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Abstract: Field laboratories interested in using the MinION often need the internet to perform 
sample analysis. Thus, the lack of internet connectivity in resource-limited or remote locations 
renders downstream analysis problematic, resulting in a lack of sample identification in the field. 
Due to this dependency, field samples are generally transported back to the lab for analysis where 
internet availability for downstream analysis is available. These logistics problems and the time lost 
in sample characterization and identification, pose a significant problem for field scientists. To 
address this limitation, we have developed a stand-alone data analysis packet using open source 
tools developed by the Nanopore community that does not depend on internet availability. Like 
Oxford Nanopore Technologies’ (ONT) cloud-based What’s In My Pot (WIMP) software, we 
developed the offline MinION Detection Software (MINDS) based on the Centrifuge classification 
engine for rapid species identification. Several online bioinformatics applications have been 
developed surrounding ONT’s framework for analysis of long reads. We have developed and 
evaluated an offline real time classification application pipeline using open source tools developed 
by the Nanopore community that does not depend on internet availability. Our application has been 
tested on ATCC’s 20 strain even mix whole cell (ATCC MSA-2002) sample. Using the Rapid 
Sequencing Kit (SQK-RAD004), we were able to identify all 20 organisms at species level. The 
analysis was performed in 15 min using a Dell Precision 7720 laptop. Our offline downstream 
bioinformatics application provides a cost-effective option as well as quick turn-around time when 
analyzing samples in the field, thus enabling researchers to fully utilize ONT’s MinION portability, 
ease-of-use, and identification capability in remote locations. 

Keywords: phylogenetic classification; visualization; third generation sequencing; offline analysis 
pipeline 

 

1. Introduction 

Field-deployable instruments are quickly demonstrating the transition in rapid point-of-care 
diagnostics and bio-surveillance allowing for reliable detection and accurate therapeutic 
countermeasures [1–3]. Several companies have developed deployable technologies for molecular 
diagnostics and biodefense that perform fast sample-to-answer analysis in the field [4–6]. Use of this 
equipment in emergency response situations, such as an outbreak exposure to endemic infectious 
diseases or the intentional use of bioweapons, allows for rapid turnaround time and definitive results, 
which are critical to the health and security of the people within the community. Unfortunately, most 
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of these technologies are restricted to pre-set assay panels that could miss pathogens outside their 
target reach and do not generally identify organisms with antimicrobial resistance and enhanced 
virulence. While these instruments are proven and reliable, the user is confined to the targeted panels, 
primers, probes or antibodies that can be carried in the field with them. The data output is also limited 
to either a small PCR amplicon or protein target, providing a very narrow sliver of the whole genomic 
picture. 

Metagenomics and whole genome sequencing are increasingly being used for diagnostic and 
clinical laboratories for the detection of pathogenic organisms [7–9]. These features enable the lab to 
conduct genomic characterization and phylogenic analysis, which is critical towards understanding 
evolutionary change, virulence and transmission during an outbreak. Oxford Nanopore 
Technologies (ONT) has recently developed sequencing technology that allows the user to sequence 
virtually anywhere in the world and low Earth orbit [10–12]. This small, portable device also enables 
affordable bio-surveillance on a global scale [13,14]. The MinION device has been field tested with 
successful sequencing of arbovirus, Ebola virus and Zika virus [6,15–19]. For example, in 2018, 
Nigeria experienced a record upsurge in cases of Lassa fever. A multinational team under the 
auspices of the World Health Organization (WHO) partnering with the Nigeria Center for Disease 
Control used metagenomic data generated by the MinION to determine the outbreak was due to 
independent zoonotic transmission events and not a viral strain with an increased transmission rate. 
The research group was able to rapidly deploy field labs and obtain epidemiological information 
critical to understanding the spread of the epidemic [20].  

However, one of the biggest challenges still facing MinION sequencing in the field is offline 
software needed to analyze the raw data. Ideally, this offline software will have a simple to use 
graphical user interface (GUI) that allows users without a strong understanding of command line 
code and computer science experience to perform analysis and determine actionable results. 
Unfortunately, current ONT downstream bioinformatics and characterization often requires an 
internet connection and/or coding experience, which generates a bottleneck in real-time analysis to 
most individuals. Even with connectivity to an institutional laboratory, delay can mean death in 
critical situations.  

