gov/) was used for the gene ontology (GO) analysis with a hypergeometric test to investigate the
molecular function. KOBAS (Version 3.0, http://kobas.cbi.pku.edu.cn/index.php) was used for KEGG
enrichment analysis with a hypergeometric test to identify the pathways [23]. A p value ≤ 0.05 was
used as threshold to evaluate significant enrichment.

2.7. Coexpression Analysis

To explore the potential target genes of the DE lncRNAs, coexpression analysis was performed
between DE mRNAs and lncRNAs. mRNA–lncRNA pairs with Pearson’s correlation coefficients
|r| > 0.95 were retained. mRNAs involved in the pairs were considered as potential target genes
of lncRNAs.

http://www.ensembl.org/index.html
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/index.php
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2.8. 5′- and 3′-Rapid Amplification of cDNA Ends (RACE)

To identify the full-length sequence of NDUFC2-AS lncRNA, RACE experiments were performed
by the SMARTer RACE cDNA Amplification Kit (Clontech, Palo Alto, CA, USA) following the
manufacturer’s protocol. Total RNA was isolated from adipose tissue in buffalo. The gene-specific
primers (GSP) used for 5′ and 3′ RACE were 5′-CTCCCGCCTCCAGCCCAGAACCT-3′ and
5′-CTCAACCCAGCTTCCCAACCAGGGA-3′, respectively.

2.9. Adenovirus Packaging

The full-length of NDUFC2-AS lncRNA was obtained by using overlap PCR with the production
of 5′ and 3′ RACE (Table S1) and was ligated to pMD18-T vector (TaKaRa, Dalian, China). Recombinant
pMD18-T vector was sent to Hanbio Biotechnology Co.; Ltd. (Shanghai, China) for overexpression
adenovirus packaging. Briefly, adenoviral vectors were created using the AdMax system, including the
backbone plasmid pHBGlox∆E1, 3cre, and the shuttle plasmid pHBAd-EF1α-MCS-CMV-EGFP. EGFP
was used as indicator for transduction efficiency. Full-length NDUFC2-AS lncRNA was contained in
Ad-NDUFC2-AS lncRNA. Ad-GFP was used as negative control.

2.10. Isolation and Culture of Buffalo Primary Adipocytes

Buffalo primary adipocytes were isolated using the tissue block method [24]. Briefly, about 3 mm3

sections of adipose tissue without visible blood vessels and fascia were cut and cultured in a 10 cm
cell culture dish. The cell culture dish was inverted in an incubator set to 37 ◦C with 5% CO2 for 6 h
without medium. Then, 8 mL of high glucose Dulbecco’s Modified Eagle Medium (Hyclone, Logan,
UT, USA) containing 20% fetal bovine serum (Hyclone, Logan, UT, USA) and 1% streptomycin and
penicillin (Hyclone, Logan, UT, USA) was added. The cells were incubated at 37 ◦C with 5% CO2 for
about 15 days. The adipose tissues were then removed and primary adipocytes were digested and
collected for further culture.

2.11. Adenoviral Transduction

Buffalo primary adipocytes were planted in six-well plates in triplicate. Transduction was
conducted when the primary buffalo adipocytes reached 80% confluence. Adenovirus Ad-NDUFC2-AS
lncRNA and Ad-GFP were added to cells at the indicated multiplicity of infection (MOI), respectively.
The media was exchanged 3 h later.

2.12. Adipogenic Differentiation, Oil Red O Staining, and Quantification

Two days after adenovirus transduction, primary adipocytes were treated with inducing medium
containing 10 µg/mL insulin (Sigma, Milwaukee, WI, USA), 1 µM dexamethasone (Sigma, USA),
0.5 mM IBMX (Sigma, Milwaukee, WI, USA), and 1 µM rosiglitazone (Sigma, Milwaukee, WI, USA)
for 2 days. Cultures were then treated with a maintenance medium containing 10 µg/mL insulin and
1 µM rosiglitazone. The medium was changed every two days.

