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Abstract: Identifying associations between lncRNAs and diseases can help understand disease-related
lncRNAs and facilitate disease diagnosis and treatment. The dual-network integrated logistic matrix
factorization (DNILMF) model has been used for drug–target interaction prediction, and good
results have been achieved. We firstly applied DNILMF to lncRNA–disease association prediction
(DNILMF-LDA). We combined different similarity kernel matrices of lncRNAs and diseases by using
nonlinear fusion to extract the most important information in fused matrices. Then, lncRNA–disease
association networks and similarity networks were built simultaneously. Finally, the Gaussian
process mutual information (GP-MI) algorithm of Bayesian optimization was adopted to optimize
the model parameters. The 10-fold cross-validation result showed that the area under receiving
operating characteristic (ROC) curve (AUC) value of DNILMF-LDA was 0.9202, and the area under
precision-recall (PR) curve (AUPR) was 0.5610. Compared with LRLSLDA, SIMCLDA, BiwalkLDA,
and TPGLDA, the AUC value of our method increased by 38.81%, 13.07%, 8.35%, and 6.75%,
respectively. The AUPR value of our method increased by 52.66%, 40.05%, 37.01%, and 44.25%.
These results indicate that DNILMF-LDA is an effective method for predicting the associations
between lncRNAs and diseases.

Keywords: dual-network integrated logistic matrix factorization; Bayesian optimization; lncRNA
and disease associations

1. Introduction

Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs (ncRNAs) that are more
than 200 nucleotides (nt) in length and do not encode proteins [1]. lncRNAs were originally thought
to be genomic transcriptional noise without biological function [2]. Later, more and more evidence
indicated that lncRNAs play an important role in many key biological processes, such as translation
and post-translational regulation, cell differentiation, proliferation and apoptosis, and epigenetic
regulation [3]. Meanwhile, mutations and dysregulation of lncRNAs can cause a variety of human
diseases [4,5], including diabetes [6], AIDS [7], and many types of cancer, such as hepatocellular
carcinoma [8], lung cancer [9], prostate cancer [10], breast cancer [11], and bladder cancer [12].
Therefore, predicting the potential associations between lncRNAs and diseases helps to explore
the complex pathogenesis and etiology of disease at the molecular level and effectively improves the
quality of disease diagnosis, treatment, and prevention.

In recent years, several lncRNAs function–disease relationship databases have been established.
lncRNAdb [13], lncRNADisease [14], lnc2Cancer [15], and NONCODE [16] are some examples.
However, the known lncRNA–disease relationship is still rare, and the use of biological experiments to
explore lncRNA–disease associations is both time-consuming and expensive. Using computational
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methods to infer the potential associations between lncRNAs and diseases has become an effective
prior method for biological experiments.

Recently, many computational models have been proposed to predict potential lncRNA–disease
associations, which can roughly be divided into three categories. The first class of methods is
based on machine learning to predict potential associations. Chen et al. [17] proposed LRSLDA,
a semi-supervised learning method based on Laplacian regular least squares. This method does
not require a negative sample. However, the problem of parameter selection for combining
two classifiers has not been well solved. LDAP [18] uses a support vector machine classifier to
predict potential lncRNA–disease associations based on lncRNA similarity and disease similarity.
Yu et al. [19] constructed a global quadruple network and a global tripartite network by integrating
various biological information. Based on these two global networks, the novel probability model
NBCLDAbased on the naive Bayesian classifier was proposed.

The second category is based on biological network models. Heterogeneous data have
become a hot topic in recent years. These models tend to construct heterogeneous networks using
disease-associated genes/miRNAs or predict new associations between lncRNAs and diseases using
multi-data source information fusion. Liang et al. [20] proposed a new method, TPGLDA, for predicting
lncRNA–disease associations using a lncRNA–disease–gene tripartite map. It integrates gene–disease
associations and lncRNA–disease associations and can effectively identify potential lncRNA–disease
associations. Chen et al. [21] proposed an improved restart random walk model IRWRLDA, which
integrates multiple data sources including lncRNA expression similarity, functional similarity, Gaussian
interaction profile kernel similarity, and disease semantic similarity to predict lncRNA–disease
associations. Gu et al. [22] established a global network random walk model GrwLDA, which predicts
potential lncRNA–disease associations by integrating disease semantic similarity, lncRNA functional
similarity, and known lncRNA–disease associations. These data fusion-based methods have achieved
significant improvements over methods that use a single data source.