One solution to this problem for next generation sequencing was the development of the 
Empowering the Development of Genomics Expertise (EDGE) including The Pan-Genomics for 
Infectious Agents (PanGIA) bioinformatics platform [21]. Sponsored by the Defense Threat Reduction 
Agency (DTRA), these platforms were designed to analyze Illumina short reads and were somewhat 
adapted for MinION long reads. In this paper, we demonstrate an offline downstream 
characterization pipeline specifically designed for MinION long reads. MINDS (MinION Detection 
Software) uses the open source read software Centrifuge for taxonomic classification purposes [22]. 
This real-time data streaming allows immediate analysis of the data, enabling rapid identification of 
bacteria, virus and fungi in a sample. Our MinION sequence analysis software provides offline real-
time species identification and characterization on a standard laptop without the need for internet 
connectivity or high end computing power, thereby enabling true portability and validation of the 
samples in the field as well as in the lab. 

2. Materials and Methods 

2.1. Bacterial Sample 

MSA-2002 was purchased from ATCC, Manassas, VA. The sample contains a mixture of 20 
different bacterial strains distributed equally (5% ea.): Acinetobacter baumannii (ATCC 17978), 
Actinomyces odontolyticus (ATCC 17982), Bacillus cereus (ATCC 10987), Bacteroides vulgatus (ATCC 
8482), Bifidobacterium adolescentis (ATCC 15703), Clostridium beijerinckii (ATCC 35702), Cutibacterium 
acnes (ATCC 11828), Deinococcus radiodurans (ATCC BAA-816), Enterococcus faecalis (ATCC 47077), 
Escherichia coli (ATCC 700926), Helicobacter pylori (ATCC 700392), Lactobacillus gasseri (ATCC 33323), 
Neisseria meningitidis (ATCC BAA-335), Porphyromonas gingivalis (ATCC 33277), Pseudomonas 
aeruginosa (ATCC 9027), Rhodobacter sphaeroides (ATCC 17029), Staphylococcus aureus (ATCC BAA-
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1556), Staphylococcus epidermidis (ATCC 12228), Streptococcus agalactiae (ATCC BAA-611), and 
Streptococcus mutans (ATCC 700610). 

2.2. Metagenomic Sample Preparation 

Working in a field-deployable laboratory requires the thorough vetting of equipment, processes 
and procedures prior to deployment due to the resource-limited environments normally encountered 
which would curtail sample preparation and analysis. The OmniLyse by Claremont BioSolutions 
provides several advantages when working in an austere environment. Effective lysis has been 
proven across a variety of cell types including gram-positive bacteria, spores, yeast, and cysts. Only 
1–2 min is required to provide consistent yields of gDNA [23]. The small footprint of the OmniLyse 
and battery powered bead beating mechanism allows for easy use inside a glove box or biosafety 
cabinet when working with unknown, potentially high threat organisms. Fragmentation length can 
also be controlled based on the volume and lysis time of the sample. DNA cleanup was performed 
using Agencourt AMPure XP beads to provide high gDNA recovery and reduce the need for 
centrifugation. From start of extraction to final gDNA material, the total time is around 35 min. When 
using the Rapid Library Kit from Oxford Nanopore, the total time for library completion is one hour. 
Once loaded on the flow cell, the data collection can vary from a few thousand reads in an hour to 
over a hundred thousand reads in seven hours. Depending on the total number bases needed, the 
sample to answer using this method is from two to eight hours.  

