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Abstract: Breast cancer has become the most common cancer that leads to women’s death. Breast
cancer is a complex, highly heterogeneous disease classified into various subtypes based on histological
features, which determines the therapeutic options. System identification of effective drugs for each
subtype remains challenging. In this work, we present a computational network biology approach to
screen precision drugs for different breast cancer subtypes by considering the impact intensity of
candidate drugs on the pathway crosstalk mediated by miRNAs. Firstly, we constructed and analyzed
the subtype-specific risk pathway crosstalk networks mediated by miRNAs. Then, we evaluated
36 Food and Drug Administration (FDA)-approved anticancer drugs by quantifying their effects on
these subtype-specific pathway crosstalk networks and combining with survival analysis. Finally,
some first-line treatments of breast cancer, such as Paclitaxel and Vincristine, were optimized for
each subtype. In particular, we performed precision screening of subtype-specific therapeutic drugs
and also confirmed some novel drugs suitable for breast cancer treatment. For example, Sorafenib
was applicable for the basal subtype treatment, Irinotecan was optimum for Her2 subtype treatment,
Vemurafenib was suitable for the LumA subtype treatment, and Vorinostat could apply to LumB
subtype treatment. In addition, the mechanism of these optimal therapeutic drugs in each subtype of
breast cancer was further dissected. In summary, our study offers an effective way to screen precision
drugs for various breast cancer subtype treatments. We also dissected the mechanism of optimal
therapeutic drugs, which may provide novel insight into the precise treatment of cancer and promote
researches on the mechanisms of action of drugs.
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1. Introduction

Breast cancer is the most common cancer type that leads to women’s death, especially in China.
The high heterogeneity of breast cancer makes it a great challenge to adopt therapeutic options [1],
because a heterogeneous group of diseases may exhibit distinct features in terms of histological,
prognostic, and clinical outcomes [2]. At present, breast cancer can mainly be classified into four
primary subtypes, including her2-enriched, luminal A, luminal B, and basal-like [3,4], distinguished
by the expression of some signature genes such as the estrogen receptor (ER), progesterone receptor
(PR), and HER2. Different subtypes have distinct biological behaviors and prognosis, and also exhibit
various responses to drug therapy [5,6]. Thus, further research on the biological heterogeneity of each
subtype of breast cancer will be an effective way to improve the therapeutic efficacy and prognosis of
breast cancer [7].

The oncogenesis processes may result from the dysregulations of a series of important biological
pathways [8]. Some studies have shown that the pathway crosstalk exists extensively in the processes
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of development and cell fate [9–11]. Cancer cells have been found to be able to establish alternative
signaling pathways through crosstalk to adapt to drug treatment. In addition, crosstalk can also
promote cancer therapy by inhibiting the main oncogenic pathways. The inhibition of functional
redundancy and pathway crosstalk that promotes the survival of cancer cells can prevent the resistance
in tumor treatment [12]. Therefore, it is essential to dissect the crosstalk of dysfunctional pathways
and further capture the key molecules that mediate this functional crosstalk in breast cancer.

MicroRNAs are endogenous, non-coding RNA molecules that have been widely regarded as
important post-transcriptional regulators by damping the expression level of their target genes. In
recent years, studies have indicated that miRNAs are important component elements of biological
pathways [13]. They regulate the function of biological pathways through target genes, and then work
together with them to disrupt the pathways of diseases. According to estimates, many microRNAs
play vital roles by regulating processes that are implicated with the development of cancer [14], such as
proliferation, apoptosis, cell cycle, angiogenesis, etc. Some studies suggest that the crosstalk between
miRNAs and the Wnt pathway may impact oncogenesis, cancer metastasis, and even drug-resistance
processes [15]. Furthermore, miRNAs can also mediate the functional crosstalk of pathways related
with oncogenic processes by targeting their shared or interacted genes, thus promoting the initiation
and progression of tumors.