After inducing with adipogenic agents for 6 days, Oil Red O staining was performed. Primary
adipocytes were washed with PBS thrice and treated with two changes of 10% formalin for 5 min and
1 h, respectively. The cells were then washed with 60% isopropanol and stained with 0.3% Oil Red O
(0.3% Oil Red O, 60% isopropanol, and 40% PBS) for 20 min. Finally, cells were washed with PBS five
times and observed under the microscope.

For quantification of lipid accumulation in the cells, 100% isopropanol was used to elute the Oil
Red O. Then, the spectrophotometric absorbance of Oil Red O was quantified at 510 nm with 100%
isopropanol used as blank solution.
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2.13. qRT-PCR

Primers were designed using the Pick Primers function from NCBI (http://www.ncbi.nlm.nih.gov/

tools/primer-blast/) (Table S2). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as
the internal control gene, the primers of which were reported in a previous study [13]. The total RNA
was transcribed into cDNA using the PrimeScriptsRT reagent Kit with gDNA Eraser (TaKaRa, Dalian,
China). qPCR was performed using SYBR Green I (TaKaRa, Dalian, China) with two-step reactions
according to the manufacturer’s recommended protocol. The cycle threshold (2−∆∆Ct) method was
used to calculate the relative expression level of lncRNA. Three replicates were run per sample and the
qRT-PCR experiment was performed three times.

2.14. Statistical Analysis

Normal distribution testing was performed for the data. Comparison was analyzed by SPSS
software (version 19.0, IBM, Armonk, NY, USA). Student’s t test was used when the data had a normal
distribution, otherwise nonparametric test was used. A p value < 0.05 was considered to indicate
statistical significance. Results are presented as mean ± SD (n = 3) by Origin software (version 7.5,
Origin Lab, Wellesley, MA, USA).

Expressional correlation analysis between lncRNA and mRNA was performed using the CORREL
function by Excel software. Meanwhile, correlation between lncRNA and mRNA is presented by
scatter plot, showing formula and r value.

3. Results

3.1. Overview of RNA Sequencing

Six cDNA libraries of adipose tissues were constructed and sequenced. In total, 133,216,720 to
224,667,746 raw reads and 130,254,066 to 217,117,252 clean reads were obtained (Table S3). A total
of 141.50 Gb, with an average of 23.58 Gb clean data, was obtained (Table S3). All clean reads were
aligned to the cattle genome (UMD3.1) and the mapped ratios ranged from 76.00% to 86.05% (Table S3).

3.2. Differentially Expressed Transcripts

The expression levels of all transcripts were used for the correlation analysis of both samples
to evaluate the reliability of our data. High correlation was detected (r > 0.86), indicating the high
reproducibility of the utilized method (Figure 1a). The sequencing data were used for mRNA and
lncRNA analyses.

A total of 21,693 mRNAs were obtained, 2008 of which were identified as DE mRNAs in both
groups (1021 up- and 987 downregulated) (Table S4). Well-known adipogenesis markers, such as the
peroxisome proliferator-activated receptor gamma (PPARG) [25], lipoprotein lipase (LPL) [26], and
thyroid hormone responsive protein (THRSP) [27] were consistently upregulated in the adult group,
which is to be expected given the animals development of adipose tissue at this age. For lncRNAs
prediction, a total of 9494 lncRNAs were obtained (Table S5), including 6512 intergenic lncRNAs (69%),
625 intronic lncRNAs (7%), 584 antisense lncRNAs (6%), 114 bidirectional lncRNAs (1%), and 1659
unclassified lncRNAs (17%) (Figure 1b). Among these, 124 lncRNAs showed differential expression in
both groups, with 52 down- and 72 upregulated lncRNAs (Table S6). Hierarchical clustering of the
DE mRNAs and lncRNAs could be used to accurately distinguish the young from the adult buffalos
(Figure 1c,d). Together these results indicate that the RNA sequencing data obtained was reliable.

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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downregulated expression. 