Genomic DNA was extracted and purified from MSA-2002 (ATCC, Manassas, VA, USA) using 
OmniLyse (Claremont BioSolutions, Upland, CA, USA) mechanical disrupter for 5 min in phosphate 
buffered saline. Agencourt AMPure XP (Beckman Coulter, Brea, CA, USA) cleanup was performed 
with following modifications. A 0.5 sample volume of 5M NaCl (Fisher Scientific, Hampton, NH, 
USA) with 0.5 sample volume of 30% PEG, 1.5M NaCl (Fisher Scientific, Hampton, NH, USA) was 
added to the lysed cells. Then 50 μL of resuspended AMPure XP beads were added and allowed to 
bind for 15 min. The beads were washed two times with fresh solution of 70% ethanol (Fisher 
Scientific, Hampton, NH, USA). After removal of the ethanol, 10 μL of nuclease-free water (VWR, 
Radnor, PA, USA) was added and incubated at 55 °C for 10 min to elute the gDNA from the beads 
[24]. Library preparation was performed with Rapid Sequencing Kit SQK-RAD004 (Oxford Nanopore 
Technologies, Oxford, UK) following manufactures protocol. 400 ng of template DNA was incubated 
with fragmentation mix at 30 °C for 1 min and at 80 °C for 1 min and cooled at 4 °C. The tagmented 
genomic DNA was mixed with the rapid adapter mix for five minutes at room temperature. The 
prepared DNA library was placed on ice until loaded on the flow cell. Platform QC was run on an 
R9.4.1 revD MinION flow cell (Oxford Nanopore Technologies, Oxford, UK) prior to each sequencing 
run.  

2.3. Sample Sequencing and Bioinformatics Analysis 

Reads acquisition (ONT’s MinKNOW core ver. 3.1.20 and base-calling (ONT’s Guppy software 
ver. 2.0.10) was integrated on ONT’s MinIT device (MinIT Release 19.01.10, 256 core GPU, 8 GB RAM, 
512 GB SSD storage weighing 290 g) connected wirelessly to a Dell Precision 7720 laptop (Intel i7-
7820HQ CPU, 4 core/8 thread, 2.9 GHz, 64 GB RAM with 3 TB SSD storage running Windows 10 
Professional). The laptop was used primarily to run MINDS for downstream analysis (Figure 1). After 
14 h of run time, FASTQ files were submitted to MINDS 1.0.53. 

MINDS is a user-friendly GUI written in Microsoft C# incorporating Python (version 3.6) scripts 
for file handling, processing, reporting and read mapping using Centrifuge 1.0.4 to perform 
taxonomic classification. Report graphics were generated using matplotlib and Seaborn [25–27]. The 
reads were searched against an indexed database of all RefSeq bacterial and archeal genome 
sequences downloaded periodically from Centrifuge developer’s website [28]. MINDS is available 
from the corresponding author by request. 
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Figure 1. Schematic demonstrating sequencing and bioinformatic workflow. Reads from the MinION 
were acquired with Oxford Nanopore Technologies’ (ONT’s) MinIT real-time base-calling device 
running MinKNOW and Guppy software. The downstream MINDS workflow processed the 
metagenomic sequence data read wirelessly from the MinIT to identify microorganisms present in 
the sample. Barcoded samples were first demultiplexed (if required) using ONT’s qcat software. 
Centrifuge (Johns Hopkins Center Computational Biology) mapped reads to taxonomic 
classifications. Background noise was filtered by removing species with only sporadic reads: having 
less than 0.1% of all total reads mapped and/or having less than 5 unique reads mapped. 

Low level sequence data noise/background (near neighbors, and false positives and negatives) 
was filtered by removing sporadic mapped reads to species—those having less than 0.1% of all total 
reads mapped and/or less than 5 unique mapped reads. 

MINDS performance was compared with ONT’s cloud-based EPI2ME What’s In My Pot (WIMP) 
workflow [29,30], a Centrifuge based system and also with the taxonomic sequence classifier Kraken 
[31]. A standard Kraken database of all complete bacterial, archaeal and viral genomes in NCBI’s 
Reference Sequence (RefSeq) database was built on 28 June 2019 using a 72 core, 512 Gb RAM server 
located at Rutgers University, New Brunswick, NJ. The MinION sequence data was analyzed by 
Kraken on the same server.  

