SUPPLEMENTARY FILE

Title: Genomic analysis of γ -hexachlorocyclohexane degrading *Sphingopyxis lindanitolerans* WS5A3p strain in the context of the pangenome of *Sphingopyxis*

Michal A. Kaminski¹, Adam Sobczak^{1,2}, Andrzej Dziembowski^{1,2}, Leszek Lipinski^{1,2,*}

¹Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland

²Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland

* Correspondence: lechu@ibb.waw.pl (L.L.)

SUPPLEMENTARY TABLES AND FIGURES

Attribute	Chromosome	pSPMK1	pSPMK2	Total
Size (kbp)	4,149	181	42	4,372
DNA G + C (%)	65.3	62.8	62.6	65.1
Protein ORFs	3,812	180	49	4,041
tRNA genes	45	-	-	45
rRNA genes	3	-	-	3
ncRNA	2	-	-	2
tmRNA	1	-	-	1
Pseudo genes	68	20	4	92

Table S1. General statistics of the Sphingopyxis lindanitolerans WS5A3p genome.

Table S2. General information about 44 *Sphingopyxis* genomes used in this work. The number of genes as indicated in GenBank. The number of identified protein clusters was presented as the number of clusters identified by CD-HIT per genome. The number of unique protein clusters was presented as a protein cluster identified only in the analyzed genome. The asterisk symbol (*) indicates that for those genome groups unique clusters were counted as a sum of all groups representatives due to their high genome similarity.

Organism	Country	Environment	GenBank assembly no.	Genome size (bp)	No. of genes	No. of identified protein clusters	No. of unique protein cluster s
S. alaskensis RB2256	USA	Seawater	GCA_000013985.1	3,373,713	3,287	3,236	573
S. bauzanensis DSM 22271	Italy	Hydrocarbon- contaminated soil	GCA_002205675.1	4,258,005	4,149	4,097	1,207
S. flava R11H	India	Hexachlorocyclohexa ne dumpsite soil	GCA_900168005.1	4,155,299	4,175	4,128	1,238
S. fribergensis Kp5.2	Germany	Soil of meadow	GCA_000803645.1	5,202,172	4,938	4,886	1,035
<i>S. granuli</i> TFA	Germany	Mud from Rhine river	GCA_001559015.1	4,679,853	4,350	4,297	1,549
S. indica DS15	India	Hexachlorocyclohexa ne dumpsite soil	GCA_900188185.1 4,149,80		3,906	3,856	1,294
S. macrogoltabida 203	Japan	Soil	GCA_001314325.1	5,748,623	5,572	5,506	1,667
S. lindanitolerans WS5A3p	Poland	Hexachlorocyclohexa ne dumpsite soil	GCA_002993885.1	4,373,091	4,165	4,112	1,274
Sphingopyxis sp. 113P3	Japan	Activated sludge	GCA_001278035.1	4,664,213	4,591	4,537	1,128
Sphingopyxis sp. A083	USA	Drinking water	GCA_001468495.1	3,594,844	3,472	3,420	194
<i>Sphingopyxis</i> sp. C-1	China	Lake water	GCA_001047015.1	4,583,092	4,324	4,272	604
<i>Sphingopyxis</i> sp. GW247-27LB	USA	Ground Water	GCA_002277025.1	4,791,544	4,580	4,520	1,213
<i>Sphingopyxis</i> sp. H005	USA	Drinking Water	GCA_001467395.1	5,103,573	4,832	4,780	25*
Sphingopyxis sp. H012	USA	Drinking Water	GCA_001468235.1	5,056,279	4,786	4,734	23.