The third category is some methods based on matrix completion. MFLDA [23] decomposes data
matrices of heterogeneous data sources into low-rank matrices via matrix tri-factorization to explore
and exploit their intrinsic and shared structure. However, it cannot predict lncRNAs that are not
associated with any disease or diseases that are not associated with any lncRNA. SIMCLDA [24]
models the lncRNA–disease associations’ prediction problem as a recommended task and uses the
induction matrix completion method to solve it.

The lncRNA–disease association matrix and the drug–target association matrix are generally
sparse matrices with less known associations. The sparsity of the lncRNA–disease dataset used in this
paper is 97.36%, which was obtained from 1-540/(115*178) (115 lncRNAs, 178 diseases, and 540 known
associations, sparsity = 1-540/(115*178)), and the sparsity of the four benchmark datasets is 99.01%,
96.55%, 97.00%, and 93.59%, respectively, in drug–target interaction prediction [25]. With regard
to the sparse characteristics of the drug–target matrix, neighborhood regularized logistic matrix
factorization (NRLMF) was adopted in [26] to predict drug–target interactions, and the effect was
significant. NRLMF has also been successfully applied to the prediction of the associations between
miRNA–disease [27] and lncRNA–protein [28,29]. Based on NRLMF, dual-network integrated logistic
matrix factorization (DNILMF) introduced a drug similarity network and target similarity network to
improve the accuracy of prediction [26]. However, the DNILMF prediction effect was greatly affected
by the parameter setting. The method of setting parameters based on experience had significant
limits in [26]. Because the Gaussian process mutual information algorithm (GP-MI) [30], an advanced
Bayesian optimization method, has been successfully applied to the parameter optimization of the
logistic matrix factorization model and brings about positive results [31], this paper adopts the GP-MI
algorithm to optimize the parameters for DNILMF.

The advantages of using DNILMF-LDA to predict lncRNA–disease associations are: (1) logistic
matrix factorization, especially suitable for binary variables and sparsity problems, is used to model
the interaction probability of each lncRNA–disease pair; (2) two different similarity kernel matrices of
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lncRNAs and diseases are fused into a composite kernel matrix by nonlinear fusion technology, and
then, the fused kernel matrices are integrated into the model; (3) the lncRNAs’ and diseases’ similarity
networks are introduced in the model; the flowchart of DNILMF-LDA given in Figure 1.

Figure 1. The flowchart of dual-network integrated logistic matrix factorization-lncRNA–disease
association (DNILMF-LDA). Step 1: converting the calculated lncRNAs’ similarity matrix and the
diseases’ similarity matrix to the corresponding kernel matrix; Step 2: calculating the Gaussian
interaction profile kernel matrix of lncRNAs and diseases, respectively; Step 3: fusing two kernel
matrices corresponding to the lncRNAs and the diseases respectively into one kernel matrix; Step 4:
constructing the DNILMF model with the lncRNA–disease associations matrix, lncRNAs, and diseases
kernel matrices as the input data. In order to ensure the optimal performance of the algorithm,
the Gaussian process mutual information (GP-MI) algorithm is used to select parameters. GIP, Gaussian
interaction profile.

2. Materials

2.1. lncRNA–Disease Associations Matrix

The original lncRNA–disease association dataset was downloaded from the lncRNADisease [14]
database, which integrated 687 experimentally-validated lncRNA–disease associations between
246 diseases and 369 lncRNAs. The diseases without disease ontology (http://disease-ontology.org/)
and lncRNAs without expression profiles in ArrayExpress [32] (http://www.ebi.ac.uk/arrayexpress/)
were filtered out, and 540 experimentally-validated lncRNA–disease associations between 115 lncRNAs
and 178 diseases were obtained. The lncRNA–disease association matrix is represented by Y.