3.3. Validation of Differentially Expressed lncRNAs and mRNAs by qRT-PCR 

To evaluate the reliability of the DE analysis results, ten DE mRNAs (upregulated) associated 
with lipid metabolism and 14 DE lncRNAs (six up- and eight downregulated) were randomly 
selected for validation by qRT-PCR. The expression patterns of the ten mRNAs and 14 lncRNAs were 
consistent with those obtained from RNA sequencing (Figure 2). These results suggest a high quality 
of the DE analysis results. Thus, DE mRNAs and DE lncRNAs could be used for the subsequent 
analysis. 

Figure 1. Global mRNA and lncRNA profiling of adipose tissues of young and adult buffalos.
(a) Cluster graph of all mRNAs and lncRNAs based on correlation analysis. The correlation of mRNA
and lncRNA expressions between both groups indicated the reliability of RNA sequencing performance.
(b) Classification of the 9494 lncRNAs detected in this study. (c) Hierarchical clustering of 2008
differentially expressed (DE) mRNAs from young and adult groups. (d) Hierarchical clustering of 124
DE lncRNAs from young and adult groups. Data are presented as fragments per kilobase of transcript
per million mapped reads (FPKM). Red: upregulated expression; Green: downregulated expression.

3.3. Validation of Differentially Expressed lncRNAs and mRNAs by qRT-PCR

To evaluate the reliability of the DE analysis results, ten DE mRNAs (upregulated) associated with
lipid metabolism and 14 DE lncRNAs (six up- and eight downregulated) were randomly selected for
validation by qRT-PCR. The expression patterns of the ten mRNAs and 14 lncRNAs were consistent
with those obtained from RNA sequencing (Figure 2). These results suggest a high quality of the DE
analysis results. Thus, DE mRNAs and DE lncRNAs could be used for the subsequent analysis.
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Figure 2. Validation of differentially expressed mRNAs and lncRNAs by qRT-PCR. (a, b, and c) 
Expression patterns of ten upregulated mRNAs, six upregulated lncRNAs, and eight downregulated 
lncRNAs in adipose tissues of young and adult buffalos. The RNA expression levels are normalized 
to those of GAPDH. Comparison was analyzed by Student’s t test or nonparametric test. Data are 
presented as mean ± SD (n = 3, *, p < 0.05, **, p < 0.01). 
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To investigate the potential functions of DE lncRNAs, coexpression analyses for DE mRNAs and 
lncRNAs were performed based on Pearson’s correlation coefficients. Up to 5315 mRNA–lncRNA 
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negative correlation, while the remainder showed positive correlation. 

Then, to obtain a gene list associated with fat deposition, functional enrichment analysis for DE 
genes (mRNAs) was performed. A total of 1000 gene ontology (GO) items and 38 Kyoto encyclopedia 
of genes and genomes (KEGG) pathways with significant values (p < 0.05) were identified (Table S8). 
Among these, items associated with fatty acid metabolism, energy metabolism, lipid metabolism, and 
PPAR signaling pathways received particular focus. As a result, 34 GO items (Table S8, from GO-1 
to GO-34) and eight KEGG pathways (Table S8, from KEGG-1 to KEGG-8) were further screened. In 
these items, 213 genes were involved, and we classified these as making up the putative fat 
deposition-associated gene set. 

This gene set was then used to screen for mRNA–lncRNA pairs with potential effects on fat 
deposition. At last, a total of 585 mRNA–lncRNA pairs were retained, including 74 lncRNAs and 147 
mRNAs (Table S9). Notably, most of the retained pairs (381/585) had positive correlations. Several 
lncRNAs showed relatively high correlations with well-known adipogenesis markers, such as 
PPARG, LPL, and THRSP. Several adipogenesis markers shared the same lncRNAs and vice versa 
(Table S9). 
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Figure 2. Validation of differentially expressed mRNAs and lncRNAs by qRT-PCR. (a–c) Expression
patterns of ten upregulated mRNAs, six upregulated lncRNAs, and eight downregulated lncRNAs in
adipose tissues of young and adult buffalos. The RNA expression levels are normalized to those of
GAPDH. Comparison was analyzed by Student’s t test or nonparametric test. Data are presented as
mean ± SD (n = 3, *, p < 0.05, **, p < 0.01).