<i>Sphingopyxis</i> sp. H038	USA	Drinking Water	GCA_001467405.1	5,058,140	4,790	4,739	
<i>Sphingopyxis</i> sp. H053	USA	Drinking Water	GCA_001468225.1	5,130,000	4,862	4,811	
<i>Sphingopyxis</i> sp. H077	USA	Drinking Water	GCA_001467445.1	5,256,605	4,980	4,929	
<i>Sphingopyxis</i> sp. H080	USA	Drinking Water	GCA_001467455.1	5,194,868	4,925	4,874	
<i>Sphingopyxis</i> sp. H093	USA	Drinking Water	GCA_001467475.1	5,346,988	5,083	5,032	
<i>Sphingopyxis</i> sp. H085	USA	Drinking Water	GCA_001467385.1	5,221,350	4,966	4,915	
<i>Sphingopyxis</i> sp. H057	USA	Drinking water	GCA_001468315.1	4,285,293	4,223	4,170	
<i>Sphingopyxis</i> sp. H067	USA	Drinking water	GCA_001468345.1	4,308,725	4,235	4,182	
<i>Sphingopyxis</i> sp. H071	USA	Drinking water	GCA_001468365.1	4,309,215	4,235	4,182	
<i>Sphingopyxis</i> sp. H073	USA	Drinking water	GCA_001468395.1	4,309,020	4,236	4,183	34*
<i>Sphingopyxis</i> sp. H081	USA	Drinking water	GCA_001468385.1	4,306,233	4,235	4,182	
<i>Sphingopyxis</i> sp. H100	USA	Drinking water	GCA_001468425.1	4,306,674	4,236	4,183	
<i>Sphingopyxis</i> sp. H107	USA	Drinking water	GCA_001468475.1	4,308,137	4,244	4,191	
<i>Sphingopyxis</i> sp. H050	USA	Drinking water	GCA_001468265.1	4,363,228	4,198	4,145	768
<i>Sphingopyxis</i> sp. H115	USA	Drinking water	GCA_001468465.1	4,493,891	4,324	4,274	638
<i>Sphingopyxis</i> sp. HIX	USA	Drinking water	GCA_001468285.1	4,866,477	4,561	4,503	19
<i>Sphingopyxis</i> sp. HXXIV	USA	Drinking water	GCA_001468305.1	4,885,113	4,591	4,533	23
<i>Sphingopyxis</i> sp. KK2	USA	Lake water	GCA_001990265.1	4,336,942	4,224	4,167	871
Sphingopyxis sp. LC363	USA	Cave water	GCA_000756385.1	4,210,757	3,958	3,906	424
Sphingopyxis sp. LC81	USA	Cave water	GCA_000756375.1	4,397,290	4,158	4,109	488
Sphingopyxis sp. MC1	USA	Waste water treatment plant	GCA_000371385.1	3,653,464	3,533	3,481	291
Sphingopyxis sp. P1IMeth2	Australia	Coal seam gas water treatment pond	GCA_900185685.1	3,886,209	3,722	3,669	193
Sphingopyxis sp. QXT-31	China	Surface soil of a Manganese mine	GCA_001984035.1	4,285,026	4,094	4,038	398
<i>Sphingopyxis</i> sp. Root1497	Germany	Arabidopsis thaliana roots	GCA_001427085.1	4,801,179	4,537	4,478	957
Sphingopyxis sp. Root154	Germany	Arabidopsis thaliana roots	GCA_001427105.1	4,726,935	4,442	4,388	4
Sphingopyxis sp. Root214	Germany	Arabidopsis thaliana roots	GCA_001429105.1	4,724,829	4,440	4,386	5
Sphingopyxis sp. YR583	Missing data	Populus sp. roots	GCA_900108295.1	4,312,099	4,060	4,003	708
S. terrae NBRC 15098	Japan	Activated sludge	GCA_001598815.1	4,082,958	3,840	3,788	203
S. ummariensis U12 (currently S. terrae subsp. ummariensis U12)	India	Hexachlorocyclohexa ne contaminated soil	GCA_900177755.1	3,577,011	3,469	3,413	330
S. witflariensis DSM 14551	Germany	Activated sludge	GCA_002205635.1	4,306,761	4,207	4,149	1,303