2.2. lncRNA Expression Similarity Matrix and Disease Semantic Similarity Matrix

More than 60,000 expression profiles from 16 human tissues were downloaded from
ArrayExpress [32]. The Spearman correlation coefficient between any two lncRNAs in 115 lncRNAs
was calculated and was used as the expression similarity for this pair of lncRNAs [17]. The expression
similarity matrix of all lncRNAs is represented by Sl .

http://disease-ontology.org/
http://www.ebi.ac.uk/arrayexpress/
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The semantic similarity of diseases is often used to predict potential lncRNA–disease associations.
The semantic similarity of the disease in this paper was calculated with the method in paper [33].
Each disease was represented by a directed acyclic graph (DAG) containing all relevant annotated items,
which came from the National Library of Medicine (http://www.nlm.nih.gov/mesh). The semantic
similarity of two diseases is based on both the addresses of these diseases in DAG graphs and their
semantic relations with their ancestor diseases. The DOSE package provided us with the method to
calculate semantic similarities among diseases [34]. The semantic similarity matrix of the disease is
represented by Sd.

2.3. Similarity Kernel Matrices

Kernel matrices of lncRNAs and diseases were constructed for nonlinear kernel fusion.
The construction of kernel matrices consisted of two steps.

The first step was to convert the lncRNAs’ and diseases’ similarity matrices into kernel matrices.
In this step, Sl andSd were converted to kernel matrices by:

(1) converting Sl andSd to the corresponding symmetric matrices, Ssym =
(
S + ST) /2;

(2) transforming the symmetric matrices obtained in the first step into semi-positive definite
matrices by adding multiple small identity matrices [35]. The transformed lncRNAs’ and diseases’
kernel matrices are represented by Kl and Kd, respectively.

The second step was to calculate the Gaussian interaction profile (GIP) kernel matrix of lncRNAs
and diseases. Yli and Yl j represent the interaction profile of lncRNA iand lncRNA j, which are the ith
row and jth vector of association matrix Y. The distance between these two vectors was computed as
their GIP kernel. In this step, for a given lncRNA–disease associations matrix Y, the GIP kernel Kl

gip
between lncRNAs was calculated according to Formula (1) [35]:

Kgip
(
li, lj

)
= exp

−
∥∥∥Yli −Yl j

∥∥∥2

σ

 (1)

where ‖·‖ represents the Euclidean distance and σ represents the kernel bandwidth of the Gaussian
spectrum. In our work, the value of σ was set to one. GIP kernel Kd

gip between diseases was calculated
using the same method.

2.4. Fusion of Similarity Kernel Matrices

The purpose of similarity kernel matrices’ fusion is to merge Kl
gip and Kl into a kernel matrix

and merge Kd
gip and Kd into another kernel matrix. The steps of kernel fusion [36,37] are:

(1) Normalize and symmetrize the above four kernel matrices. Taking the fusion steps between
Kl

gip and Kl as an example, the resulting matrices are denoted by P(1) and P(2).

(2) Construct local similarity matrix L(1) and L(2) of Kl
gip and Kl by Formula (2):

L(1) (i, j) =


P(1)(i,j)

∑k∈Ni
P(1)(i,k)

, j ∈ Ni

0, others
(2)

where P(1) (i, j) represents the ith row and jth column element in matrix P(1). Ni denotes the nearest
neighbors of the current target i. The number of nearest neighbors was set to 3 according to experience.
The similarity between lncRNAi and non-nearest neighbors was zero. Finally, L(1) and L(2) can
be obtained;

(3) Update P(1) and P(2) iteratively by Formulas (3) and (4). Iteration step t was set to two
by experience.

http://www.nlm.nih.gov/mesh
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P(1)
t = L(1)P(2)

t−1

(
L(1)

)T
(3)

P(2)
t = L(2)P(1)

t−1

(
L(2)

)T
(4)

(4) After the iterations, P(1)
t and P(2)

t were averaged and normalized as the final kernel matrix of
diseases, denoted as Sk

d. Sk
l was calculated using the same method.

