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Abstract: Long non-coding RNAs (lncRNAs) are a class of RNAs with the length exceeding 200 base
pairs (bps), which do not encode proteins, nevertheless, lncRNAs have many vital biological functions.
A large number of novel transcripts were discovered as a result of the development of high-throughput
sequencing technology. Under this circumstance, computational methods for lncRNA prediction are
in great demand. In this paper, we consider global sequence features and propose a stacked ensemble
learning-based method to predict lncRNAs from transcripts, abbreviated as PredLnc-GFStack. We
extract the critical features from the candidate feature list using the genetic algorithm (GA) and then
employ the stacked ensemble learning method to construct PredLnc-GFStack model. Computational
experimental results show that PredLnc-GFStack outperforms several state-of-the-art methods
for lncRNA prediction. Furthermore, PredLnc-GFStack demonstrates an outstanding ability for
cross-species ncRNA prediction.

Keywords: lncRNA prediction; genetic algorithm; stacked ensemble learning; global sequence
features; feature selection

1. Introduction

In the last two decades, a massive amount of novel transcript data was discovered due to
the development of high-throughput sequencing techniques [1]. The concept of non-coding RNAs
(ncRNAs) is generally employed for RNAs that do not encode proteins. Long non-coding RNAs
(lncRNAs) refer to ncRNAs with the length exceeding 200 nucleotides [2,3]. Sequencing techniques
have shown that there are a lot of lncRNAs in mammals. LncRNAs have been presumed to have no
biological functions due to the fact that they could not encode proteins. However, in recent years, in vivo
experiments demonstrated that lncRNAs play a vital role in the regulation of gene transcription [4],
epigenetic modifications [5], aging [6], cancer [7,8] and many other biological processes [9–11]. For
example, the transcription of Damage Induced Noncoding (DINO) lncRNA was activated by DNA
damage [12,13]. In addition, lncRNAs also guide the enzyme activities and serve as a location
transferor [14]. There have been many developed tools associating with lncRNA activity, for example,
LADP [15] is a tool for lncRNA-disease association prediction and LPLNP [16], SFPEL-LPI [17] are
developed for lncRNA-protein interactions prediction. However, existing in vivo methods for lncRNA
classification [18] are often labor-intensive and expensive. Thus, it is indispensable to develop accurate
and effective computational methods for the prediction of lncRNAs.

There are a number of computational methods for lncRNA prediction, which can be roughly
classified into three categories: the binary classifier-based methods, the deep learning-based methods
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and the ensemble learning-based methods. The binary classifier-based methods utilize traditional
binary classifiers to build prediction models based on two types of transcripts: coding transcripts
and non-coding transcripts. The classifier support vector machine (SVM) is most commonly adopted
for the lncRNA prediction. Wei et al. [19] proposed an SVM-based method abbreviated as CPC,
which assesses the protein-coding potential of a transcript based on multiple sequence features. There
are also many SVM-based prediction models, such as CNCI [20], PLEK [21], lncRScan-SVM [22],
CPC2 [23], longdist [24] and CPPred [25]. The differences between these methods are the utilization
of different features. Random forest (RF) [26] was also adopted for the lncRNA prediction.
Achawanantakun et al. [27] proposed LncRNA-ID, which is a method generated by multiple features
including characteristics of the putative open reading frames (ORFs), translation scores based on
ribosomal coverage, and conservation against characterized protein families for the purpose of lncRNA
prediction. COME [28] and FEElnc [29] are also RF-based prediction models. Logistic regression (LR)
is also a commonly adopted classifier for the lncRNA prediction, such as Cristiano et al.’s work [30]
and CPAT [31]. Deep learning-based methods use deep learning techniques to build prediction
models. Fan et al. [32] came up with a method called lncRNA-MFDL, which constructs a deep learning
model by fusing ORFs, k-mer, the secondary structure and the most-like coding domain sequences to
discriminate lncRNAs and mRNAs. Other deep learning-based methods, such as lncRNAnet [33] and
LncADeep [34] have been proposed in the last two years. Ensemble learning-based methods integrate
different features, different models or different data to construct prediction models. For example,
Hu et al. [35] proposed a two-layer classifier named TLCLnc to distinguish lncRNAs from mRNAs
using sequence features: k-mer and sequence-order correlation coefficient factors. There are other
ensemble learning-based methods, such as Simopoulos et al.’s work [36] and LncRNApred [37].