3.4. Coexpression Analysis and Screening mRNA–lncRNA pairs Associated with Fat Deposition

To investigate the potential functions of DE lncRNAs, coexpression analyses for DE mRNAs and
lncRNAs were performed based on Pearson’s correlation coefficients. Up to 5315 mRNA–lncRNA pairs
with |r| > 0.95 were obtained (Table S7). Among these, 2195 mRNA–lncRNA pairs showed negative
correlation, while the remainder showed positive correlation.

Then, to obtain a gene list associated with fat deposition, functional enrichment analysis for DE
genes (mRNAs) was performed. A total of 1000 gene ontology (GO) items and 38 Kyoto encyclopedia
of genes and genomes (KEGG) pathways with significant values (p < 0.05) were identified (Table S8).
Among these, items associated with fatty acid metabolism, energy metabolism, lipid metabolism, and
PPAR signaling pathways received particular focus. As a result, 34 GO items (Table S8, from GO-1
to GO-34) and eight KEGG pathways (Table S8, from KEGG-1 to KEGG-8) were further screened.
In these items, 213 genes were involved, and we classified these as making up the putative fat
deposition-associated gene set.

This gene set was then used to screen for mRNA–lncRNA pairs with potential effects on fat
deposition. At last, a total of 585 mRNA–lncRNA pairs were retained, including 74 lncRNAs and 147
mRNAs (Table S9). Notably, most of the retained pairs (381/585) had positive correlations. Several
lncRNAs showed relatively high correlations with well-known adipogenesis markers, such as PPARG,
LPL, and THRSP. Several adipogenesis markers shared the same lncRNAs and vice versa (Table S9).

3.5. Validation of the Expressional Correlation between lncRNA and mRNA by qRT-PCR

To evaluate the reliability of the coexpression analysis, five mRNA–lncRNA pairs with potential
effect on fat deposition were selected for validation via qRT-PCR. These included three pairs for the
THRSP gene, one pair for the peroxisome proliferator-activated receptor alpha (PPARA) gene, and one
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pair for the LPL gene (Table 1). Firstly, six adipose tissue samples of young (n = 3) and adult (n = 3)
buffalos were used. Only three pairs with high correlation (r > 0.8) were then used for the second
validation experiment by using 50 adipose samples of buffalos with variable months of age. Finally,
only two pairs with relatively high correlations obtained: the TCONS_00539210-THRSP had r = 0.78
and the TCONS_00539092-THRSP had r = 0.81 (Table 1 and Figure 3).

Table 1. mRNA–lncRNA pairs validation using qRT-PCR.

mRNA lncRNA
r by RNA Sequencing r by qRT-PCR

Young vs. Adult
(n = 6)

Young vs. Adult
(n = 6)

Adipose Samples of
Different Months

(n = 50)

THRSP TCONS_00539210 0.99 0.98 0.78
THRSP TCONS_00539092 0.98 0.82 0.81
THRSP TCONS_00439871 0.96 0.51 NA
PPARA TCONS_00539092 0.98 −0.06 NA

LPL TCONS_00539092 0.97 0.94 0.14
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Figure 3. Validation of the two lncRNAs with high correlation to THRSP by qRT-PCR. The axis shows
the relative expression of lncRNA and THRSP. Pearson’s correlation coefficients between lncRNA and
THRSP based on their relative expressions were calculated to yield an r value. (a,c) Validation for
TCONS_00539210-THRSP and TCONS_00539092-THRSP in young and adult buffalos, respectively
(n = 6). (b,d) Validation for TCONS_00539210-THRSP and TCONS_00539092-THRSP in buffalos with
variable months of age, respectively (n = 50).