3. Methods

3.1. Problem Formalization

In this paper, the collection of lncRNAs is represented by L = {li}m
1 , and the collection of

diseases is represented by D =
{

dj
}n

1 , where m and n are the number of lncRNAs and diseases,
respectively. The associations between lncRNAs and diseases are represented by a binary matrix
Y ∈ Rm×n. When lncRNA li was experimentally verified to be associated with disease dj, yij = 1,

otherwise, yij = 0. L+ =
{

li|∑ n
j=1yij > 0, ∀1 ≤ i ≤ m

}
is the collection of positive lncRNAs,

and D+ =
{

di|∑ m
i=1yij > 0, ∀1 ≤ j ≤ n

}
is the collection of positive diseases. Thus, L− = L \ L+

is the collection of lncRNAs with no known association with all diseases. D− = D \ D+ is the
collection of diseases with no known association with all lncRNAs. Sk

l ∈ Rm×m is the final similarity
kernel matrix of lncRNAs, and Sk

d ∈ Rn×n is the final similarity kernel matrix of diseases. The purpose
of this paper is to predict lncRNA–disease interaction probabilities and rank candidate lncRNA–disease
pairs based on predicted probabilities. The higher ranked lncRNA–disease pairs are most likely to
be correlated.

3.2. Prediction of lncRNA–Disease Associations Using the DNILMF Model

The lncRNAs’ kernel matrix Sk
l , diseases’ kernel matrix Sk

d, and lncRNA–disease association matrix
Y are the input data for the DNILMF model to infer potential lncRNA–disease associations. lncRNAs
and diseases were mapped to the r-dimensional shared potential space, where r < min(m, n). Latent
vectors ui ∈ R1×r and vj ∈ R1×r represent the characteristics of lncRNA li and disease dj, respectively.
U ∈ Rm×r and V ∈ Rn×r are potential vectors for all lncRNAs and diseases. Then, the probabilities P
of all lncRNAs and diseases were modeled by the following logistic function:

P =
exp

(
UVT)

1 + exp (UVT)
(5)

What needs to be emphasized is the calculation of P depends on the lncRNA–disease
association network Y. Based on the hypothesis that similar diseases are always associated with
functionally similar lncRNAs, the interaction probability of lncRNA–disease is affected not only by
the lncRNA–disease association network Y, but also by lncRNAs’ similarity network Sk

l and diseases’
similarity network Sk

d. Hence, Y is combined with Sk
l and Sk

d for matrix factorization. The interaction
probabilities of lncRNAs and diseases are:

P =
exp

(
αUVT + βSk

l UVT + γUVTSk
d

)
1 + exp

(
αUVT + βSk

l UVT + γUVTSk
d
) (6)

where α, β, γ are the corresponding weight of Y, Sk
l and Sk

d. Their sum is 1, and β = γ.
Since the known lncRNA–disease associations are more important than the unknown

lncRNA–disease associations, we set the weight of the known lncRNA–disease pairs to c (c ≥ 1 )
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and that of the unknown lncRNA–disease pairs to 1. By assuming all samples are independent,
the probability p (Y|U, V) can be calculated by:

p (Y|U, V) =
m

∏
i=1

n

∏
j=1

P
cYij
ij
(
1− Pij

)1−Yij (7)

where Pij is the interaction probability between lncRNA li and disease dj. Setting the zero-mean
spherical Gaussian prior in lncRNAs’ and diseases’ potential vectors is done as follows:

p
(

U|σ2
l

)
=

m

∏
i=1

N
(

ui|0, σ2
l I
)

, p
(

V|σ2
d

)
=

n

∏
j=1

N
(

vj|0, σ2
d I
)

(8)

where σ2
l and σ2

d are the parameters that control the variance of the Gaussian distribution and I
represents the identity matrix. According to Bayesian inference:

p
(

U, V|Y, σ2
l , σ2

d

)
∝ p (Y|U, V) p

(
U|σ2

l

)
p
(

V|σ2
d

)
(9)

Then, learn the model parameters U andV by maximizing the logarithm of the posterior
distribution. The objective function L is:

L = maxU,V ∑i,j

(
cY�

(
αUVT + βSk

l UVT + γUVTSk
d

)
− (1 + cY−Y)� ln

[
1 + exp

(
αUVT

+βSk
l UVT + γUVTSk

d)])− λu
2 ‖U‖2

F −
λv
2 ‖V‖2

F

(10)

where λu = 1
σ2

l
, λν = 1

σ2
d

, λu, and λν are regularization coefficient of U and V, ‖·‖2
F is the Frobenius

norm, and� is the Hadamard product. Starting from the above objective function, the gradient descent
algorithm was used to solve U and V, and the gradient variables of U and V are as follows:

∂L
∂U

= c
(

αI + β
(

Sk
l

)T
)

YV + γ (cY−Q)
(

Sk
d

)T
V −

(
αI + β

(
Sk

l

)T
)

QV − λuU (11)

∂L
∂V

= c
(

αI + γ
(

Sk
d

)T
)

YTU + β
(

cYT −QT
)

Sk
l U −

(
αI + γ

(
Sk

d

)T
)

QTU − λvV (12)

where Q = (1 + cY−Y) � 1
exp(−(αUVT+βSk

l UVT+γUVTSk
d))+1

, QT is the transposed matrix of Q.

This work uses the AdaGrad algorithm [38] to accelerate the convergence of U and V.
Based on the matrices U and V, the interaction probabilities of any unknown lncRNA–disease

pairs can be calculated by Formula (6). Due to the uncertainty of lncRNA li ∈ L− and disease
dj ∈ D−, their potential vectors ui and vj obtained by gradient descent cannot accurately describe
their characteristics, so k-nearest neighbor sets N+ (li) and N+

(
dj
)

of li and dj were constructed
(k was empirically set to 5). Then, replace potential vector ui and vj with the linear combination of the
k-nearest neighbors [25,26]. The modified interaction probability is:

p̂ij =
exp

(
ûi v̂T

j

)
1 + exp

(
ûi v̂T

j

) (13)

where:

ûi =

 ui, li ∈ L+

1
∑u∈N+(li)

Sl
iu

∑ u∈N+(li) Sl
iuuu, li ∈ L− (14)
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v̂j =

 vj, dj ∈ D+

1
∑v∈N+(dj)

Sd
jv

∑v∈N+(dj)
Sd

jvuv, dj ∈ D− (15)

Sl
iu denotes the similarity between unknown lncRNA li and known lncRNA lu, and uu denotes the

latent variable of lu.
The selection of model parameter r, α, β, γ, λu, λv can affect the performance of the model

somehow. It is difficult to ensure the best performance of the model by using empirical parameter
values. In order to improve the performance of the model, the Bayesian optimization algorithm was
adopted to optimize the setting of parameter values in this work.

3.3. Bayesian Optimization

The Gaussian process mutual information algorithm (GP-MI) was used to optimize the setting of
the parameter values. The optimization process of GP-MI for the DNILMF model parameters is shown
in Figure 2.

Figure 2. The optimization process of GP-MI for the DNILMF model parameters. At irritation t: Step 1:
get xt according to the previous query χt−1 and observations Yt−1; Step 2: if xt=xt−1 or t is equal to
the max value, exit the program; if not, put xt, the disease kernel matrix, lncRNA–disease association
matrix, and lncRNA kernel matrix into the DNILMF model, and we can get output xt. Then, take xt

and yt as the start of the next irritation.

(1) Bayesian optimization

For function f : χ → R, f is an unknown function to be optimized, and χ ⊂ Rn (n ∈ N),
a tight convex set. In this paper, the DNRLMF model is f , and Rn is the parameter search space.
The purpose of Bayesian optimization is to find the optimal solution for f through continuous queries
x (x1, x2, ... ∈ χ). At iteration t, the new query xt is selected from χ according to the previous query
χt−1 = {x1, x2, ...xt−1} and observations Yt−1 = {y1, y2, ..., yt−1}. The relationship between yt and xt

is yt = f (xt) + εt, where εt is the noise variable, εt ∼ N
(
0, σ2).