Existing methods for lncRNA identification make use of different machine learning methods
and/or different features. While all the methods mentioned above are exceedingly effective and
innovative, they mostly lack an overall consideration of features for lncRNA prediction, despite
that Ventola et al. [38] performed a systematic assessment of a wide collection of features extracted
from sequence data. The problem is that different models often employ different features in practice
without experimenting on other features of lncRNAs. In addition, most of lncRNA prediction methods
just select the features subjectively without using an effective feature selection method to consider
various combinations of features, and use single classifier (e.g., SVM, RF) which still has the room for
improvement on generalization performance. Aimed at the problems above, we take plenty of features
into consideration, adopt a novel feature selection method and use ensemble strategy to construct
our model.

In this paper, we consider global sequence features and propose a stacked ensemble learning-based
method to differentiate long non-coding RNAs and coding RNAs, abbreviated as PredLnc-GFStack.
To start with, we collect sequence-derived features from six categories with thirty-four groups in total,
which are all adopted by previous literature regarding lncRNA prediction. We utilize the genetic
algorithm to select optimal feature subsets from the candidate feature list, using the area under the
curve (AUC) score of the random forest model as the fitness score. Then, we train different random
forest models based on multiple optimal subsets, and combine them to build the stacked ensemble
model for the lncRNA prediction. PredLnc-GFStack can accept sequences within a length range as
inputs, and then predict whether they are long non-coding RNAs or coding RNAs.

The source code and datasets are available from the following repository at GitHub: https:
//github.com/BioMedicalBigDataMiningLab/PredLnc-GFStack/.

2. Datasets and Method

2.1. Datasets

To conduct the study, we attempt to collect two types of sequences: long non-coding RNAs and
coding RNAs. The datasets we choose are the human (Homo sapiens) data (Release 29, GRCh38.p12)
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and mouse (Mus musculus) data (Release M20, GRCm38.p6) downloaded from GENCODE [39], which
are made by merging the manual gene annotation produced by the Ensembl-Havana team and the
Ensembl-genebuild automated gene annotation [40]. GENCODE aims to annotate all gene features in
human genes by combining manual curation, computational analysis and experimental validation [39].
The download links of datasets can be found in Table S1.

To pre-process the raw data, we first select the transcripts with the length exceeding 200 base pairs
(bp) and under 3000 bp from the original datasets. Then we adopt a program called CD-HIT [41,42]
to cluster sequences in order to alleviate the problem of redundancy and alignment by removing
sequences with ≥80% similarity. After pre-processing, 37260 coding RNAs and 21799 lncRNAs of
human are obtained, likewise, 25487 coding RNAs and 13246 lncRNAs of the mouse are obtained.
We divide the processed data into two datasets for human and mouse respectively and name them
Human-Main, Human-Independent, Mouse-Main, Mouse-Independent. The independent datasets
contain 1500 coding RNAs and 1500 lncRNAs randomly selected from the processed datasets, and they
are used to select optimal features. The main datasets contain other transcripts from the processed
datasets, and they are used for cross-validation.

For cross-species prediction, we respectively train our models on the main datasets for human
and mouse, then the models are tested on other publicly available datasets (http://www.rnabinding.
com/CPPred/) of multiple species containing human, mouse, zebrafish (Danio rerio), fruit fly (Drosophila
melanogaster), S. cerevisiae, nematode (Caenorhabditis elegans) and thale cress (Arabidopsis thaliana). We
name the testing datasets as Human-Testing, Mouse-Testing, Zebrafish-Testing, Fruit-fly-Testing,
S.cerevisiae-Testing and Integrate-Testing. All datasets are summarized in Table 1.