3.6. Characterization of the NDUFC2-AS lncRNA

We further focused on the mRNA–lncRNA pair with the highest correlation value,
TCONS_00539092-THRSP. TCONS_00539092 is a lncRNA transcribed from the NDUFC2 antisense
strand and we named it NDUFC2-AS lncRNA (Figure 4a). Meanwhile, NDUFC2-AS lncRNA is
located 3′-downstream of THRSP in genome (Figure 4a). The full-length of NDUFC2-AS lncRNA
is 2493 bp (Table S1). The CPC [18] indicated that NDUFC2-AS lncRNA is a noncoding RNA
(Figure 4b). The semiquantitative PCR of nuclear and cytoplasmic fractions showed that NDUFC2-AS
lncRNA is mainly localized in the nucleus of adipose tissue (Figure 4c). Tissue expression profile
demonstrated that NDUFC2-AS lncRNA is mainly expressed in adipose tissue (Figure 4d). During
adipocyte differentiation, NDUFC2-AS lncRNA is significantly upregulated in day 10 (Figure 4e,
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p < 0.01). NDUFC2-AS lncRNA and THRSP showed relatively high expressional correlation during
differentiation of buffalo adipocytes (Figure 4f).
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Figure 4. Characterization of NDUFC2-AS lncRNA. (a) Positional relationship among NDUFC2,
NDUFC2-AS lncRNA, and THRSP in buffalo genome. (b) Protein coding ability prediction of
NDUFC2-AS lncRNA by Coding Potential Calculator (CPC) program. (c) Cell localization of
NDUFC2-AS lncRNA by semiquantitative PCR. RNA was isolated from nuclear and cytoplasmic
fractions of adipose tissue. β-actin mRNA was used as control. (d) Tissue expression profile
NDUFC2-AS lncRNA determined by qRT-PCR. (e) The expression dynamics of NDUFC2-AS lncRNA
during adipocyte differentiation determined by qRT-PCR. Comparison was analyzed by Student’s t test
or nonparametric test. Data are presented as mean ± SD (n = 3, *, p < 0.05, **, p < 0.01). (f) Expressional
correlation analysis of NDUFC2-AS lncRNA and THARSP during differentiation of buffalo adipocytes.
Adipocytes in day 0, day 2, day 4, day 6, and day 10 of induced differentiation were collected for
qRT-PCR. There were three replicates for each stage.

3.7. Effects of NDUFC2-AS lncRNA on Lipid Accumulation in Buffalo Adipocytes

To detect the effect of NDUFC2-AS lncRNA on lipid accumulation in buffalo adipocytes,
the full-length of NDUFC2-AS lncRNA was inserted into the pHBAd vector and packaged into
adenovirus for overexpression (Ad-NDUFC2-AS lncRNA). The GFP was used as indicator for the
recombinant adenovirus. GFP was highly expressed two days after adenoviral transduction (Figure 5a).
The expression of NDUFC2-AS lncRNA in the Ad-NDUFC2-AS lncRNA group was significantly higher
than that in the Ad-GFP group (Figure 5d). With overexpressed NDUFC2-AS lncRNA, THRSP and
C/EBPα were significantly upregulated (Figure 5f,h). The expression of PPARG was significantly
upregulated on day 4 but significantly downregulated on days 2 and 6 (Figure 5g). For NDUFC2, no
significant difference was found between the two groups (Figure 5e). Compared to the Ad-GFP group,
lipid accumulation was significantly increased in Ad-NDUFC2-AS lncRNA group (Figure 5b,c) in the
sixth day of induced differentiation (p < 0.05).
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Figure 5. Overexpression of NDUFC2-AS lncRNA promotes lipid accumulation in buffalo primary
adipocytes. (a) Micrographs of GFP-positive bovine adipocytes under white and fluorescent light in
the Ad-GFP (control) and NDUFC2-AS lncRNA groups. Adipocytes were induced to differentiation
2 days after adenovirus transduction. 0d represents the time of differentiation. Scale bar, 100 µm. (b)
Images of Oil Red O staining in buffalo adipocytes transfected with Ad-GFP and Ad- NDUFC2-AS
lncRNA at day 0 and day 6 of adipogenic differentiation. Scale bar, 100 µm. (c) Histogram showing the
quantitation of Oil Red O staining by spectrophotometry (normalized to control group). (d–h) The
RNA expression dynamics of NDUFC2-AS lncRNA, NDUFC2, THRSP, PPARG, and C/EBPα during
adipogenic differentiation in buffalo adipocytes transfected with Ad-GFP and Ad-NDUFC2-AS lncRNA.
Comparison was analyzed by Student’s t test or nonparametric test. Data are presented as mean ± SD
(n = 3, *, p < 0.05, **, p < 0.01).
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4. Discussion