In recent years, miRNAs have shown great promise to serve as a target for drug therapy of cancer.
More importantly, some studies have nominated miRNA-based therapy as a promising strategy for the
treatment of breast cancer [16]. Some evidence demonstrates that drugs could modulate the expression
of miRNAs in various diseases as well. For example, an experiment has validated that simvastatin
could lead to cell death of breast cancer by up-regulating miR-140-5p [17]. Triiodothyronine has been
demonstrated to modulate miR-204 and thus facilitate the proliferation process in breast cancer [18].
Especially, Shenoda et al. have also demonstrated that miRNA could mediate the expression of genes
related with drug metabolism [19]. Furthermore, Liu et al. have established a database SM2miR [20],
which provides a comprehensive resource about the influences of drugs on miRNA expression and
offers unprecedented opportunities for researchers on the screening and action mechanism of drugs
for disease treatment. In addition, our previous research also displays that miRNA participates
in the crosstalk among pathways that play important roles in cancer development [21], indicating
that it might be more effective for screening cancer treatment to evaluate the effects of drugs on the
miRNA-mediated crosstalk between pathways.

In order to match the best treatment for breast cancer, in the present study, we firstly integrated
the disease high-throughput molecular profiles, miRNA regulation data, and pathway and drug data
to construct and analyze the miRNA-mediated pathway crosstalk network for various breast cancer
subtypes. Then, we derived a novel computational method to screen precision drugs for different
breast cancer subtypes by quantifying the impact intensity of candidate drugs on the pathway crosstalk
mediated by miRNAs. Finally, survival analysis was combined for further screening and optimization
of the drugs for breast cancer treatment (Figure 1). In summary, our study proposes an effective
method to screen precision drugs for various breast cancer subtype treatments. We also dissected
the mechanism of optimal therapeutic drugs, which may promote the shift from inexact medicine to
precision life science.
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Figure 1. The workflow of optimizing drugs for different subtypes of breast cancer. (A) In this
work, breast cancer was taken as the research model. Firstly, we integrated related data resources,
including gene/miRNA expression profile of each breast cancer subtype and matching patients’ survival
information, miRNA-target relationship data, PPI network and pathway data, and drug and drug
target data. (B) We identified the differential genes/miRNAs of each breast cancer subtype, and then
reconstructed KEGG pathway based on miRNA-target interactions, which contained both genes and
miRNAs. We also screened the target genes and target miRNAs of Food and Drug Administration
(FDA)-approved anticancer drugs. (C) Identification of breast cancer subtype-associated risk pathways
based on the differential genes/miRNAs, and calculated crosstalk for any two interrelated risk pathways.
Furthermore we constructed miRNA-mediated specific pathway crosstalk networks in different
subtypes of breast cancer, respectively. (D) The effectiveness assessment of drugs on dysfunction
crosstalk network to screen candidate drugs, combined with survival analysis to optimize drugs for
each breast cancer subtype. (See Methods section for details.)
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2. Material and Methods

2.1. Sample Matched miRNA/Gene Expression Profiles and Clinical Data

The matched miRNA and gene expression data of breast cancer were downloaded from TCGA
(The Cancer Genome Atlas) database (http://tcga-data.nci.nih.gov/), including 553 human breast cancer
samples and 87 normal samples. These breast cancer samples were divided into four subtypes,
including basal-like (n= 97), Her2 (n = 47), luminal A (n = 291) and luminal B (n = 118) according to
the guidelines in Cirielloet et al. [22]. All selected expression datasets were log2-transformed, then
standardized. Furthermore, clinical survival data of these samples in each subtype were also obtained.

2.1.1. miRNA-Target Relationship Data

In this study, we collected experimentally verified miRNA-target interactions data from four
well-known data resources: miRTarBase [23], mir2Disease [24], miRecords (V4.0) [25], and TarBase
(V6.0) [26]. MiRNA-target relationships in homo species were extracted and combined together to
obtain a more comprehensive dataset. In total, 57,863 miRNA-target relationships involving 579
miRNAs and 14,652 target genes were collected and used for further analysis.

2.1.2. PPI Network and Pathway Data

The protein–protein interaction (PPI) network data used in this study were integrated from two
databases, HPRD (Human Protein Reference Database) and STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins) [27,28]. The interactions stored in HPRD were mainly from experimental
validation and text mining. For each recorded entry in the STRING database, a weighted score was
given to measure their confidence of interaction by considering multiple factors. To collect high-quality
interaction data, we only extracted interactions with a confidence score ≥900. Then, we combined
interactions from the HPRD and STRING databases. The pathway data used in this study for functional
analysis were obtained from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database [29].