3. Results 

Using ATCC MSA-2002 as a metagenomic mock community allowed us to test the MINDS 
pipeline with a variety of gram-positive and gram-negative bacteria. A 3 × 107 cells equal ratio, whole 
cell mix containing 20 bacterial strains was lysed for five minutes using OmniLyse. After cleanup, the 
nucleic acid concentration was set to 53 ng/µL and library preparation was performed using SQK-
RAD004. The metagenomic mock community sample was run overnight for 14 h. In the first eight 
hours 170,000 reads were generated. An additional six hours of run time acquired only 3440 more 
reads due to the unavailable pores in the flow cell. Nanoplot [32] was used to obtain the statistical 
results of this run (Table 1). Over 390 million bases were called and the mean Q score of 9.6. The 
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basecalled FASTQ files generated were then submitted to Centrifuge and Figure 2 shows the results 
generated after filtering. The overall analysis from sample submission to report took 15 min.  

Nineteen of 20 species from the MSA-2002 mock community were correctly identified, with an 
additional 10 near-neighbor microorganisms also identified. Table 2 shows the Centrifuge results after 
filtering identifying 29 species in the sample listed by total and unique reads. Total reads are 
sequences classified to species level (including multi-classified reads). Unique reads are classified to 
a single species. Actinomyces odontolyticus was not identified because it was not present in the 
Centrifuge database, so reads were assigned to closely related Actinomyces meyeri. Interestingly, it was 
recently proposed that both species belong to Schaalia, a new genus in the Actinobacteria [33]. 
Comparing the genome sequences of Schaalia odontolytica (NCBI accession NZ_DS264586.1) and 
Schaalia meyeri (NCBI accession NZ_CP012072.1) results in a 79% sequence identity with a coverage 
of 74%. The low coverage is due to the genome size difference: 2.39 Mb for Schaalia odontolytica vs. 
2.05 Mb for Schaalia meyeri.  

MINDS also identified nine additional bacterial species closely related to three MSA-2002 
species. Shigella dysenteriae, Shigella boydii, Shigella flexneri, Shigella sonnei and Shigella sp. PAMC 28760 
are close relatives of MSA-2002’s E. coli and belong to a pan-genomic group [34,35]. Likewise, Bacillus 
thuringiensis, Bacillus anthracis and Bacillus sp. ABP14 are close relatives and belong to the Bacillus 
cereus group [36] Clostridium pasteurianum is a close relative of Clostridium beijerinckii and has been 
mistaken for it recently [37].  

Table 1. Nanoplot statistics for the MinIT base-calling output and post MinION Detection Software 
(MINDS) statistics for the Centrifuge analysis. The average multi-classified read mapped to 2.53 
species (Centrifuge multi-classified reads count/Actual MinION reads that Centrifuge multi-
classified). 

Mean Read Length 2268 bp 
Mean read quality 9.6 

Medium read length 1344 bb 
Median read quality 9.7 

Number of reads 173,440 bp 
Read length N50 4275 bp 

Total bases 393,502,204 bp 
Reads above quality cutoffs > Q5 173,440 (100%) 
Reads above quality cutoffs > Q7 173,440 (100%) 
Reads above quality cutoffs > Q10 68,766 (39.6%) 
Reads above quality cutoffs > Q12 1344 (0.8%) 
Reads above quality cutoffs > Q12 0 (0%) 

Number of reads mapped by Centrifuge 184,795 
Unclassified reads by Centrifuge 5611 

Centrifuge total reads count 179,184 
Centrifuge unique reads count 160,396 

Centrifuge multi-classified reads count 18,788 
Actual MinION reads that Centrifuge multi-classified 7433 
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(a) 

(b) 