Table 1. Summary of datasets.

Data Sources Name Coding RNAs NcRNAs

GENCODE

Human-Main 35760 20299
Human-Independent 1500 1500

Mouse-Main 23987 11746
Mouse-Independent 1500 1500

preprocess CPPred

Human-Testing 8557 8241
Mouse-Testing 31102 19930

Zebrafish-Testing 15594 10662
Fruit-fly-Testing 17400 4098

S.cerevisiae-Testing 6713 413
Integrate-Testing 13903 13903

NcRNA: Non-coding RNA.

2.2. Features Extraction

In this section, we briefly introduce six types of sequence-derived (sequence intrinsic) features,
which can be used for the lncRNA prediction.

Codons are important indicators for transcripts coding into proteins. There are two widely used
features about stop codons: stop codon count and stop codon frequency. The stop codon count is the
number of stop codons in a transcript and the stop codon frequency means the frequency of stop codons
in a transcript. We also calculate the stop codon frame score and stop codon frequency frame score,
which mean the variance of stop codon count and frequency among three reading frames. We also
consider the Fickett TESTCODE score, which is transformed from the nucleotide position frequencies
and bases composition of a transcript by a lookup table. The Fickett TESTCODE score has been proved
to enhance the performance of lncRNA prediction [31]. The nucleotide position frequencies [34], which
show the contribution of each base among codon positions, are also considered.

There are also many features about ORF of transcripts: the first ORF length, the longest ORF
length, ORF coverage, ORF integrity, ORF frame score and the entropy density profiles (EDP) [34] of
ORF. The first ORF length and the longest ORF length are the lengths of the first and longest ORF. The
ORF coverage is the ratio of longest ORF length and transcript length, and the ratio of first ORF to a
transcript length is also included in candidates. The ORF integrity means whether the longest ORF

http://www.rnabinding.com/CPPred/
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starts with a start codon and ends with a stop codon, and the ORF frame score is the variance of ORF
length among ORFs. The EDP of ORF well describes the coding potential of transcripts based on the
sequence composition and k-mer.

The guanine-cytosine content (GC content) shows the importance in the prediction of lncRNAs.
GC content is the percentage of nitrogenous bases on a DNA or RNA molecule that are either guanine
or cytosine. We calculate the GC content of transcripts and GC content in the first, second and third
position of codons as GC, GC1, GC2 and GC3. The variance of them among three reading frames can
also be considered. We also calculate the GC content of untranslated regions (UTR) [43]. The UTR are
two sections which don’t form the protein-coding region in the transcripts, but the features of UTR
indicate the coding potential of sequences [34].

The features of coding sequences (CDS) from the transcripts are also considered, including the
length of coding sequences, CDS percentage and coding potential of the transcripts. CDS length
refers to the length of the coding sequence (CDS) with the most likelihood and CDS percentage is
the CDS length divided by the transcript length. The features CDS length, CDS percentage and
coding potential of the transcripts are calculated by the program txCdsPredict from UCSC (https:
//github.com/ENCODE-DCC/kentUtils/blob/master/src/hg/txCds/txCdsPredict/txCdsPredict.c).

We also consider features about the order of base permutation and composition of transcripts,
including transcript length, k-mer, CTD, Hexamer score, Signal to noise ratio (SNR), UTR coverage,
transcript length and EDP of transcripts [34]. The k-mer features are the frequencies of different
matches of the k adjacent bases. In this study, we set k equals 1,2,3 respectively, and calculate the
k-mer features in both sequences and their longest ORF. CTD [44] calculates the frequencies of A, C, G,
T in the transcripts, frequencies of the conversion of A, C, G, T between adjacent positions and five
relative positions (0%, 25%, 50%, 75%, 100%) of A, C, G, T along the transcripts. Hexamer score [31] is
calculated based on in-frame hexamer frequency of coding and noncoding transcripts, and a positive
value indicates a protein-coding transcript, whereas a negative value indicates a non-coding transcript.
Signal to noise ratio (SNR) [37] utilizes the discrete Fourier Transform on the sequences to distinguish
lncRNAs. Owing to the apparent differences shown in SNR between lncRNAs and protein-coding
sequences, it is used to distinguish lncRNAs and protein-coding sequences. The UTR coverage means
the ratio of 5’ or 3’ UTR length and transcript length. Transcript length and the EDP of the transcript
are also considered.

