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Abstract: The sea slug Onchidium reevesii inhabits the intertidal zone, which is characterized by a
changeable environment. Although the circadian modulation of long-term memory (LTM) is well
documented, the interaction of the circadian clock with light–dark masking in LTM of intertidal
animals is not well understood. We characterized the LTM of Onchidium and tested the expression
levels of related genes under a light–dark (LD) cycle and constant darkness (i.e., dark–dark, or DD)
cycle. Results indicated that both learning behavior and LTM show differences between circadian time
(CT) 10 and zeitgeber time (ZT) 10. In LD, the cry1 gene expressed irregularly, and per2 expression
displayed a daily pattern and a peak expression level at ZT 18. OnCREB1 (only in LD conditions) and
per2 transcripts cycled in phase with each other. In DD, the cry1 gene had its peak expression at CT
10, and per2 expressed its peak level at CT 18. OnCREB1 had two peak expression levels at ZT 10 or
ZT 18 which correspond to the time node of peaks in cry1 and per2, respectively. The obtained results
provide an LTM pattern that is different from other model species of the intertidal zone. We conclude
that the daily transcriptional oscillations of Onchidium for LTM were affected by circadian rhythms
and LD cycle masking.
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1. Introduction

The sea slug Onchidium reevesii (Gastropoda: Eupulmonata: Systellommatophora) inhabits the
intertidal zone in rocky, muddy habitats. The endemic mollusk forages on the reed bed during low
tide and homes during high tide [1]. Many intertidal organisms such as Onchidium show more than
one biological rhythm for their variable habits [2–4]. Onchidium is an organism with a rather small
number of neurons in its central nervous system. Additionally, its central nervous system is visible
and easily dissected [5].

The Earth’s ecosystem is governed by diverse environmental cycles, yet all are ultimately governed
by the rotation of the Earth around the Sun. These cycles produce environmental changes in light,
temperature, and so on. Different species harbor specific rhythms to take advantage of these variable
environmental conditions and to avoid predators [6,7]. The most common cycle is the day–night cycle;
thus, organisms need to subtly attune to this cycle and develop rhythms to conform to this steady 24 h,
day and night pattern. In recent years, key components of the core oscillator mechanism have been
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identified [8–10]; one key gene of the circadian rhythm mechanism is period (per). The period protein,
as a part of the circadian clock components, is thoroughly studied in insects and mammals [11–13].
Other common rhythms are the circatidal rhythm and circalunar rhythm; even though the circadian
rhythm is well characterized, little is known about the circalunar rhythm and circatidal rhythm in
marine invertebrate species. The tidal and lunar cycles robustly influence intertidal animals. Besides
its role as a circadian clock gene, previous research suggested that cryptochrome (cry) is part of the
tidal activity [10,14]. The cry is strongly related to UV-induced DNA damage repair and is sensitive to
moonlight [15]. Some studies have shown that the lunar-dependent gene cry could also function as a
state variable determining the lunar phase [14,16].

The circadian rhythm regulates a multitude of physiological activities [17] and also influences
learning behaviors and long-term memory [18,19]. Long-term memory (LTM) is mediated by the CREB
gene [20–22]; normally, more than one transcription factor plays an important role in both the signal
path of circadian rhythms and in memory behaviors [23,24], and CREB1 is one of these transcription
factors. Initial studies suggest that CREB1 activates the expression of downstream genes in the process
of long-term memory in Aplysia [25,26], and the functional relationship between CREB activity and
period gene expression has also been reported [27].

However, the regulatory effects of circadian rhythm on learning and memory have been
investigated with different results. The most widely accepted result is that the time of day influences
memory [19,28,29]. Some researchers found time-of-day effects on LTM [29]; however, some obtained
contradictory results [30]. Interestingly, in some intertidal animals, light–dark cycle input could
override the tendency of organisms to display a tidal rhythm of activity [3,31]; this is the result of the
phenomenon called “masking” [32]. The key issue that has remained obscure is whether the light–dark
(LD) cycle stimulates LTM directly in intertidal animals, or if the LD cycle independently influences
their circadian rhythm and then induces LTM pattern change.