								Nucleotide identity
Sequence Accession No.	Gene Name	Start	End	Length (nt)	Direction	Locus Tag	Genomic localization	(%) to that of UT26
NZ_PHFW01000004	linA	165,806	166,276	471	forward	CVO77_RS20540	Plasmid pSPMK1	99 (469/471)
NZ_PHFW01000004	linB	117,482	118,372	891	reverse	CVO77_RS20265	Plasmid pSPMK1	100 (891/891)
NZ_PHFW01000005	linC	6,750	7,502	753	reverse	CVO77_RS20705	Plasmid pSPMK2	100 (753/753)
NZ_PHFW01000005	linD	20,869	21,909	1,041	forward	CVO77_RS20770	Plasmid pSPMK2	100 (1,041/1,041)
NZ_PHFW01000005	linE	17,656	18,621	966	forward	CVO77_RS20750	Plasmid pSPMK2	100 (966/966)
NZ_PHFW01000004	linEb	61,081	62,043	963	reverse	CVO77_RS19960	Plasmid pSPMK1	99 (961/963)
NZ PHFW01000004	linF	63,591	64,649	1,059	forward	CVO77 RS19970	Plasmid pSPMK1	99 (1,049/1,059)
 NZ PHFW01000004	linG	22,007	22,726	720	reverse	 CVO77 RS19780	Plasmid pSPMK1	99 (719/720)
 NZ PHFW01000004	linH	21,369	22,007	639	reverse	 CVO77_RS19775	Plasmid pSPMK1	99 (637/639)
– NZ PHFW01000004	linI	22,797	23,594	798	forward	CVO77 RS19785	Plasmid pSPMK1	99 (792/798)
NZ_PHFW01000004	linJ	23,630	24,841	1.212	forward	CV077_RS19790	Plasmid nSPMK1	99 (1,202/1,212)
NZ_PHFW01000005	linR	16 613	17 524	912	reverse	CV077_RS20745	Plasmid pSPMK2	100 (912/912)
NZ_PHFW01000004	linX	163.971	164.723	753	forward	CV077_RS20525	Plasmid pSPMK1	100 (753/753)

Table S3. Genome coordinates and locus tags of *lin* genes identified in WS5A3p genome sequence.

Figure S1. γ -HCH degrading abilities of *Sphingopyxis lindanitolerans* WS5A3p. (A) Image of WS5A3p colonies grown on MSM solid medium with γ -HCH as a sole carbon source at 23°C for 14 days (colonies indicated by black arrow). The clear zone around the colony is visible. (B) Preliminary results of γ -HCH degradation in a liquid medium. Bacteria grown on MSM solid medium with γ -HCH for 5 days were used to inoculate 10x diluted LB medium with γ -HCH in concentration of 50 mg/L until they reached OD ~ 1. Next bacteria were washed 3 times with MSM liquid medium and resuspended in 50 mL of liquid MSM with γ -HCH in concentration (day 0), 3 and 7 days of incubation. Extraction was performed with ethyl acetate and the organic phase was analyzed using GC-MS for γ -HCH concentration.

Figure S2. Accumulation plots of the *Sphingopyxis* **pangenome.** Illustrated values were calculated as the number of maximum possible permutations with the upper limit set to 10000. (A) Accumulation plot calculated for core pangenome size represented as the number of common protein clusters between the specified number of genomes. (B) Accumulation plot for pangenome size represented as the number of unique clusters between the specified number of genomes. Error bars represent standard deviations.

Figure S3. Correlation between minimal phylogenetic distance to the closest neighbor and the number of unique protein clusters in the genome. Each dot represents a separate genome. Blue line illustrates the fitted linear regression model. K-means clustering performed on analyzed dataset showed that it can be split into 4 distinct clusters. Genomes clustered together are represented by the same color.

Figure S4. Identification of enzymes potentially involved in aromatic compound degradation. (A) Amount of protein hits per genome against the database of reference protein set. Bars colored by number of hits. (B) Distribution of amount of identified protein hits in all analyzed strains. (C) Amounts of specific enzyme hits per genome according to the metabolic route they belong to. Dots are colored by the metabolic route the protein belongs to and its size resembles number of identified hits per enzyme. Enzyme abbreviations from horizontal axis as described in Kato H. et al. 2015 [31].

Figure S5. Organization of lin genes (blue) and IS6100 (green) identified on Sphingopyxis lindanitolerans WS5A3p plasmids.