Figure 2. MINDS report showing 19 of the 20 MSA-2002 mock species correctly identified from with 
an additional 10 near neighbor species identified. (a) The pie chart displays unique read abundance 
of each species. Actinomyces odontolyticus was not present in the Centrifuge database, so reads were 
assigned to closely related Actinomyces meyeri. MINDS also identified nine additional bacterial species 
closely related to three MSA-2002 species: five Shigella spp. from the E. coli/Shigella pan-genomic 
group, three Bacillus spp. from the pan-genomic Bacillus cereus group and Clostridium pasteurianum, a 
near-neighbor of Clostridium beijerinckii. (b) The MINDS taxonomy report displaying a read 
abundance histogram of the 29 species identified. 
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Table 2. Filtered Centrifuge results showing all 29 species identified in the MSA-2002 sample. Total 
reads are reads classified to species including multi-classified reads. Unique reads are those classified 
to a single species. The confidence score is the percentage of unique reads to total reads. The 
confidence grades are simply ranges of confidence scores: A = 90–100%, B = 80–90%, C = 70–80%, D = 
60–70%, F = 0–60%. The last column shows the relative abundance of unique reads—the percentage 
of species specific unique reads to total unique reads. Except for the incorrectly identified Actinomyces 
meyeri, it can be seen that the other 19 MSA-2002 species had high unique reads to total reads ratios 
(confidence grades of B or better), while the incorrectly identified near-neighbors had low confidence 
grades. 

Species Total 
Reads 

Unique 
Reads 

Confidence 
Score 

Confidence 
Grade 

Relative 
Unique 
Reads 

Bacillus cereus 31,810 28,998 91.16% A 18.24% 
Enterococcus faecalis 23,458 23,434 99.90% A 14.74% 
Streptococcus mutans 14,582 14,546 99.75% A 9.15% 

Streptococcus agalactiae 14,164 14,031 99.06% A 8.82% 
Staphylococcus aureus 13,056 12,270 93.98% A 7.72% 

Acinetobacter baumannii 11,289 11,113 98.44% A 6.99% 
Escherichia coli 12,479 10,248 82.12% B 6.45% 

Pseudomonas aeruginosa 8475 8403 99.15% A 5.28% 
Deinococcus radiodurans 8094 8078 99.80% A 5.08% 

Staphylococcus epidermidis 7118 6455 90.69% A 4.06% 
Rhodobacter sphaeroides 4907 4900 99.86% A 3.08% 

Bacteroides vulgatus 3266 3103 95.01% A 1.95% 
Lactobacillus gasseri 2584 2564 99.23% A 1.61% 

Neisseria meningitidis 2212 2113 95.52% A 1.33% 
Clostridium beijerinckii 2151 2011 93.49% A 1.26% 

Porphyromonas gingivalis 1282 1273 99.30% A 0.80% 
Cutibacterium acnes 1105 1093 98.91% A 0.69% 
Helicobacter pylori 1020 1012 99.22% A 0.64% 

Bifidobacterium adolescentis 353 341 96.60% A 0.21% 
Actinomyces meyeri 227 219 96.48% A 0.14% 

Bacillus thuringiensis 4338 1528 35.22% F 0.96% 
Bacillus sp. ABP14 1968 433 22.00% F 0.27% 

Shigella sp. PAMC 28760 1776 231 13.01% F 0.15% 
Clostridium pasteurianum 290 153 52.76% F 0.10% 

Shigella boydii 687 131 19.07% F 0.08% 
Shigella dysenteriae 376 98 26.06% F 0.06% 

Shigella sonnei 676 83 12.28% F 0.05% 
Shigella flexneri 580 78 13.45% F 0.05% 

Bacillus anthracis 574 58 10.10% F 0.04% 
Total 174,897 158,998 N/A N/A 100% 

Offline Centrifuge was compared with other read mappers to benchmark its accuracy. Table 3 
categorizes the read mapper results from highest number of MSA-2002 reads to the lowest. ONT’s 
“What’s In My Pot” (WIMP) cloud-based classification pipeline was used as a baseline since this 
module also uses Centrifuge for identification. The FASTQ files were also compared with Kraken for 
analysis. The three read mappers produced similar results, except the following: Kraken mapped far 
fewer reads to Streptococcus agalactiae, but correctly mapped 778 reads to the recently re-classified 
Schaalia odontolytica (formerly Actinomyces odontolyticus) [33].  
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Table 3.  Comparison of MINDS' offline Centrifuge read mappers with ONT's cloud-based Centrifuge 
(WIMP-What's In My Pot) and Kraken read mappers. All three read mappers produced similar results 
except for Streptococcus agalactiae and Actinomyces meyeri as noted below. 