There are several features that reflect the structural properties of transcripts. The Mw means the
molecular weight of the predicted peptide and the pI means the theoretical isoelectric point of the
predicted peptide. The pI/Mw shows the log 10 transformed ratio of pI and Mw, and it is also applied
to the ORFs as pI/Mw frame score. Moreover, Gravy and Instability index, which mean the grand
average of hydropathicity and the stability of predicted peptide, are also used.

Therefore, we obtain the features from six categories with 260 dimensions for this study. All
features and their dimensions are summarized in Table 2.

Table 2. All features considered in this paper and their dimensions.

Types Features (Dimension)

codon-related features
stop codon count (1), stop codon frequency (1), stop codon frame score (1), stop
codon frequency frame score (1), nucleotide position frequencies (4), Fickett
TESTCODE score (1)

Open reading frame (ORF)-related
features

the first ORF length (1), the longest ORF length (1), the ORF coverage (2), the ORF
integrity (1), ORF frame score (1), the entropy density profiles (EDP) of ORF (16)

GC-related features GC (1), GC1 (1), GC2 (1), GC3 (1), GC frame score (1), UTR GC content (2)

coding sequence-related features Coding sequence (CDS) length (1), CDS percentage (1), coding potential of the
transcripts (CDS score) (1)

transcript-related features transcript length (1), k-mer (168), CTD (20), Hexamer score (1), Signal to noise ratio
(SNR) (1), untranslated region (UTR) coverage (2), EDP (20)

structure-related features Molecular weight (Mw) (1), isoelectric point (pI) (1), pI/Mw (1), pI/Mw frame score
(1), Gravy (1), Instability index (1)

https://github.com/ENCODE-DCC/kentUtils/blob/master/src/hg/txCds/txCdsPredict/ txCdsPredict.c
https://github.com/ENCODE-DCC/kentUtils/blob/master/src/hg/txCds/txCdsPredict/ txCdsPredict.c
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2.3. Feature Selection by Genetic Algorithm and Random Forest (GA-RF)

In this section, we propose a novel feature selection algorithm that combines the genetic algorithm
(GA) [45] and the random forest (RF) model [26], which we name GA-RF. To begin with, we provide
a brief introduction of GA and RF. GA is an adaptive method for solving optimization problems by
simulating natural evolutionary processes in genetics [45]. It uses the multi-point strategy to search
the global optimal solution, so it is less likely to stuck in a locally optimal solution than the algorithms
based on the one-point search strategy. RF [26] is one of the most commonly adopted classifiers for
lncRNA prediction methods including lncRNA-ID [27], COME [28] and FEElnc [29].

We encode each candidate feature set using the binary encoding strategy, and randomly take
candidate features as feature subsets to generate the initial population. After that, we set the ten-fold
cross-validation AUC scores of RF models utilizing different feature subsets as the fitness score of
each individual. Moreover, through the update process of selection, crossover and mutation, new
individuals are generated to form the next generation. The selection process has an inclination to
find the best individual with high fitness score for the next generation. We choose the tournament
selection [46] to select the fittest individuals from the current generation and pass them to the
next one. The crossover means the “child” individuals would inherit many characteristics of their
“parent” individuals, and the “child” solutions are more likely to have higher fitness score. We
adopt the single-point crossover and the offspring will be formed with two continuous parts of
parents. Mutation ensures the diversity in the population via the displacement of some gene
individuals and we use the filpbit strategy, which inverses the bit of the specific genes (https:
//deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit). The update process would
iterate until the maximum fitness score tends to be stable or the iteration of the process reaches the
maximum generation. At last, we choose the individuals with top 10 AUC scores and decode them
into optimal feature subsets. The flowchart of the GA-RF algorithm, is shown in Figure 1.
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2.4. Stacked Ensemble Learning in PredLnc-GFStack