2.1.3. Drug and Drug Target Data

In this study, according to our research purpose, in order to improve the practicability of our
study, the candidate drugs need to satisfy two requirements simultaneously. Firstly, existing gene
targets and regulatory effects on miRNA have to be confirmed. Secondly, the drugs have to have been
approved by US Food and Drug Administration (FDA, https://www.fda.gov/), which are prescribed for
cancer treatment. We extracted drugs and drug targets from DrugBank [30] and SM2miR [20]. Finally,
a total of 36 anticancer drugs were used in this study. The complete information of the 36 anticancer
drugs can be found in Supplementary Table S1, including drug ID and drug targets.

2.2. Reconstructed KEGG Pathway Graphs

The reconstructed KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway graphs contained
both genes and miRNAs, replicating real biological pathways. We firstly collected 220 KEGG pathway
data and converted them into undirected graphs with genes as nodes and their interactions as edges
by using our previously developed R package “iSubpathway Miner” [31]. Then, we reconstructed
these pathways by wiring miRNAs into these pathways through integrating miRNA-target relations
and pathway data. More details, if target genes of a specific miRNA were over-represented within
a pathway, the miRNA was wired into the pathway by connecting with target genes within the
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pathway. The hypergeometric test was used to evaluate the significance of enrichment. The formulas
is as follows:

P = 1−
q−1∑
t=0

(
l
t

)(
n− l
m− t

)
(

n
m

)
where n represents the number of background genes (all genome-wide genes), m is the number of
genes involved in a given pathway, l is the number of target genes for a specific miRNA, and q is the
number of miRNA target genes annotated in the given pathway.

2.3. Identification of Risk Genes and miRNAs Related to Breast Cancer Subtypes

For each breast cancer subtype, we identified significant differentially expressed genes/miRNAs
by comparing the tumor with normal samples in each subtype. The unpaired Student’s t-test and
fold-change methods were simultaneously used to evaluate differentially expressed genes/miRNAs.
Then, the significance p-values from the t-test were calibrated by Benjamini-Hochberg multiple tests
to obtain the false discovery rate (FDR) values. Finally, we applied p < 0.01 and

∣∣∣log2 FC
∣∣∣ > 2 as

thresholds to identify differentially expressed genes/miRNAs. These significant differentially expressed
genes/miRNAs were regarded as breast cancer subtype-associated genes, which were also defined by
us as risk genes and miRNAs, respectively.

2.4. Mining Risk Pathways Associated with Breast Cancer Subtypes

In order to explore the roles of these risk genes and miRNAs in the occurrence and development
of breast cancer, we performed them to conduct pathway enrichment analysis to dig out the pathways
closely related to breast cancer. We identified pathways with significant enrichment results as risk
pathways for each subtype based on risk genes and miRNAs. The cumulative hypergeometric test
was used to calculate the significance of each pathway that enriched by risk genes and miRNAs. The
formula of the cumulative hypergeometric test is as follows:

P = 1−
m∑

k=0

(
n
k

)(
N − n
M− k

)
(

N
M

)
where N represents the number of background genes (all genome-wide genes), M is the number of a
given pathway’s genes and miRNAs that are annotated in the N genes, n is total number of the risk
genes and miRNAs of a given subtype of breast cancer, and m is the number of risk genes and miRNAs
in the given pathway.

2.5. Establishing the Risk Pathways’ Crosstalk of Breast Cancer

In each breast cancer subtype, we calculated the crosstalk of each pair of risk pathways based on
the correlation strength of genes and miRNAs between them according to previous studies [21]. The
Pearson’s product moment correlation coefficient and unpaired Student’s t-test were performed to
measure correlation strength for any two interrelated pathways. As for genes and miRNAs presenting
both in pathway i and j, we reckoned their correlation strength only if they interact with other genes or
miRNAs in the PPI network. Then, we used correlation strength to construct and assess risk pathways’
crosstalk. The formula of calculating correlation strength is as follows:

CS(i, j) = F
(
P(i), P( j)

∣∣∣Expi, Exp j
)
= −2 ∗ (logeP(i) + logeP( j) + logeP(i, j))
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where i is the gene that is annotated in pathway a is the gene that is annotated in pathway b; Expi and
Exp j are the expression values of genes i and j in samples, respectively; P(i) and P( j) are the differential
significance p-values of genes i and j calculated using the unpaired Student’s t-test, respectively; and
P(i, j) is the significant p-value of expression correlation coefficient between a and b genes/miRNAs
based on the Pearson’s product moment correlation coefficient.