Species 
Offline 

Centrifuge 
Online Centrifuge 

(WIMP) Kraken 

Bacillus cereus 28,998 (18.1%) 32,074 (19.2%) 28,205 (17.0%) 
Enterococcus faecalis 23,434 (14.6%) 23,914 (14.3%) 23,656 (14.2%) 
Streptococcus mutans 14,546 (9.1%) 14,902 (8.9%) 14,208 (8.6%) 

Streptococcus agalactiae 14,031 (8.8%) 14,263 (8.5%) 4139 (2.5%) 
Staphylococcus aureus 12,270 (7.7%) 12,685 (7.6%) 12,145 (7.3%) 

Acinetobacter baumannii 11,113 (6.9%) 10,410 (6.2%) 8998 (5.4%) 
Escherichia coli 10,248 (6.4%) 7411 (4.4%) 7226 (4.3%) 

Pseudomonas aeruginosa 8403 (5.2%) 8600 (5.2%) 8327 (5.0%) 
Deinococcus radiodurans 8078 (5.0%) 8314 (5.0%) 8090 (4.9%) 

Staphylococcus epidermidis 6455 (4.0%) 6265 (3.8%) 6146 (3.7%) 
Rhodobacter sphaeroides 4900 (3.1%) 5040 (3.0%) 4967 (3.0%) 

Bacteroides vulgatus 3103 (1.9%) 3190 (1.9%) 3101 (1.9%) 
Lactobacillus gasseri 2564 (1.6%) 2601 (1.6%) 2469 (1.5%) 

Neisseria meningitidis 2113 (1.3%) 2163 (1.3%) 1965 (1.2%) 
Clostridium beijerinckii  2011 (1.3%) 2308 (1.4%) 1965 (1.2%) 

Porphyromonas gingivalis 1273 (0.8%) 1312 (0.8%) 1276 (0.8%) 
Cutibacterium acnes 1093 (0.7%) 1114 (0.7%) 1090 (0.7%) 
Helicobacter pylori 1012 (0.6%) 1091 (0.7%) 1048 (0.6%) 

Bifidobacterium adolescentis 341 (0.2%) 354 (0.2%) 241 (0.2%) 
Actinomyces meyeri 219 (0.1%) 229 (0.1%) 778 * (0.5%) 

Other identified organisms 4191 (2.6%) 8706 (5.2%) 25,991 (15.6%) 
Total Reads 16,0396 16,6946 166,131 

* reads classified to Schaalia odontolytica (formerly Actinomyces odontolyticus). 

Strain level identification is an important goal of taxonomic classification. For example, it would 
be important for a commander to know whether Bacillus anthracis Ames or Bacillus anthracis Sterne 
was used in an attack: the former is deadly, the latter is a vaccine strain [38]. Table 4 shows the 
percentage of reads mapped to strain by WIMP and Kraken. Few strains had >90% reads mapped to 
them. The top strain hit (highest number of strain reads mapped per species) was correct for WIMP 
in 13 of 20 cases and for Kraken in 9 of 20 cases.  

Table 4. Percentage of ATCC MSA-2002 reads mapped to strain by ONT’s cloud-based “What’s In 
My Pot” (WIMP) and offline Kraken taxonomic classifier. Strains are listed as they are referred to in 
NCBI’s RefSeq genome database. Reads and percentages in boldface had the highest number of strain 
reads mapped per species. 