This study aimed to determine the pattern of LTM rhythms and the oscillations of rhythm genes
expressed by Onchidium reevesii when exposed to an LD cycle and complete darkness (i.e., dark–dark,
or DD) cycle. In the behavioral experiments, the data obtained permitted us to test the hypothesis
that the LD cycle influenced the animal’s activities. Learning abilities were subject to the cycle change;
while the evidence showed that memory consolidation could be indirectly regulated by cycle change,
as memory was determined by the amount of learning. The activity pattern of the mantle-upturned
reflex in LD and DD expressed rhythmically and, to create enough data to determine the relationship
between circadian rhythm and LTM in different cycles, we tested the expressions of the memory-related
gene OnCREB1, circadian gene per2, and circalunar/circatidal-related gene cry1 in different cycles
after training.

In the molecular experiments, we determined whether per2 expressions were subject to circadian
rhythms in LD and DD cycles after memory retrieval; moreover, we detected whether the cry1
expressions remained rhythmic in LD and DD cycles. Per2 expressed a daily rhythm in both LD and
DD cycles, and cry1 expressed rhythmically only in DD, suggesting that the LD cycle disturbs the
rhythmicity of cry1 expression. OnCREB1 had the same expression pattern as per2 in LD, and the peak
expressions of OnCREB1 are combinations of peak expressions of per2 and cry1 in DD, suggesting that
LD cycles might influence LTM by disturbing other rhythms rather than the circadian rhythm.

2. Materials and Methods

2.1. Experimental Animals

In all studies, we followed the guidelines of the Care and Use of Laboratory Animals issued by
the Chinese Council on Animals Research and Guidelines of Animal Care. The study was approved
by the ethical committee of Shanghai Ocean University (No. Shou-DW-2018-023). Onchidium reevesii
(9–13 g) were reared in plastic tanks (25–28 ◦C) in Shanghai Ocean University for one month in good
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experimental conditions [33]. Animals were not used in experiments if they showed signs of infection
or if they showed inactivity.

Animals were entrained to 12 h light–12 h dark (LD) cycles (total light intensity exceeded 100 lux
during the light period and was under 6 lux during the dark period) for at least 10 days before training,
and feeding was stopped one week before the training started.

Some of the animals were in the trained group, while others were in the native group without
any training. Animals in the native group were also divided into two conditions. The native animals
without any training were dissected at the same time as those in the trained group.

Half of the sample was transferred from LD cycles into constant dark (DD) cycles for five days
to test the effect of light–dark cycles (Figure 1). Onchidium photoreception is poor at wavelengths
above 620 nm [34], and thus to facilitate observation for the experimenter, all experiments in darkness
conditions were illuminated with a dim red light (light intensity was under 6 lux). Zeitgeber time
(ZT, time-giver) is a notation for the time during an entrained circadian cycle; ZT = 0 corresponds to
first light, which is 06:00 local time. The circadian time (CT) approximates to the ZT in DD.
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Figure 1. Experimental procedure for the whole experiment. A total of 216 animals were used in these
experiments. Animals were trained at ZT/CT 3, 6, 10, 15, 18, and 22 after five-day treatment in an
LD/DD cycle. After 24 and 48 h, all trained animals were tested at the same time points (ZT/CT 3, 6, 10,
15, 18, and 22). N = 6 for every time point in the behavioral experiment and n = 3 for every time point
in the molecular experiment. ZT: zeitgeber time, CT: circadian time, LD: light–dark, DD: dark–dark.