The crosstalk of any pair of risk pathways was gained by adding up all the correlation strengths
between them, and crosstalk of risk pathways i and j was developed based on formula as follows:

Crosstalk(a,b) =
n∑
a

CS

where n presents the number of all gene–gene, gene–miRNA, and miRNA–miRNA interactions between
any two pathways.

In order to strengthen the differences of risk pathways in different subtypes, we constructed
specific dysfunctional crosstalk networks based on the specific crosstalk relationship in each subtype
for subsequent calculation and research, which means that when a pair of crosstalk pathways only
exist in a certain subtype, they will be selected to construct the subtype crosstalk network.

2.6. Evaluating the Impacts of Drugs on Crosstalk

We integrated the drug information from the DrugBank and SM2miR databases and screened
them for Food and Drug Administration (FDA)-approved anticancer drugs that contain both target
genes and target miRNAs, and a total of 36 anticancer drugs were screened. Research has shown that
the crosstalk among the signaling pathways plays a key role in the occurrence and development of
breast cancer. Thus, evaluating the impact of drugs on pathway crosstalk based on the expression
of drug targets could help to optimize the treatment of various subtypes of breast cancer. From this
standpoint, in order to assess the impacts of drug on dysfunction crosstalk network, for each drug, we
first removed its target genes and miRNAs from the specific risk pathway crosstalk of a given subtype.
Next, we recalculated the crosstalk to quantify the destructive effects of drugs on different subtypes. At
the same time, a formula was designed and developed. The destructive score (DS) of drug to crosstalk
was gained using the following formula:

DS(d) =

∑k
i

∣∣∣∣1− Crosstalkd
Crosstalk

∣∣∣∣
k

where Crosstalkd is the crosstalk after drug action, and k presents the number of all specific crosstalks
in the subtype.

We determined the destructive score (DS) of all anticancer drugs to specific crosstalk networks in
each subtype to assess the impacts of drugs on pathway crosstalk of the drugs. A higher DS score
indicates the greater effects of the drug on crosstalk between risk pathways. In each subtype, we only
screened anticancer drugs that could impact the crosstalk between dysregulated pathways (DS score
greater than zero) as candidate drugs, and we ranked candidate drugs of each subtype by DS score
from high to low in various subtypes of breast cancer.

2.7. Survival Analysis

We performed survival analysis based on the targets of candidate drugs that were implicated in the
specific pathway crosstalk of each subtypes of breast cancer to evaluate the effects for patient survival
of candidate drugs. For a given drug, we extracted its target genes and miRNAs that target a specific
crosstalk network as drug target signatures. Each candidate drug target signature was performed for
survival analysis in patients of each subtype separately, and we used the K-mean clustering method
to stratify patients into shorter survival time and longer survival time groups based on the level of
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these drug target molecules’ expression. In this project, we used 100 as the maximum number of
iterations of k means algorithm, and randomly started k means algorithm 20 times to return the best
result. Then Kaplan–Meier estimate method was used to evaluate the survival difference of these two
classified groups in each subtype, respectively. Finally, the significance p-value of survival difference
was estimated using the log-rank test.

3. Results

3.1. Identifying Breast Cancer Subtype-Associated Risk Pathways

We identified the risk miRNAs and genes by comparing tumor samples in each subtype with
normal controls, respectively. The differentially expressed genes and miRNAs were detected using
t-test and fold-change methods, and then multiple testing correction by the Benjamini–Hochberg
procedure was used. Genes/miRNAs with adjusted p-values < 0.01and |log_2 FC| > 2 were identified as
differential expression (risk genes/miRNAs). In total, we obtained 4096 risk genes (2284 from basal-like
subtype, 2192 from her2-enriched subtype, 1831 from luminal A subtype, and 2487 from luminal B
subtype) and 223 risk miRNAs (148 from basal-like subtype, 72 from her2-enriched subtype, 76 from
luminal A subtype, and 116 from luminal B subtype). Unsupervised hierarchical clustering analysis
was performed to observe discrepancy of the expression of risk genes and miRNAs between case
samples and normal samples, as shown in Figure 2A. We also performed the degree of overlap of risk
genes and miRNAs between subtypes, displayed in Figure 2B. These results indicate that genes and
miRNAs exhibit widespread expression disorder in the various breast cancer subtypes.