In machine learning, the generalization ability is vital to prediction models. The ensemble
learning [47] methods are acknowledged to have better generalization performances than any of
the constituent model alone [17,48–53]. In general, the ensemble learning methods use multiple
basic classifiers (e.g., SVM, RF) and combine their prediction results with different strategies, such
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as averaging and voting. In theory, the ensemble learning methods enlarges the hypothesis space
and reduce the risk of over-fitting while training the models, so they usually produce accurate and
stable results. Due to the excellent generalization ability, the ensemble learning methods have been
widely recognized and applied to lncRNA prediction, one example is TLCLnc [35]. There are two key
steps for the construction of ensemble learning methods, the first step is to select and initialize the
basic classifiers and then the second step is to combine them with specific strategies [47]. There are
different kinds of ensemble learning methods. The bagging method [53] uses the bootstrap strategy
which selects samples repeatedly with replacement, then the models fit on the samples respectively
and are combined by voting or averaging prediction results. The boosting method [54] converts a set
of weak learning classifiers to a strong one by assigning the misclassified data a higher weight and
reducing the weight of the correctly classified data. It has been proved by several literature [50,55–59]
that all the ensemble learning methods mentioned above have outstanding performance in practice.

We adopt a stacked ensemble learning method, which has a two-layer structure and is easy to
implement. The architecture of our stacked ensemble learning method is shown in Figure 2. We
construct a two-layer stacked prediction model containing the basic classifiers layer and the output
layer. To be exhaustive, we adopt RF as the basic classifier and then employ the optimal feature subsets
to construct 10 basic classifiers, each of them is constructed on a single optimal feature subset. The
output layer serves the purpose of calculating the average prediction score of all RFs. In this way, we
can effectively avoid the bias of single basic classifier and obtain more balanced performances.
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3. Results and Discussion

3.1. Performance Evaluation

In this section, we employ the 10-fold cross-validation(10-CV) to evaluate all prediction models.
A dataset is randomly split into 10 subsets with equal size, and one of these subsets is used as testing
dataset while the rest is used as the training dataset for each round of 10-CV. The model is constructed
on the training dataset and then makes predictions for the testing dataset. The training and testing
processes are repeated until all the subsets are used.
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Prediction models are evaluated by several widely recognized evaluation metrics, including the
AUC score, the accuracy (ACC), the sensitivity (SN), the specificity (SP), the precision (PRE) and the F1
score (F1), which are defined as follows:

Accuracy (ACC) = TP+TN
TP+TN+FP+FN (1)

Sensitivity (SN) = TP
TP+FN (2)

Speci f icity (SP) = TN
TN+FP (3)

Precision (PRE) = TP
TP+FP (4)

F1 score (F1) = 2 ×PRE ×SN
PRE+SN (5)

where the TP, FN, TN and FP represent the numbers of true positives, false negatives, true negatives
and false negatives, respectively. The AUC score is the area under the receiver operating characteristic
curve which evaluates the performance regardless of any threshold.

3.2. Evaluation of the Optimal Feature Subsets

In this section, we adopt the proposed GA-RF algorithm to select optimal feature subsets on
Human-Independent and Mouse-Independent, respectively. GA-RF has two components: GA and
RF. For GA, we initialize a population of 500 individuals, and set the number of iterations to 50. For
selection, crossover and mutation, we set the tournament selection size to 3, the probability of mating
two individuals is set to 0.5, the probability for each gene to be flipped and the probability of mutating
an individual are set to 0.05 and 0.2. We set the number of trees to 100 for RF. The fitness score of an
individual is the 10-CV AUC score of the RF model using features coded by the individual. We keep
the top ten optimal feature subsets respectively for Human-Independent and Mouse-Independent,
which will be utilized to construct the stacked ensemble learning model. The AUC scores of models
based on optimal feature subsets and sizes of optimal feature subsets are demonstrated in Table 3 for
future references.