2.2. Training Experiments

The animals were measured for the sensitization of their mantle-upturned reflex (MUR) (Figure 2A).
Gotow et al. [35] described the elevation movement; this response could be elicited by direct electrical
stimulation in neurons. The amplitude and duration of elevation depended on the frequency of
electrical stimulation. With increased frequency, the response to the stimuli became larger. When they
received an electric shock, their mantle upturned and exposed the hyponotum (Figure 2). The animals
were trained by electric shock while simultaneously measuring MUR duration. The sample was placed
on its foot in the center of the table and allowed to acclimate for 6 min at rest; the mantle of the
Onchidium was in a relaxed state, contrary to its risen state during simulation. After the stimulation,
MUR duration began once the mantle was upturned (raised) and ended when the mantle was relaxed.
The animal received training, which consisted of eight pulses of electricity (4 mA, 1 s in duration)
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delivered to the notum at 10-min intervals (Figure 2B). The position of shock was at ~2/3 of the notum
(close to posterior end of notum). During the consolidation stage, the animals were returned to their
environmental condition until the post-test at the same time point on the next day.
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Figure 2. The mantle-upturned reflex training of Onchidium reevesii and experimental protocol for each
animal. (A) Mantle-upturned reflex (MUR) of O. reevesii. When animals received the stimulus in the
notum, their mantle elevated, as shown in the dorsal view and lateral view. The red line segment is the
MUR amplitude. (B) Experimental protocols. The timing of training and testing is shown at relative
intervals. The duration of the first-time shock was seen as the test result in “before training”, and the
duration of the last shock in “8x training” was seen as the test result of acquisition. After 24 h and 48 h,
consolidation testing was performed using one shock. The experimental lighting conditions depended
on the cycles that those animals experienced.

2.3. Cloning of cry1 and per2 Genes and Quantitative Analysis of OnCREB1, cry1, and per2 Genes

We sampled the ganglion during different circadian points under LD/DD conditions. Animals
were anaesthetized with MgCl2 before dissection [36] and central nervous systems (CNSs) were
immediately flash-frozen in liquid N2 before extraction. Total RNA was extracted from the tissues with
RNAiso Plus (TaKaRa, Kusatsu, Japan) according to the manufacturer’s recommended protocol. Then,
the absorbance at A260 nm/A280 nm and A230 nm/A260 nm was measured to determine the quality and
purity of RNA. Complementary DNA (cDNA) was synthesized from the ganglion messenger RNA
(mRNA) using a reverse transcription (RT) reagent kit with genomic DNA (gDNA) Eraser (TaKaRa)
according to the manufacturer’s instructions. All primers were designed using Primer 5.0 software
(PREMIER Biosoft International, Palo Alto, CA, USA).

The 3′ and 5′ ends of the cDNA were obtained using the rapid amplification of cDNA ends
(RACE) technique (TaKaRa). Partial fragments of cry1 and per2 genes were obtained from the de
novo transcriptomic library. To confirm the fragment sequences, we used specific primers to amplify
the partial fragments and re-sequenced the PCR products. The specific primers used for cloning the
full-length cDNA of per2 and cry1 are provided in Table 1. The PCR cycling conditions were as follows;
94 ◦C for 5 min, followed by 30 cycles of 94 ◦C for 30 s, 58 ◦C for 30 s, and 72 ◦C for 1 min. The smart
5′-RACE (5′ Full RACE Kit, TaKaRa) and 3′-RACE kits (3′-Full RACE Core Set Ver. 2.0, Takara) were
used according to the manufacturers’ instructions. The RACE-PCR product was ligated into pGEM-T
Easy vector (Promega, Madison, WI, USA) and transformed into competent E. coli DH5-α cells. After
blue-white selection and PCR identification, positive clones were selected and sequenced.

After obtaining the cDNA, the mRNA levels of OnCREB1 (MK801136), cry1 (MK801137), and per2
(MK801138) were studied by fluorescent real-time (RT)-PCR. In our experiments, the 18S ribosomal



Genes 2019, 10, 488 5 of 15

RNA of O. reevesii was used as a housekeeping control gene [37], and 18S ribosomal RNA expressions
maintained their stability in ganglion tissue over 24 h in our pre-experiment. Quantitative RT-PCR was
performed using the Light Cycler® 480 II instrument (Roche, Basel, Switzerland) with a QuantiFast®

SYBR® Green PCR kit (Qiagen, Hilden, Germany). The qRT-PCR steps were as follows: 94 ◦C for 5 min,
followed by 30 cycles of 94 ◦C for 30 s, 51 ◦C for 30 s, and 72 ◦C for 1 min, and a final step at 72 ◦C for
5 min. Data were collected from each qRT-PCR experiment performed in triplicate and expressed as
the mean ± SEM (standard error of the mean). All the primers used in this process are listed in Table 1.