Breast cancer is affected by multiple factors and pathways. In order to veritably and accurately
reflect the changes of the pathways of breast cancer, we used the methods that we developed previously
to reconstruct all biological pathways among KEGG, and miRNAs were added into the signaling
pathway to form a more abundant signaling pathway. To discover the biological function of these risk
genes and miRNAs, we used pathway enrichment analysis to identify risk pathways in each subtype.
A pathway is identified as a risk pathway only if risk genes and miRNAs are enriched in it under the
significance level p < 0.05. In total, there were 32 risk pathways in basal-like subtype, 29 risk pathways
in her2-enriched subtype, 21 risk pathways in luminal A subtype, and 26 risk pathways in luminal B
subtype. We show the top ten pathways of each breast cancer subtype in Figure 2C. We found that
some risk pathways such as the Chemokine signaling pathway, ECM–receptor interaction, the PPAR
signaling pathway, and Tyrosine metabolism were simultaneously identified in different breast cancer
subtypes. Furthermore, we found some subtype-specific risk pathways in each subtype of breast cancer.
Amoebiasis, drug metabolism–other enzymes, fatty acid metabolism, the p53 signaling pathway, and
salivary secretion were found in basal-like, cell adhesion molecules (CAMs) in her2-enriched, histidine
metabolism in Luminal A, and glycerolipid metabolism and TGF-beta signaling pathway in Luminal B
subtypes. These subtype-specific risk pathways may be one of the reasons that resulted in distinct
molecular mechanisms and clinical outcomes of breast cancer subtypes.
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Figure 2. Global view of risk genes and miRNAs in each subtype of breast cancer. (A) Heat maps show
risk genes and miRNAs in four breast cancer subtypes. Unsupervised hierarchical clustering analysis
is used, which divided genes and miRNAs into two clusters, the lower and higher expression values
are represented by green and the red colors, respectively. (B) Venn plots of risk genes and miRNAs
associated with breast cancer subtypes separately. (C) Results of top 10 pathways with significant
enrichment result of each subtype. Note: Basal, basal-like subtype; Her2, her2-enriched subtype; LumA,
luminal A subtype; LumB, luminal B subtype.

3.2. Constructing Risk Pathway Crosstalk Networks for Various Subtypes of Breast Cancer

The occurrence of breast cancer is complex and there is crosstalk between different functional
biological pathways in the process of cancer development. Thus, it is necessary to dissect the crosstalk
of dysfunctional pathways related to breast cancer. To elucidate the molecular mechanism of various
breast cancer subtypes, we analyzed the crosstalk between dysfunctional pathways that are related to
breast cancer. In our study, the risk pathway crosstalk networks for each breast cancer subtype were
constructed. The quantification of crosstalk was conducted by calculating both the correlation strength
and the dysfunction degree of genes and miRNAs in any two risk pathways of each breast cancer
subtype, and the expression correlation coefficient between genes and miRNAs and the unpaired
Student’s t-test of genes and miRNAs were used for assessment of crosstalk.

Our results showed that there were crosstalks with significant differences in the extent of crosstalk
between risk pathways in each subtype (Figure 3). For example, ‘calcium signaling pathway’ and ‘focal
adhesion’ have more crosstalk relationships with other pathways in basal-like subtype. ‘Pathways in
cancer’ and ‘focal adhesion’ crosstalk more with other pathways in her2-enriched subtype. In luminal
A subtype, ‘Jak−STAT signaling pathway’ has the greatest crosstalk with ‘cytokine−cytokine receptor
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interaction’. In luminal B subtype, ‘pathways in cancer’ and ‘cytokine−cytokine receptor interaction’
possess larger crosstalk values with other pathways.

Figure 3. The crosstalk for each two interrelated risk pathways in breast cancer subtypes. Heat maps of
crosstalk between risk pathways for comparing the heterogeneity of crosstalk across different subtypes
of breast cancer. The color of the box represents the crosstalk between the two pathways, the lower and
higher crosstalk are represented by blue and the red colors, respectively.