Table 3. Area under the curve (AUC) scores of models based on optimal feature subsets and sizes of
optimal feature subsets for human and mouse.

Optimal Feature
Subset No.

Human Mouse

AUC Number of Features AUC Number of Features

1 0.94979 134 0.96382 118
2 0.94946 137 0.96350 125
3 0.94940 131 0.96343 127
4 0.94934 136 0.96334 123
5 0.94929 138 0.96327 114
6 0.94929 134 0.96324 123
7 0.94923 129 0.96323 115
8 0.94916 127 0.96323 121
9 0.94913 137 0.96322 122
10 0.94910 128 0.96322 119

As shown in Table 3, 10 optimal feature subsets contain different numbers of features, which
produce similar AUC scores. The AUC scores of human optimal feature subsets range from 0.94910 to
0.94979, and tend to converge at 0.95, and their sizes range from 127 to 138. The AUC scores of mouse
feature subsets range from 0.96322 to 0.96382, and the sizes of mouse feature subsets range from 114
to 127. The average AUC scores of models based on optimal feature subsets for human and mouse
are 0.95 and 0.96 respectively. The performances of GA-RF on human are approximately the same
as those on mouse despite the slight advantage on the mouse. The average sizes of human optimal
feature subsets and mouse optimal feature subsets are 133 and 121, respectively. These results indicate
that GA-RF has promising performances for lncRNAs prediction on both human datasets and mouse
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datasets, i.e., the performance of GA-RF is not affected by the differences of human and mouse with
respect to species.

Moreover, we calculate the intersections of human optimal feature subsets and mouse optimal
feature subsets to distinguish the critical features selected by the GA-RF. Three kinds of intersections
are considered, the intersection of human optimal subsets, the intersection of mouse optimal subsets
and the intersection of the combination of the human optimal subsets and mouse optimal subsets.
The results are shown in Table S2. The intersection of optimal subsets has a total of 53 features and
37 features for human and mouse, respectively. However, the intersection of optimal subsets for both
human and mouse contains only 11 features, including the GC1 frame score, ORF integrity, SNR,
pI/Mw, pI, ORF_k_mer_GAT (k-mer on ORF feature), G_pos_fickett (nucleotide position frequency
feature), EDP_fea_W (the EDP of transcript feature),EDP_ORF_k_mer_TC (the EDP of ORF feature),
CTG (k-mer on transcript feature) and transcript length. Among them, the G_pos_fickett belongs to
the codon-related features, ORF integrity and EDP_ORF_k_mer_TC belong to the ORF-related features,
GC1 frame score belongs to the GC-related features, the EDP_fea_W, SNR, CTG, ORF_k_mer_GAT and
transcript length are part of transcript-related features, the pI and pI/Mw are parts of structure-related
features. The features selected by GA-RF come from various categories and are justified to be effective
by previous lncRNA prediction models, and thus we can conclude that the optimal feature subsets are
predominant and robust. Furthermore, we evaluate the importance of features in the intersection of
optimal subsets for both human and mouse (shown in Supplementary Figure S1) using the Sklearn
package in Python. PI_Mw has the highest importance score, SNR and G_pos_fickett are followed,
they are responsible for the good performance of PredLnc-GFStack than other features.