Table 1. Polymerase chain reaction (PCR) primers used in gene cloning and realtime (RT)-PCR.

Usage Primer Name Primer Sequence (5′-3′) Description

RT-PCR

Test-1F GTTTAAAACGCCACCCCCAC
Test-1R ATGCTGAACTGAGTGGGTGG

Used to amplify one part of the
per2 fragment

Test-2F TTCGAAAACTGGGTGCAGGT Used to amplify one part of the
per2 fragmentTest-2R GTCTCAGGCTCTCTCATGCC

Test-3F ATGAGAGAGCCTGAGACCGT
Test-3R TGCGCATGTTCAGAAGGAGT

Used to amplify one part of the
per2 fragment

Test-4F TCGTGAATCAGCGGACAACA Used to amplify one part of the
per2 fragmentTest-4R GAGGGCGATAGAAGCCAGTC

Test-5F ACATCCCACCAGAAACGTCC
Test-5R ATGGGCTCCTGAAACATGGG

Used to amplify one part of the
per2 fragment

Test-6F CAGGTGATGACTGGCTTCTATC Used to amplify one part of the
per2 fragmentTest-6R CTGGTGTGTCGTAGTTCTCATC

Test-7F CCCTAAGGATGGGTCCCTCA
Test-7R CACCGTGGCTGTTGTTGATG

Used to amplify one part of the
per2 fragment

Test-8F AAACCCTCACTGCCCAGATG Used to amplify one part of the
cry1 fragmentTest-8R GTGAGAAAGCAAGCCACAGC

Test-9F GTGTACAAGAGGCTGGTGCT
Test-9R AAAAGCCCTCAGGAGCTGAC

Used to amplify one part of the
cry1 fragment

Test-10F GTCAGCTCCTGAGGGCTTTT Used to amplify one part of the
cry1 fragmentTest-10R CCTTGTCTGCGTCACAAAGC

Test-11F GGTGCCTCACAAGTAGGAATTA
Test-11R GATTGTGTTCCCACGGTATCT

Used to amplify one part of the
cry1 fragment

Test-12F GATGCTGACTGGAGCGTAAA Used to amplify one part of the
cry1 fragmentTest-12R CCCTCAGGAGCTGACTAATAAAC

Test-13F AGACTGCAGACCCTGTTAATG
Test-13R ATGGGCTAGAGAGCTGATACT

Used to amplify one part of the
cry1 fragment

Test-14F ATGGAAACAGCCCACCACTC Used to amplify one part of the
cry1 fragmentTest-14R TCCACCACGAAACTGAGCTG

Test-15F AGCTCAGTTTCGTGGTGGAG
Test-15R GGGGATAGTCCTTGCCGATG

Used to amplify one part of the
cry1 fragment

RACE

3′RACE-F1 CCCTAAGGATGGGTCCCTCA Gene-specific outer primer for per2
3′RACE-F2 AATGTGTCTCTCAGCCCTGC Gene-specific inner primer for per2
3′RACE-F3 GTCAGCTCCTGAGGGCTTTT Gene-specific outer primer for cry1
3′RACE-F4 AGACTGCAGACCCTGTTAATG Gene-specific inner primer for cry1

3′RACE outer primer TACCGTCGTTCCACTAGTGATTT

3′RACE inner primer CGCGGATCCTCCACTAGTGATTTC
ACTATAGG

Primers from kit

5′RACE-R1 ATGCTGAACTGAGTGGGTGG Gene-specific outer primer for per2
5′RACE-R2 AGACGAATGCTGCTGCTCTT Gene-specific inner primer for per2
5′RACE-R3 GATTGTGTTCCCACGGTATCT Gene-specific outer primer for cry1
5′RACE-R4 TCCACCACGAAACTGAGCTG Gene-specific inner primer for cry1