This is the first report that presents a characterization of lncRNAs based on RNA sequencing data
during the development of adipose tissue in the buffalo. This study demonstrates that: (1) a large
number of lncRNAs are expressed during the development of buffalo adipose tissue, most of which are
intergenic lncRNAs; (2) 124 lncRNAs demonstrate differential expression during both development
stages; (3) 74 lncRNAs show high expressional correlation with genes involved in fat deposition; and
(4) NDUFC2-AS lncRNA promotes lipid accumulation in buffalo adipocytes. The central idea and
results of this research are illustrated in Figure 6.
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4.1. Prediction and Differentially Expression of lncRNAs

The identification of lncRNAs in animals and other organisms has recently become a research
hotspot. Structurally, lncRNAs show weak or no protein-coding potential and low exon numbers [28,29].
Based on these principles, a total of 9494 putative lncRNAs were obtained in this study (Table S5),
which is comparable to the results of other studies [13,30,31]. Matching similar studies [13,29], most of
the identified lncRNAs were of the intergenic type in this study (Figure 1b).

To identify lncRNAs with potential function in regulating adipogenesis, characterization of
lncRNAs profiles have been investigated in animals [32–34]. Differential expression was demonstrated
for 1336 lncRNAs during preadipocyte differentiation in chicken [32]. A study investigated lncRNAs
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in adipose tissue and identified only 18 DE lncRNAs between castrated and intact male pigs [33].
By comparing the transcriptome of different types of adipocytes, 175 lncRNAs were identified to be
specifically regulated during adipogenesis, of which a portion is bound by PPARG and C/EBPα at the
promoter regions [34]. Downregulating ten of the lncRNAs resulted in a reduction in lipid accumulation
and in the expression of key adipogenesis genes [34]. In this study, 124 lncRNAs were identified
that were differentially expressed in adipose tissues of young and adult buffalos (Table S6). These
lncRNAs may play important roles by affecting the expression of genes that regulate the development
of adipose tissue.

4.2. lncRNAs Associated with Fat Deposition

lncRNAs have a low level of cross-species conservation and lack distinct common sequence
features or structural motifs, which impedes the prediction of their putative function and functional
mechanisms [4,5]. A number of studies have indicated that lncRNAs act via genomic targeting, where
they serve as functional cis- or trans-regulatory elements [35]. The prediction of target genes of lncRNAs
by cis and trans algorithms has been widely used in similar studies [36–40]. The cis algorithm assumes
that lncRNAs target neighboring genes (<100 Kb). Based on this algorithm, a considerable number of
putative target genes were obtained in this study. However, further functional enrichment identified
no item that is associated with fat deposition (data not shown). The trans algorithm suggests that
lncRNAs and their target genes have high correlation in their expression levels. By combining the trans
algorithm and functional enrichment, a total of 585 mRNA–lncRNA pairs were obtained which were
considered to have potential effects on fat deposition in buffalos (Table S9). Among these, several genes
with key roles in fat deposition were included, such as PPARA and LPL [1]. These results indicate that
the candidate lncRNAs may regulate the expressions of genes that with key roles in fat deposition.
In addition, multiple genes were targeted by one lncRNA and vice versa (Table S9), suggesting that fat
deposition is regulated by a complex mRNA–lncRNA network.

