The Semi-supervised Category Identification and Assignment (SCINA) algorithm

Notations:
Genes: i =1...1
Cells: j=1...J

Single cell profiling data (normalized and log transformed as needed): E;

Cell types to be assigned: r =1...R. The cell types are mutually exclusive.

Gene signatures for each cell type: S, . Overlap between signatures is discouraged
True identity of each profiled cell: z; =0,1,...R

Goal:

Determine the cell type of each profiled cell, j, based on signature genes. By default, activation of gene
signatures are assumed. Expression of signature genes that are characteristically lowly expressed in one
cell type compared to the other cell types can be inverted so that the pseudo expression of this gene is
high in that cell type.

Each cell, j, belongs to either one of the R cell types or other cells types (novel unknown cell types)

(z; = 0). Each type of cells, r, is marked by activation of the signature genes, S, . It can be assumed the

unknown cell type does not have activation of any gene signature.

Modeling assumptions

(1) For each cell type’s signature genes, assume the expression across all sequenced cells follow a bi-
modal distribution:

(65,12, =1)~ N(x,,%})
(s 12, #1) ~ N(u,, Z})

u—m and E are vectors of means, and satisfy u—rl > E for each element of the vector

The covarianceX; =X} is a diagonal matrix. This approach significantly reduces the dimensionality of

the estimation problem. It is possible to specify other covariance structures, with non-diagonal terms. But
some regularization techniques may be required for such cases, especially when the numbers of signature
genes are large compared to the number of cells available.

(2) Therefore, for each cell, j, to be analyzed:

If 2, =s,5>0, we have ?s,i~ N (g5,,%35) and ?“j~ N (g, ,,Z3) forall r#s,r=1.R

If z; =0, we have ?“j~ N(E,Z;) forall r=1..R

(3) The idea can be conceptualized as in the following figure
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In the above formula:
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If calculated in this way and any gene i in the gene set S, satisfy u;*f(i) < u;*;(i) , then
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Updating covariance
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(4) Initial values

TO !

, =——,=0..R
R+1

u—flu—fz r =1...R assigned by quantiles of empirical distribution

X" r=1...R is a diagonal matrix with diagonal elements corresponding to variance of each gene
multiplied by a constant

(5) Stop rules

Stabilization of assigned cell type labels

Overlap between gene signatures

This version of SCINA handles overlap between gene signatures in a heuristic manner. When there is
overlap, the algorithm “virtually” creates multiple rows in the expression matrix for the overlapping
genes. The number of virtual rows correspond to the number of times this gene appeared in the gene
signature sets. Then in effect, this gene in each signature is assigned to each duplicate row, and the EM
algorithm assumes these rows are independent of each other.

Con: The modeling assumption entails that each duplicate row has two modes, with the bigger mode
corresponding to the expressional contribution from only one cell type and the smaller mode contains
contributions from only non-expressing cells. This is violated with overlapping gene signatures. However,
when these genes are only shared by a small subset of cell types compared to the whole population of cell
types, the bias should be small.

Pro: this setup enables a clean separation between signatures of different cell types. Thus, SCINA benefits
from a huge speedup due to the vectorized computation in R. Also, our analyses below empirically show
that, when there is only moderate level of overlap in signatures, the degradation of cell typing
performance is indeed low