(2) Gaussian process

Suppose the function f follows Gaussian process GP (m, k) [30], where m : χ → R is a mean
function and k : χ× χ → R is a kernel function. Let the mean function be zero, that is m : χ → 0,
the kernel function is a square exponential kernel.

According to the previous t − 1 times queries χt−1 and observations Yt−1, the posterior
distribution at iteration t is a Gaussian process with expectation as µt (x) and variance as σ2

t (x)
by Bayesian inference.
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(3) GP-MI algorithm

The most critical aspect of the GP-MI algorithm is the choice of the next query xt ∈ χ using µt (x)
and variance σ2

t (x).
xt = argmax

x∈χ
µt (x) + φt (x) (16)

where φt : χ→ R is the increment function of σ2
t (x):

φt (x) =

√
log

2
δ

(√
σ2

t (x) + γ̂t−1 −
√

γ̂t−1

)
(17)

γ̂t−1 ← γ̂t−2 + σ2
t−1 (xt−1); δ > 0 is a hyperparameter; and the iteration ending condition is xt+1 = xt.

The pseudocode of the GP-MI is shown in Algorithm 1:

Algorithm 1 GP-MI.

γ̂0 ← 0

for t = 1, 2, . . . do

Compute µt and σ2
t by χt = {x1..xt−1} and Yt = (y1..yt−1) // Bayesian inference

φt (x)←
√

log
2
δ

(√
σ2

t (x) + γ̂t−1 −
√

γ̂t−1

)
// Definition of φt(x) for all x ∈ χ

xt ← argmax
x∈χ

µt (x) + φt (x) // Selection of the next query location

γ̂t ← γ̂t−1 + σ2
t (xt) // Update γ̂t

get yt by the DNILMF model and xt // Query (xt, yt)

end for

4. Experimental Results

4.1. Evaluation of Prediction Performance

In this paper, the prediction performance of the detection model was verified by 10-fold
cross-validation (CV). AUC and the area under precision-recall (PR) curve (AUPR) were used as the
performance evaluation indexes of the model. AUC is an important index to evaluate the classification
model. If AUC = 1, the model has perfect performance; if AUC = 0.5, this means random performance.
The higher the values of AUC and AUPR, the better the prediction performance.

During the 10-fold CV process, lncRNA–disease pairs (including known pairs and unknown
pairs) were randomly divided into ten groups with almost the same data size by setting random
seeds. Each time, one of the ten groups was used as the test data, and the values of the test data in
the adjacency matrix Y were set to zero. The resulting matrix was the training data Ytrain. In each
iteration of 10-fold CV, firstly, calculate the kernel matrix and the GIP kernel matrix of lncRNAs and
diseases. Secondly, fuse the kernel matrices of lncRNAs and diseases to get two composite kernel
matrices. Then, take the fused kernel matrices and Ytrain as the model input and update the value of
the potential vectors U, V through gradient descent until the optimal value of the model is achieved.
Finally, the AUC and AUPR values were obtained by using the trained model to predict and evaluate
the test data. After ten iterations, the AUC values of 10 test sets were obtained, and their mean value
was taken as the AUC value of one time 10-fold CV. Under 10-fold CV, the AUC value of the model
reached 0.9202, and the AUPR value reached 0.5610.
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4.2. Comparison with Other Methods

To further evaluate the performance of our model, we compared it with LRLSLDA, BiwalkLDA,
SIMCLDA, and TPGLDA under 10-fold CV. The prediction result of the five models using the same
dataset is shown in Table 1. The result showed that both AUC and AUPR values of DNILMF-LDA
were the highest among five models, indicating that the performance of our model was better than
the others. Figures 3 and 4 respectively show the receiver operating characteristic (ROC) curve and
precision-recall (PR) curve of the five models.

Table 1. AUC and area under precision-recall (PR) curve (AUPR) values of the five models.

Method AUC AUPR

LRLSLDA 0.5321 0.0344
SIMCLDA 0.7895 0.1605

BiwalkLDA 0.8367 0.1909
TPGLDA 0.8527 0.1185

DNILMF-LDA 0.9202 0.5610

Figure 3. ROC curve of the five models.