To evaluate the quality of the mRNA–lncRNA pair set with a potential effect on fat deposition,
five pairs were selected for validation by qRT-PCR. Only two pairs (TCONS_00539210-THRSP and
TCONS_00539092-THRSP) showed a relatively high correlation (Table 1 and Figure 3). These results
indicate that the accuracy of correlation is relatively low in the present study, which may be ascribed
to the small sample size used for RNA sequencing. We further focused on the mRNA–lncRNA pair
with the highest r value, THRSP and TCONS_00539092. TCONS_00539092, namely NDUFC2-AS
lncRNA, overlaps two exons of NDUFC2 (Figure 4a), suggesting that it may influence the splicing of
NDUFC2 and prevent the normal expression of NDUFC2 [41]. NDUFC2 is the first enzyme complex of
the mitochondrial electron transport chain and is associated with some neurological disorders [42].
Until now, no research has indicated association between NDUFC2 and lipid metabolism. Besides,
NDUFC2-AS lncRNA is located downstream of THRSP. THRSP has been studied in rats for its potential
function in lipid metabolism [43,44]. Recently, THRSP was found to be expressed in mature adipocytes
in cattle [45] where it showed positive and high correlation with intramuscular fat [46], suggesting it has
a putative role as a transcriptional regulator in adipogenesis. NDUFC2-AS lncRNA is mainly located in
the nuclei of adipose tissue (Figure 4c). When investigating the expression profile, NDUFC2-AS lncRNA
was found to be highly expressed in adipose tissue and mature adipocytes (Figure 4d,e). All these
signs indicated that NDUFC2-AS lncRNA might affect fat deposition by regulating the transcription
of THRSP [47]. Expectedly, NDUFC2-AS lncRNA significantly upregulated THRSP (Figure 5f) and
promoted lipid accumulation in buffalo adipocytes (Figure 5b,c). However, NDUFC2-AS lncRNA
had no significant effect on the expression of NDUFC2 (Figure 5e). During induced differentiation of
adipocytes, we found that the expressional pattern of NDUFC2-AS lncRNA in normal cultured cells
(Figure 4e) was different from that in Ad-GFP or Ad-NDUFC2-AS lncRNA cells (Figure 5d). Primary
adipocytes are very sensitive to culture condition. Treating with adenovirus made cells grow poorly
and promoted cell apoptosis. Thus, the highest expression level was found in day 10 of differentiation
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in normal cultured cells (Figure 4e) while that was found in day 2 of differentiation in Ad-GFP or
Ad-NDUFC2-AS lncRNA cells (Figure 5d).

When investigating the expression of adipogenic markers, NDUFC2-AS lncRNA was found to
significantly upregulate C/EBPα (Figure 5h), while exerting an ambiguous effect on PPARG (Figure 5g).
PPARG and C/EBPα are the key transcription factors and play central roles in the complex regulatory
network of adipogenesis [3]. They cooperate in promoter regions, regulating a wide range of genes that
are expressed in the adipogenic differentiation of adipocytes [48,49]. Meanwhile, expressions of PPARG
and C/EBPα can be regulated by an array of factors that are involved the adipogenic differentiation of
adipocytes [3].

Therefore, NDUFC2-AS lncRNA promotes lipid accumulation by increasing the expression of
THRSP and C/EBPα. It was reported that Flank10kb class lncRNA can interact with target gene via
a cis-regulatory process [50,51]. NDUFC2-AS lncRNA significantly upregulates the expression of
THRSP and is downstream of THRSP in the genome. Besides, NDUFC2-AS lncRNA was mainly
detected in the nucleus. Thus, we suspected that NDUFC2-AS lncRNA might regulate THRSP through
a transcriptional modification. It might bind to the promoter of THRSP directly or with the help of
other protein involved in transcription. An RNA immunoprecipitation assay can be used to detect the
direct interaction between NDUFC2-AS lncRNA and the promoter of THRSP. Then, the upregulated
THRSP might further upregulate the expression of C/EBPα. However, to the best of our knowledge,
though THRSP demonstrates significant function in lipid metabolism [43,44], no evidence indicates a
direct relationship between C/EBPα and THRSP. Thus, further work is necessary to investigate the
specific regulatory mechanisms of NDUFC2-AS lncRNA during lipid accumulation.

5. Conclusions

This study firstly presents the characterization of lncRNA expression profiles in the adipose
tissue of both young and adult buffalos. The results suggest that NDUFC2-AS lncRNA promotes lipid
accumulation by upregulating the expression of C/EBPα and THRSP in buffalo adipocytes, but the
underlying specific regulatory mechanism requires further research. This study provides valuable
information for further studies on buffalo fat deposition, which will aid buffalo breeding.
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functional enrichment of differentially expressed mRNAs, Table S9: Primary mRNA–lncRNA pairs with potential
effect on fat deposition in buffalos.
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