Moreover, we found some subtype-specific crosstalk of pathways in breast cancer. We extracted
the specific crosstalk risk pathways of each subtype and used them to construct the specific crosstalk
network of the risk pathway in four subtypes (Figure 4). There are 197 specific crosstalk relationships
in basal-like, 56 specific crosstalk relationships in her2-enriched, 41 specific crosstalk relationships in
luminal A, and 74 specific crosstalk relationships in luminal B subtypes. The above results indicate that
these subtype-specific crosstalks of risk pathways may be one of the molecular mechanisms that lead
to distinct clinical outcomes of breast cancer patients, which will help us to understand the discrepancy
between subtypes and points a new way to optimize the treatment of breast cancer patients.
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Figure 4. The specific crosstalk network of each breast cancer subtype. The yellow rectangle represents
the pathways of the specific crosstalk network. The thickness of edges represents the intensity of
crosstalk between pathways; the larger the crosstalk value, the thicker the edge.

3.3. Screening Candidate Therapeutic Drugs for Each Subtype of Breast Cancer Based on DS Score

Previous experimental studies have demonstrated that cancer cells could adapt signaling pathway
circuits under drug treatment by establishing alternative signaling routes through crosstalk [32,33].
Based on this point of view, we developed an evaluation method to optimize the therapeutic drugs for
each subtype of breast cancer by assessing the impact of drugs on crosstalk among risk pathways. The
drug targets of each drug were removed from risk pathways and we reconstructed crosstalk networks
targeted by drugs to evaluate the perturbance effects of those drugs. Next, we recalculated the crosstalk
to measure the perturbance effects of drugs on different subtypes and optimize the drug use for each
subtype of breast cancer. We obtained 36 anticancer drugs that target both genes and miRNAs, and the
results of evaluation of anticancer drugs are shown in Table 1. We only screened anticancer drugs of
each subtype with a DS score greater than zero as candidate drugs, and ranked candidate drugs of
each subtype by DS score from high to low. A higher DS score indicates the greater effects of the drug
on crosstalk between risk pathways. In total, there are 33 drugs in basal-like, 32 drugs in her2-enriched,
22 drugs in luminal A, and 30 drugs in luminal B subtypes.
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Table 1. Screened candidate drugs for various subtypes of breast cancer based on DS score.

DS Score Ranking Basal Her2 LumA LumB

1 5-Fluorouracil Arsenic trioxide Arsenic trioxide Arsenic trioxide
2 Arsenic trioxide Adriamycin 5-Fluorouracil Adriamycin
3 Tamoxifen 5-Fluorouracil Adriamycin 5-Fluorouracil
4 Trastuzumab Trastuzumab Trastuzumab Trastuzumab
5 Etoposide Paclitaxel Etoposide Etoposide
6 Cisplatin Temozolomide Tamoxifen Cisplatin
7 Paclitaxel Etoposide Vorinostat Topotecan
8 Vorinostat Gemcitabine Bicalutamide Irinotecan
9 Gemcitabine Everolimus Cisplatin Paclitaxel

10 Adriamycin Sunitinib Vemurafenib Tamoxifen

11 Temozolomide Tamoxifen Medroxyprogesterone
acetate Vemurafenib

12 Cyclophosphamide Vorinostat Gemcitabine Gemcitabine
13 Bicalutamide Cisplatin Temozolomide Sunitinib
14 Sunitinib Sorafenib Everolimus Vorinostat
15 Vemurafenib Cyclophosphamide Sunitinib Temozolomide

16 Medroxyprogesterone
acetate Goserelin Paclitaxel Everolimus

17 Everolimus Vemurafenib Oxaliplatin Lenalidomide
18 Vinblastine Bicalutamide Cyclophosphamide Cyclophosphamide
19 Lenalidomide Vinblastine Sorafenib Bicalutamide
20 Oxaliplatin Lenalidomide Irinotecan Goserelin
21 Sorafenib Imatinib mesylate Topotecan Rapamycin
22 Goserelin Bortezomib Lenalidomide Oxaliplatin
23 Irinotecan Oxaliplatin Vinblastine

24 Mitoxantrone Medroxyprogesterone
acetate Sorafenib

25 Topotecan Melphalan Vincristine

26 Imatinib mesylate Gefitinib Medroxyprogesterone
acetate

27 Vincristine Rapamycin Bortezomib
28 Gefitinib Vincristine Imatinib mesylate
29 Docetaxel Irinotecan Mitoxantrone
30 Bortezomib Topotecan Melphalan
31 Melphalan Mitoxantrone
32 Rapamycin Docetaxel
33 Epirubicin