Figure 4. PR curve of the five models.
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4.3. Parameter Analysis

For DNILMF-LDA, the dimension r of shared potential space was from 50–100 with a step length
of 10 [31]. The coefficient of the potential matrix product ranged from 0–1 with a step length of 0.1,
β = γ = (1− α) /2; the regularization coefficients λu and λv for potential variables of lncRNAs and
diseases ranged from 1–10, with a step size of one [25]. The number of neighbors to construct the
neighbor set of unknown lncRNAs and diseases was set to five. The weight of known interaction
pair was set to five. According to the results of the literature [31], when δ = 10−100, the Bayesian
optimization was very close to the prediction accuracy of the grid search, but the calculation time
decreased by 8.94-times on average. Therefore, we set the value of δ and the noise variance of the
Gaussian process kernel function σ2 to 10−100 and 0.1, respectively. In summary, r = {50, 100},
α = {0.1, 1}, λu = {1, 10}, λv = {1, 10}, K = 5, c = 5, δ = 10−100, and σ2 = 0.1.

The parameter optimization results of the DNILMF model by the GP-MI algorithm showed that
the prediction performance of the model was good when the model parameters r took any value in
the range of {50, 100}, α = 0.1, β = γ = 0.45, λu = 1, λv = 1. When r = 90, the AUC value of the
model reached its highest at 0.9202. The AUC value is shown in Figure 5 when r took different values.
The weight of β and γ was greater than that of c, which indicated the importance of the lncRNAs’
and diseases’ similarity network and also indicated the effectiveness of adding the lncRNA–disease
associations network and similarity networks into the model.

Figure 5. Influence of r on AUC value when α = 0.1, β = γ = 0.45, λu = 1, λv = 1.

4.4. Case Studies on Breast, Lung, and Colon Cancer

We further evaluated the role of the DNILMF-LDA model in predicting lncRNA–disease
associations by studying three common and typical cancers: breast cancer, lung cancer, and colon
cancer. The top ten candidate lncRNAs calculated by DNILMF-LDA for three cancers and their
evidence are listed in Tables 2–4. The verification of the prediction results was supported by the
lncRNADisease and lnc2Cancer databases [14,15].

Table 2. The top ten lncRNA candidates for lung cancer.

Top lncRNA Evidence Description

1 CCAT2 26729200 lncRNADisease
2 CDKN2B-AS1 26729200 lncRNADisease
3 PVT1 28731781 lnc2Cancer
4 UCA1 29731641 lnc2Cancer
5 CCAT1 27212446 lncRNADisease
6 SPRY4-IT1 26302345 lncRNADisease
7 GAS5 26634743 lncRNADisease
8 HULC unconfirmed unconfirmed
9 SRA1 unconfirmed unconfirmed

10 XIST unconfirmed unconfirmed
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Table 3. The top ten lncRNA candidates for colon cancer.

Top lncRNA Evidence Description

1 SPRY4-IT1 28099409 lnc2Cancer
2 HOTTIP 26617875 lnc2Cancer
3 GHET1 27931286 lnc2Cancer
4 MINA unconfirmed unconfirmed
5 HIF1A-AS2 29278853 lnc2Cancer
6 ADAMTS9-AS2 27596298 lnc2Cancer
7 TUG1 28302487 lnc2Cancer
8 LINC00152 29180678 lnc2Cancer
9 PANDAR 28176943 lnc2Cancer
10 BC040587 unconfirmed unconfirmed

Table 4. The top ten lncRNA candidates for breast cancer.

Top lncRNA Evidence Description

1 MNX1-AS1 unconfirmed unconfirmed
2 CCAT1 26464701 lnc2Cancer
3 TUSC7 23558749 lnc2Cancer
4 BANCR 29565494 lnc2Cancer
5 DNM3OS unconfirmed unconfirmed
6 TUG1 27791993 lncRNADisease
7 RPL34-AS1 unconfirmed lncRNADisease
8 MINA 25586347 lnc2Cancer
9 GHET1 29843220 lnc2Cancer
10 PTENP1 29085464 lnc2Cancer

Lung cancer is one of the most common and deadly cancers in the world. Among the
top 10 candidate lncRNAs calculated by DNILMF-LDA, seven lncRNAs were experimentally verified
to be associated with lung cancer. For example, the lncRNA-CDKN2B-AS1 promotes NSCLC cell
proliferation and inhibits apoptosis by suppressing KLF2 and P21 expression [39]. In addition, a recent
study has shown that upregulated lncRNA-UCA1 plays an important role in the development of lung
cancer, and it has great application prospects in clinical diagnosis [40].