3.3. Evaluation of PredLnc-GFStack on Different Datasets

In this section, the optimal feature subsets for human and mouse generated by GA-RF are adopted
to construct the PredLnc-GFStack model respectively. We use the Human-Main and Mouse-Main
datasets to construct the models and adopt 10-CV to evaluate the performances of the PredLnc-GFStack
models. A comprehensive evaluation of all models should take all the metrics mentioned above into
consideration. We list the performances of PredLnc-GFStack on Human-Main and Mouse-Main in
Table 4.

Table 4. The performances of PredLnc-GFStack on Human-Main and Mouse-Main using 10-CV.

Dataset AUC ACC SN SP PRE F1

Human 0.956 0.895 0.884 0.901 0.835 0.859
Mouse 0.969 0.914 0.875 0.933 0.865 0.870

As shown in Table 4, PredLnc-GFStack achieves AUC score of 0.956, accuracy of 0.895, sensitivity
of 0.884, specificity of 0.901, precision of 0.835 and F1 score of 0.859 on Human-Main and AUC score
of 0.969, accuracy of 0.914, sensitivity of 0.875, specificity of 0.933, precision of 0.865 and F1 score of
0.870 on Mouse-Main. From the results, we can observe that these two models not only achieve high
accuracy but also achieve the AUC score of 0.956 and 0.969.

Furthermore, we test the performance of PredLnc-GFStack models on multi-species testing
datasets. The testing datasets contain ncRNAs from different species are listed in Table 1. We utilize the
human optimal feature subsets and mouse optimal feature subsets and adopt the Human-Main and
Mouse-Main as training data to construct two PredLnc-GFStack models respectively. Then we use these
two PredLnc-GFStack models to predict transcripts in six multi-species datasets. The performances of
PredLnc-GFStack models on different species testing datasets are shown in Table 5.
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Table 5. The performances of PredLnc-GFStack models on multi-species testing datasets.

Training Dataset Testing Dataset AUC ACC SN SP PRE F1

Human-Main

Human-Testing 0.995 0.968 0.962 0.974 0.973 0.967
Mouse-Testing 0.987 0.941 0.879 0.981 0.968 0.921

Integrated-Testing 0.985 0.907 0.831 0.982 0.979 0.899
Zebrafish-Testing 0.971 0.901 0.772 0.989 0.980 0.863
Fruit-fly-Testing 0.992 0.940 0.714 0.993 0.962 0.819

S.cerevisiae-Testing 0.983 0.960 0.828 0.969 0.621 0.710

Mouse-Main

Human-Testing 0.977 0.887 0.807 0.964 0.955 0.875
Mouse-Testing 0.995 0.944 0.869 0.992 0.985 0.924

Integrated-Testing 0.984 0.871 0.757 0.985 0.981 0.855
Zebrafish-Testing 0.971 0.843 0.626 0.991 0.979 0.764
Fruit-fly-Testing 0.990 0.917 0.593 0.994 0.957 0.733

S.cerevisiae-Testing 0.964 0.942 0.382 0.976 0.500 0.433

As shown in Table 5, PredLnc-GFStack trained on Human-Main produces AUC scores ranging
from 0.971 to 0.995 on multi-species testing datasets, and has the best performance on Human-Testing
dataset. PredLnc-GFStack trained on Mouse-Main produces AUC scores ranging from 0.964 to
0.995 on multi-species testing datasets, and has the best performance on Mouse-Testing. These two
PredLnc-GFStack models have outstanding performances on the multi-species ncRNA datasets, which
indicates that PredLnc-GFStack can effectively predict ncRNAs in a cross-species manner.

What ‘s more, we collected several well-known lncRNAs from some published literature, which
focus on the functions of lncRNAs. We tested PredLnc-GFStack on the well-known lncRNA data, and
the detailed performances of PredLnc-GFStack can be found in the Table S3. The results showed that
PredLnc-GFStack correctly classified all twenty samples, which means PredLnc-GFStack can effectively
predict the well-known lncRNAs.