Strain 
Online Centrifuge (WIMP) Kraken 

Species Strain % Strain Mapped Species Strain % Strain Mapped 
Bacillus cereus ATCC 10987 32,074 24,115 75.2% 28,205 18155 64.4% 
Enterococcus faecalis OG1RF 23,914 13,420 56.1% 23,656 109 0.5% 
Streptococcus mutans UA159 14,902 122 0.8% 14,208 42 0.3% 

Streptococcus agalactiae 2603V/R 14,263 1139 8.0% 4139 242 5.8% 
Staphylococcus aureus subsp. aureus USA300_FPR3757 12,685 223 1.8% 12,145 5 0.0% 

Acinetobacter baumannii ATCC 17978 10,410 0 0.0% 8998 637 7.1% 
Pseudomonas aeruginosa ATCC 9027 8600 7507 87.3% 8327 0 0.0% 

Deinococcus radiodurans R1 8314 8206 98.7% 8090 8090 100.0% 
Escherichia coli str. K-12  7411 31 0.4% 7226 170 2.4% 

Staphylococcus epidermidis ATCC 12228 6265 2506 40.0% 6146 1637 26.6% 
Rhodobacter sphaeroides ATCC 17029 5040 4504 89.4% 4967 3646 73.4% 

Bacteroides vulgatus ATCC 8482 3190 3190 100.0% 3101 2273 73.3% 
Lactobacillus gasseri ATCC 33323 = JCM 1131 2601 2275 87.5% 2469 2076 84.1% 

Clostridium beijerinckii ATCC 35702 2308 3 0.1% 1965 1 0.1% 
Neisseria meningitidis MC58 2163 414 19.1% 1965 6 0.3% 

Porphyromonas gingivalis ATCC 33277 1312 39 3.0% 1276 9 0.7% 
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Propionibacterium acnes subsp. defendens ATCC 11828 1114 388 34.8% 1090 176 16.1% 
Helicobacter pylori 26695 1091 1 0.1% 1048 3 0.3% 

Bifidobacterium adolescentis ATCC 15703 354 291 82.2% 341 228 66.9% 
Actinomyces meyeri 229 N/A 0.0% 778 * N/A 0.0% 

* reads classified to Schaalia odontolytica (formerly Actinomyces odontolyticus). 

4. Discussion 

As sequencing continues to move into the field, great effort is needed to ensure the user has the 
necessary equipment and software required for detection. The OmniLyse kit along with Solid Phase 
Reversible Immobilization (SPRI) clean up provides a small consumable footprint for DNA 
extraction, removing the need of centrifuge and spin columns used in traditional extraction kits. 
Small, portable thermocyclers also allow the library preparation with ONT’s Rapid Sequencing Kit 
(RAD004) performed with little space requirements. This rapid extraction and purification method 
does have a tradeoff as the quality of the DNA is considerably lower than the values recommended 
by ONT, thus affecting the throughput of DNA. However, the quantity obtained using 188 ng/μL 
afforded sufficient gDNA for sequencing and would allow for possible refueling of the flow cell to 
increase the amount of data generated.  

Four repeated experiments were performed to increase the read output of the gram-positive 
Actinobacteria: Cutibacterium acnes, Bifidobacterium adolescentis, and Actinomyces meyeri (data not 
shown). However, these organisms were consistently underrepresented with respect to the total 
reads generated. Even with five minutes of OmniLyse cell disruption, no change in read distribution 
was observed. An extraction method with higher quality gDNA output for possible refueling the 
flow cell might be required if more genome coverage of these organisms is necessary.  

The recent release of ONT’s GPU-based MinIT greatly reduces the computational burden on the 
portable laptop and also allows for real-time basecalling with the ability to perform 150 k bases per 
second verses a traditional CPU-based computer with an output of 20 k bases per second. The user 
also has the ease of “plug and play” feature of the MinIT and not have to worry about the laptop’s 
capability with the MinION. Using MinIT for real time basecalling allowed us to have the FASTQ 
files ready for downstream analysis as soon as the sample acquisition on MinION was stopped. 
Future efforts will focus on customizing the MINDS pipeline to classify reads in real-time as the 
FASTQ files are generated from the MinIT. This has the potential to reduce the run time and more 
rapidly determine results allowing for faster decision and countermeasures in the case of a biothreat 
detection.  