3.4. Dissecting the Effects of Candidate Therapeutic Drugs for Patient Survival in Each Subtype of
Breast Cancer

A drug could specifically interact with a target molecule to modulate a physiological process and
further impact the progression of a disease [34]. In order to further screen drugs for breast cancer
patients, we got the patients’ clinical survival information in each breast cancer subtype. For each
candidate therapeutic drug that was screened based on DS score in different subtypes, we evaluated
the drug target signature’s influence on patient survival. Patients from each subtype of breast cancer
were divided into two groups (shorter survival time group and longer survival time group) based on
the expression of drug target signatures. As shown in Figure 5, we found that there were, in total, six
candidate therapeutic drugs screened based on DS score (DS score greater than zero) that significantly
correlated with overall survival (OS) in the different subtypes of breast cancer patients. Paclitaxel,
Vincristine, and Sorafenib in basal-like, Irinotecan in her2-enriched, Vemurafenib in luminal A, and
Vorinostat in luminal B subtypes. These six dugs not only impacted the crosstalk of risk pathways,
but they also had an effect on the patients’ survival in their corresponding subtypes. This indicates
that they may be more suitable treatment candidates for the corresponding subtypes of breast cancer.
More details, according to drug target signatures of Paclitaxel and Sorafenib in the basal-like subtype,
these 97 patients were divided into a shorter survival group (n = 5) and a longer survival group
(n = 92), respectively. Vincristine drug target signatures divided 97 patients in the basal-like subtype
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into a shorter survival group (n = 63) and a longer survival group (n = 55). The 47 patients in the
her2-enriched subtype were separated into a shorter survival group (n = 10) and a longer survival group
(n = 37) by Irinotecan drug target signatures. Based on the drug target signatures of Vemurafenib in
luminal A subtype, the 287 patients (survival information was missing in four patients) were stratified
into a shorter survival group (n = 78) and a longer survival group (n = 209), and Vorinostat drug target
signatures stratified 118 luminal B subtype patients into a shorter survival group (n = 63) and a longer
survival group (n = 55). Here, drugs’ signatures stratified the patients into two groups in a statistically
significant manner and their expression direction were not considered.

Figure 5. Kaplan-Meier survival curves of patients at shorter survival time group or longer survival
time group stratified by drug target signatures of candidate drugs of each breast cancer subtype.

3.5. Dissecting the Mechanism of Candidate Drugs for Each Subtype

In our drugs’ optimization results, Paclitaxel, Sorafenib, and Vincristine were found to have
potential therapy effect in the basal-like subtype of breast cancer. Consistent with clinical findings,
Paclitaxel and Vincristine were the optimal adjuvant therapy for triple-negative breast cancer [35,36].
Sorafenib is a multiple targeted agent which can inhibit tumor cell proliferation and angiogenesis
by inhibiting the activation of multiple different kinases [37], and our results indicate that Sorafenib
plays a therapeutic role in the basal-like subtype of breast cancer mainly through affecting specific
risk pathway crosstalk mediated by hsa-miR-30a, hsa-miR-222, and hsa-miR-193a. Some studies have
confirmed that hsa-miR-30a, hsa-miR-222, and hsa-miR-193a play key roles in breast cancer [38–40].
Irinotecan, an antitumor enzyme inhibitor mainly used for the treatment of colorectal cancer [41], is
suitable for the her2-enriched subtype, which mediates the specific crosstalk among the risk pathways
of the her2-enriched subtype through regulating hsa-miR-23a and hsa-miR-324. In accordance with the
result of WT Kuo and Eissa [42,43], hsa-miR-324 and hsa-miR-23a have distinct biological functions in
breast cancer. Vemurafenib has long been approved for the treatment of metastatic melanoma with
BRAF mutation [44], and our results showed that this drug had a damaging effect on the specific
crosstalk of risk pathway of the luminal A subtype through action on hsa-miR-145. Just as some
researches have shown that miR-145 is a potential cancer biomarker and serves as a novel target for
cancer therapy, including breast cancer [45]. Vorinostat as an anticancer agent that inhibits histone
deacetylases, approved for cutaneous T-cell lymphoma [46], and plays a key role in the epigenetic
regulation of gene expression. Vorinostat could act on the specific risk pathways crosstalk of the luminal
B subtype via 14 miRNAs (Figure 6), which have been found to play important roles in the occurrence
and development of breast cancer, such as hsa-miR-155, hsa-miR-34a, hsa-miR-17, hsa-miR-22, and
hsa-miR-140 [47–51].
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Figure 6. The mechanism of optimal therapeutic drugs in each subtype of breast cancer. Sorafenib,
Paclitaxel, and Vincristine were applicable for the basal-like subtype treatment, Irinotecan was optimum
for the her2-enriched subtype treatment, Vemurafenib was suitable for the luminal A subtype treatment,
and Vorinostat was applied to the luminal B subtype treatment.