Colon cancer is the third most common cancer and the second leading cause of cancer death in
men and women [41]. Of the top 10 candidate lncRNAs calculated by DNILMF-LDA, eight lncRNAs
were experimentally demonstrated to be associated with colon cancer. Studies have shown that
inhibiting the expression of lncRNA-TUG 1 can significantly inhibit the migration ability of colon
cancer cells, and the overexpression of TUG 1 may promote the proliferation and migration of colon
cancer cells [42].

Breast cancer is the most common cancer in women and the most common cancer in the
world. Among the top ten candidate lncRNAs calculated by DNILMF-LDA, seven lncRNAs were
experimentally demonstrated to be associated with breast cancer. Studies have shown that upregulated
lncRNA-CCAT 1, second in our list of breast cancer, participates in various cellular processes related to
cancer occurrence [43].

These case studies reconfirmed the potential of DNILMF-LDA in identifying potential
lncRNA–disease associations.

5. Discussion

Studies have shown that lncRNAs play an essential role in biological processes and in the
diagnosis, prevention, and treatment of complex diseases. It has become an extraordinary method
to combine multiple different similarity matrices in the computational model, and using matrix
factorization to predict the potential lncRNA–disease associations is also a hot topic. In this paper,
the dual-network integrated logistic matrix factorization model was used to predict the potential
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lncRNA–disease associations, and the GP-MI algorithm of Bayesian optimization was applied for
parameter optimization to ensure the optimal performance of the model.

The main advantages of DNILMF-LDA are: (1) Logistic matrix factorization, especially suitable
for binary variables and sparsity problems, was used to model the associations probability of each
lncRNA–disease pair. (2) The GIP kernel matrix and similarity matrix of lncRNAs and diseases
were obtained, and the nonlinear fusion method was adopted in the process of similarity kernel
fusion to reduce the difference between similarity matrices. (3) lncRNAs’ and diseases’ similarity
networks were introduced in the model. In this paper, 10-fold CV was used to evaluate the prediction
performance of our model. The results showed that compared with the LRLSLDA, BiwalkLDA,
SIMCLDA, and TPGLDA models, the AUC value of DNILMF-LDA was higher and the prediction
performance of DNILMF-LDA better. In addition, case studies of lung cancer, colon cancer, and breast
cancer also suggested that DNILMF-LDA was a better computational method to predict the potential
lncRNA–disease associations.

Although DNILMF-LDA has obtained reliable experimental results, there are still some biases.
For example, the known experimentally-verified lncRNA–disease associations are still limited, and the
predictive performance of DNILMF-LDA will be improved by a more comprehensive dataset.

6. Conclusions

In this paper, our major contributions were as follows: First, logistic matrix factorization was
used to model the interaction probability of each lncRNA–disease pair. Second, lncRNA and disease
similarity networks were introduced into the model. Third, the imbalance between known and
unknown interaction pairs was balanced by giving higher weights to known interactions in the
model. Fourth, the method of neighborhood information was used to deal with the problems of new
lncRNAs and diseases in the process of prediction. Fifth, multiple source similarity fusion was used
to improve the prediction accuracy. We obtained the Gaussian kernel matrix and similarity kernel
matrix of lncRNAs and diseases, adopted nonlinear fusion to weaken the differences between similar
matrices, and extracted the most important information from different similarity data. Sixth, the GP-MI
algorithm in Bayesian optimization was adopted in this paper for parameter optimization.

In the future, we expect to acquire new multi-source datasets and explore better kernel fusion
methods. Then, we can improve the prediction performance by fully exploiting multi-source data and
advanced fusion technology.
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