Software in the field not only has to work offline, it also needs intuitive interface features that 
allows the end user unfamiliar with command line code the ability to quickly analyze data. The 
MINDS application provides easy to use graphical interface that minimizes the need for command 
line expertise (Figure 4). The end user simply submits the folder holding FAST5/FASTQ files along 
with other prevalent information such as flow cell ID, MinION serial number, etc. Once all the 
relevant information is submitted, the analysis can be performed by clicking the “Start” button. Based 
on the workflow selection, data analysis is performed, and a taxonomy report is generated.  
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a) 

 
b) 

 

Figure 4. (a) MINDS graphical interface allows users to straightforwardly submit the FASTQ file, 
input experimental metadata and conditions, generates intuitive data analysis and (b) easily 
interpretable reports. 

The MINDS pipeline has proven its successful adaptability during ONT’s release of new 
software and products. Since MINDS acts like a wrapper for the latest tools developed by the ONT 
community, it can be easily modified to accommodate the new software and kits released by ONT. 
For example, Guppy replaced Albacore and MINDS seamlessly integrated the new base-caller. With 
changes to the Centrifuge code, MINDS was able to analyze ONT’s change from single FAST5/FASTQ 
to multi FAST5/FASTQ. Lastly, as demultiplexing tools evolved through the past few years, MINDS 
implemented various open source software changes with no change to the GUI. The rapidly changing 
software development for processing MinION data requires regular patching or updating the 
command line code that interfaces with a stable GUI, which has proven easily accomplished with 
MINDS over the past few years.  
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Centrifuge was chosen for its mapping utility on a laptop: it has a relatively small indexed 
database size and RAM requirement. For example, our indexed Kraken database was 227 Gb 
compared to the 25 Gb Centrifuge database, and RAM requirement for Centrifuge were ~4 Gb: 
approximately 20× less than Kraken’s. As shown, there is little discernable difference in the 
performance of the two read mappers. As more useful read mappers are developed, they can be easily 
substituted and incorporated into the MINDS interface.  

5. Conclusions 

MINDS software was developed for users without a scientific education or laboratory 
background, such as enlisted soldiers, sailors, airmen and marines. Real-world metagenomic data 
can be difficult to analyze and interpret, especially for a user that is unfamiliar with bioinformatic 
tools. In contrast, MINDS allows any user to run sample data and receive quick, actionable results 
with a clear interpretation. For example, MINDS generates easy to understand bar graphs and pie 
charts, while providing the raw read information in a very intuitive graphical form. In this report, we 
have demonstrated an unbiased fieldable detection capability using ONT’s MinION sequencing 
platform and the MINDS platform. Our system dramatically reduces the time frame needed to detect 
targets as well as providing a sequencing in the field capability which minimizes the burden of 
overseas shipping of samples back to a lab such as the Centers for Disease Control or U.S. Army 
Medical Research Institute for Infectious Disease. Furthermore, the intuitive GUI of MINDS allows 
any user to quickly perform classification on their reads generated from MinIT. Additionally, simple 
parameter selection allows the user to provide percent cutoff to remove background noise to 
minimize false-positives and false-negatives which can interfere with the identification and decision-
making processes.  

Several open-source software tools for classification were tested for field applications. 
Centrifuge performed faster than the other tools tested on the same computational hardware and did 
not require a large computational memory burden due to its database indexing capabilities. A small 
footprint database is a decisive feature for field forward computation. The offline Centrifuge 
classified all 20 organisms very similarly to the cloud-based Centrifuge through WIMP and also with 
Kraken. However, neither Centrifuge nor Kraken could convincingly classify the taxa to strain. 

Future efforts will include having MINDS run data streaming from the MinION and MinIT in 
real time, enhancing MINDS capabilities to provide faster interpretation of the results. Also, further 
development in the sample preparation workflow is needed as library preparation still requires 
several hands-on steps with various pieces of laboratory equipment and consumables to operate in a 
field-forward environment. Efforts have begun to minimize this laboratory equipment burden to 
allow sequencing anywhere by anyone. These include future products developed by Oxford 
Nanopore including VolTRAX and Ubiq. Strain level identification is an important goal we hope to 
achieve by first assembling the reads into larger contigs before classification. Assembled contigs will 
provide a much smaller number, yet much longer sequences to map against the database and should 
provide more information rich strain determining features than the individual unassembled read 
sequences alone.  
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