4. Discussion

Breast cancer is a complex disease with high heterogeneity in terms of the underlying molecular
alterations, the cellular composition of tumors, and even the clinical outcomes. Different subtypes
exhibit distinct biological behavior, prognosis, and usually different responses to drug treatment [52],
yet identifing applicable drugs for each subtype still largely remains limited. Therefore, it is urgently
needed to develop a systematic pipeline to identify medications for different subtypes of breast cancer.

The occurrence and development of tumors is a complex process involving many steps, links, and
factors. It is mostly the action of a single molecule (gene or miRNA) that leads to poor therapeutic
effect among many chemotherapeutic regimens [53]. In recent years, many researches have revealed
that the occurrence of tumors is closely related to the abnormality of biological pathways, and crosstalk
of abnormal pathways is one of the prime reasons for the poor outcomes of tumor treatment [54].
Studies have shown that regulatory molecules such as non-coding RNA participate in the anomaly of
biological pathways through the regulation of genes, adding to the difficulty of cancer treatment [55].
In order to actually reflect the intricate crosstalk of pathways, we have developed a new method based
on biological pathways—that is, reconstruction of biological pathways which include both genes and
miRNAs. We have also identified the optimal drugs by quantifying the effect of candidate drugs on
miRNA-mediated crosstalk of pathways. We have successfully identified the specific crosstalk of
pathways in each subtype of breast cancer and revealed their pathogenesis respectively by applying
this method. Moreover, we also screened applicable drugs for each subtype of breast cancer. We
successfully screened the most suitable drugs for each subtype of breast cancer, including Paclitaxel
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and Vincristine, which are breast cancer treatment drugs in clinical application. On the basis of the
original application, we accurately identified their applications in each subtype, such that Paclitaxel
and Vincristine were best for basal-like, Irinotecan was suitable for her2-enriched, and Vorinostat was
the optimal drug for luminal B subtypes. We also identified other anticancer drugs application in each
subtypes of breast cancer. The results show that our approach could help doctors to further improve
treatment strategies with the current menu of chemotherapy options.

Currently, several methods have been proposed to optimize drugs for human cancers. For example,
Lamb et al. provided a computational method to connect diseases and their potential therapeutic
small molecules based on gene expression profiles form disease and cultured human cells treated with
bioactive small molecules respectively [56]. Gottlieb et al. predicted novel drug indications based on
multiple drug–drug and disease–disease similarity measures [57]. Furthermore, Malas et al. prioritized
drugs using the semantic information between drug and disease concepts [58]. Comparing with these
methods, our study has some unique features. First, we considered the role of non-coding RNAs in
our approach. Second, our study optimized anticancer drugs by measuring their effects for mediating
the crosstalk between risk pathways, which was an important molecular mechanism in the initiation
and progression of human cancers. Finally, we optimized candidate drugs for different breast cancer
subtypes, which may further promote the precise use of drugs for human cancer.

There are also several limitations in our study. First of all, drugs targeting miRNAs for therapeutic
purposes are limited, and there are many drugs without miRNA targets. Secondly, miRNAs affected
by the drugs are required for further study. We believe that more and more drugs that regulate
miRNAs and drug-regulated miRNAs will be discovered with the development of in-depth study
on the interaction of drugs and miRNAs, and our method can identify the optimal therapeutic agent
for complex diseases more accurately and comprehensively. In summary, the results in this study
highlight that dissecting subtype-specific risk pathway crosstalk could provide novel insights into the
underlying molecular mechanisms and thus promote the drug discovery for various breast cancer
subtype. Moreover, we focused on breast cancer in this study, but the method proposed here could also
be applied to many other complex diseases, as pathway crosstalk is widespread in biological systems
and the dysregulation of which play a critical role in the occurrence of disease.
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