5′RACE outer primer CATGGCTACATGCTGACAGCCTA

5′RACE inner primer CGCGGATCCACAGCCTACTGATG
ATCAGTCGATG

Primers from kit

qRT-PCR

qRT-PCR primer F TGTTGAGTCCGCCAACCTTT Used to amplify the per2 fragment
for real-time PCRqRT-PCR primer R AGTGGCTGCTCCTCTGAAAC

qRT-PCR primer F GATGCTGACTGGAGCGTAAA
qRT-PCR primer R CCAAAGCCCACAGGACAATA

Used to amplify the Cry1 fragment
for real-time PCR

qRT-PCR primer F CCAGTTGGAGGAACCAATGT Used to amplify the OnCREB1
fragment for real-time PCRqRT-PCR primer R CATGTGCTGTGGACTTGAAATAG

18S primer F TCCGCAGGAGTTGCTTCGAT
18S primer R ATTAAGCCGCAGGCTCCACT

Used to amplify the 18S fragment
for real-time PCR
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3. Results

3.1. Learning/Memory Acquisition and Long-Term Memory Expressed a Certain Rhythm in Different Conditions

The difference in LTM might be driven by the light–dark cycle, so darkness was set as a constant
to test the LD masking regulation. As the results show in Figure 3A, the duration of the baseline
mantle-upturned reflex was not significantly different in animals measured in LD compared with DD.
Moreover, the mantle-upturned reflex of Onchidium was less sensitive during the daytime than during
the night-time in both LD and DD. The most sensitive period of time appeared late at night. During
the daytime, the arousal threshold of Onchidium was elevated before training, which corresponds to
the fact that Onchidium are nocturnal animals (Figure 3A).

The training of Onchidium in ZT and CT had no significant effect on learning ability, except at
ZT/CT 10 (Figure 3B). For animals trained at ZT 10, less sensitivity was acquired compared with
that at CT 10, but this rather suggests that differences in observed learning abilities could be due to
condition differences in the induction of the baseline mantle-upturned reflex (Figure 3A). Different
rhythm patterns were observed before and after training, showing that the rhythm patterns in learning
are controlled by the circadian rhythm. The learning pattern showed differences between ZT 10 and
CT 10, suggesting that the LD cycles influence the learning in this time period.

The rhythms in LTM (Figure 3C,D) showed the same tendency as that in the animals’ initial
learning (Figure 3B). These results further support the conclusion that the rhythm in LTM is not directly
subject to the LD cycle. Moreover, the important reason for this rhythm shown in LTM is that the
animals trained had different amounts of initial learning. Together, these results suggest that, most of
the time, the rhythm pattern of LTM was due to the amount of initial learning.
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Figure 3. The rhythms of mantle-upturned reflex duration are shown for Onchidium examined in
constant darkness (DD) (blue circles) and light–dark cycle (LD) (orange triangle) conditions. (A) The
duration of the baseline mantle-upturned reflex before long-term memory (LTM) training shows an
increased tendency of duration in the night-time. Moreover, no significant differences were observed in
the duration of the mantle-upturned reflex between ZT and CT, and there was no significant effect
of lighting condition × sampling time (p = 0.264). (B) Rhythm in the acquisition. Peak durations
observed at CT/ZT 6 and CT/ZT 18. The duration in the “after training” stage revealed a significant
effect of lighting condition (lighting condition, p < 0.05), as well as a significant effect of sampling time
(time, p < 0.01). Bonferroni post hoc tests revealed that the durations between ZT 10 and CT 10 were
significantly different (** p < 0.01). (C) A subset of animals was tested after 24 h to determine whether
the rhythm in LTM persisted under LD/DD (lighting condition, p < 0.05; time, p < 0.001). The durations
between ZT 10 and CT 10 also exhibited significant differences (** p < 0.01). (D) Animals were tested
after 48 h to determine whether the rhythm in LTM persisted under LD/DD. There was no significant
effect of lighting condition × sampling time (two-way analysis of variance (ANOVA), p > 0.05), whereas
the duration at ZT 10 and CT 10 showed significant differences (** p < 0.01). Statistical analyses of
all data were performed using two-way ANOVA with Bonferroni post hoc analysis for comparisons
between groups. Values are means ± SEM (standard error of the mean) (n = 6 for ZT 3, 6, 10, 15, 18,
and 22 and CT 3, 6, 10, 15, 18, and 22).
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3.2. Expressions of cry1, per2, and OnCREB1 under The Control of Light–Dark (LD) and Constant Darkness
(DD) Cycles