3.4. Comparison with Other Methods

In this section, we compare PredLnc-GFStack with four benchmark methods, including CPAT [31],
CPC2 [23], Longdist [24] and CPPred [25], which are acknowledged for their high accuracy. CPAT
utilized an alignment-free logistic regression model and adopted features including ORF size, ORF
coverage, Fickett TESTCODE score and hexamer score. CPC2 utilized the SVM model and adopted
features including Fickett TESTCODE score, ORF length, ORF integrity and pI. Longdist utilized SVM
classifier and adopted features including k-mer selected by PCA and ORF lengths. CPPred utilized
CTD features as well as the features of CPAT and CPC2 and constructed an SVM model. We implement
these methods using their publicly available source codes, and fairly compare them with our method
PredLnc-GFStack. All prediction methods are evaluated by 10-CV on Human-Main and Mouse-Main
datasets. The results of all methods are shown in Figure 3.
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As shown in Figure 3, PredLnc-GFStack trained on Human-Main and Mouse-Main perform
better than CPAT, CPC2, Longdist, CPPred in terms of AUC score. From our perspective, there are
quite a few reasons for better performances. First, multiple features are extracted from transcripts,
which guarantees the diversity of the model. Second, the optimal feature subsets selected by GA-RF
contains a variety of features whose redundancy or noises have been reduced, and it contributes
to the enhancement of model performances. At last, the stacked ensemble learning strategy in
PredLnc-GFStack guarantees the high accuracy and robustness of the model.

Then we also test PredLnc-GFStack and other four benchmark methods on the ncRNAs
multiple-species testing datasets, including Human-Testing, Mouse-Testing, Zebrafish-Testing,
Fruit-fly-Testing, S.cerevisiae-Testing and Integrate-Testing. The models are trained on Human-Main
and Mouse-Main respectively and tested on the multi-species testing datasets. The results of all
methods in cross-species prediction are shown in Figure 4.
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As shown in Figure 4, PredLnc-GFStack has better AUC scores compared with CPAT, CPC2,
Longdist and CPPred on different species testing datasets, despite the fact that the AUC score of
PredLnc-GFStack on S.cerevisiae-Testing is a little lower than CPAT. In conclusion, PredLnc-GFStack
demonstrates better performances on multiple ncRNA datasets than other benchmark methods,
and the results reveal PredLnc-GFStack is not only suitable for lncRNA prediction but also for
ncRNA prediction.

4. Conclusions

In computational biology, the prediction of lncRNAs from transcripts is an important research
topic. In this study, we propose a method called PredLnc-GFStack for lncRNA prediction. One of
the highlights of PredLnc-GFStack is that it takes global sequence features into consideration. The
global sequence features contain a vast variety of feature types, including codon-related features,
ORF-related features, GC-related features, coding sequence-related features, transcript-related features
and structure-related features, which have already been proved to contribute to the enhancement of
prediction performances. Another highlight of PredLnc-GFStack is that it innovatively utilizes an
optimal feature selection algorithm GA-RF and a stacked ensemble learning strategy. GA-RF selects
the top 10 optimal feature subsets to build the basic classifiers, and a stacked ensemble learning
strategy combines these predictors to develop the final lncRNA prediction model. The experiments
demonstrate that PredLnc-GFStack not only performs well on lncRNA prediction, but also effectively
predicts ncRNAs in a cross-species manner.

In the study, PredLnc-GFStack models are constructed based on the sequences ranging from
200 bp to 3000 bp. Although there exit some lncRNAs shorter than 200 bp or longer than 3000 bp,
most known lncRNAs fall in the range. For a given RNA sequence which meets the length range,
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PredLnc-GFStack models predict its potential of being a lncRNA sequence. In fact, PredLnc-GFStack
can be applied to shorter or longer RNA sequences if training datasets contain such sequences.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/9/672/s1,
Figure S1: The importance scores of features in the intersection of optimal subsets for both human, Table S1: The
download links of datasets we used, Table S2: The intersections of optimal feature subsets for human and mouse,
Table S3: The performance of PredLnc-GFStack on the list of well-known lncRNAs.
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