We identified the per2 and cry1 genes of Onchidium (Figures 4, 5, S1 and S2); the full length of per2 is
7613 bp (MK801138) and cry1 is 3131 bp (MK801137). The predicted Onchidium CRY1 protein contained
the conserved regions present in orthologs of other species, including photolyase related domain
(PHR domain) and flavin adenine dinucleotide binding domain (FAD binding domain) (Figure 4).
The predicted Onchidium PERIOD2 protein contained the conserved regions present in orthologs of
other species, including HLH, PAS, and PAC domains (Figure 5). All accession numbers for related
proteins appear in Table S1.
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Figure 4. Alignment of conserved regions for CRY1. The Onchidium CRY1 protein contained conserved
domains present in orthologs for Aplysia, Pomacea, and Crassostrea: green frame indicates the PHR
domain and orange frame indicates the FAD binding domain. The blue shading indicates identical
residue, pink shading indicates residues with strongly similar properties, and the cyan shading indicates
residues with weakly similar properties.
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Figure 5. Alignment of conserved regions for PERIOD2. The Onchidium PERIOD2 protein contained
conserved domains present in orthologs for Bulla, Pomacea, and Mizuhopecten: blue frame indicates
the HLH domain, green frame indicates the PAS domain and orange frame indicates the PAC binding
domain. The blue shading indicates identical residue, a pink shading indicated residue with strongly
similar properties, and the cyan shading indicates residues with weakly similar properties.

For OnCREB1, cry1, and per2 expressions were tested after 24 and 48 h following training and
no training. As the transcriptional factor gene (OnCREB1) is important for memory consolidation,
the transcriptional oscillation gene per2 is crucial for the circadian clock and cry1 is related to the
circalunar/circatidal clock. The RNA dynamic expressions of the three genes were assessed next to
determine whether those genes are rhythmic in the central nervous system. As an intertidal animal,
the daily activity of Onchidium is synchronized not only by their circadian clock, but also by their
circalunar/circatidal clock [38,39]. We tested the temporal expression pattern of cry1, per2, and OnCREB1
throughout the daily cycle (CT/ZT 3, 6, 10, 15, 18, and 22). We also measured the expression of per2,
cry1, and OnCREB1 in the native group without any training. Per2 and cry1 expression levels were not
significantly changed compared with those in the trained group (Figure 6A,B). Strikingly, the expression
of OnCREB1 in the trained group was increased by training (Figure 6C), and the expression of OnCREB1
in the native group was similar to that in the trained group.
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Figure 6. The expression comparison of related genes between native and trained group under LD
and DD cycle. (A) Expression comparison of per2. Quantitative analysis of per2 revealed that there
was not significantly different between native and trained animals, and no interaction between both
factors (sampling time × training condition) were detected (LD, p > 0.05; DD, p > 0.05). (B) Expression
comparison of cry1. There was no significant effect of sampling time × training condition on cry1 (LD,
p > 0.05; DD, p > 0.05). (C) Expression comparison of OnCREB1. There was a significant effect of
sampling time × training condition on OnCREB1 expression (LD, p = 0.013; DD, p < 0.01). The training
increased the OnCREB1 expression, but not significant at all time points. * indicates p < 0.05; ** indicates
p < 0.01; *** indicates p < 0.001. Statistical analyses of all data were performed using two-way analysis
of variance (ANOVA) with Bonferroni post hoc analysis for comparisons between groups. Error bars in
the figure represent SEM (n = 3 for every time point in each group).

In trained animals, the peak expression of the cry1 gene appeared at CT 10 under DD conditions,
and the expressions under LD conditions were arrhythmic (two-way ANOVA, p > 0.05) (Figure 7A).
For the per2 gene, the expression level varied with circadian cycle, with peak expression being at
ZT/CT 18 (Figure 7B). OnCREB1 (in LD conditions) and per2 transcripts cycled in phase with each
other (Figure 7C). OnCREB1 had two peak expression levels at ZT 10 and ZT 18. The OnCREB1
transcript at CT 10 was in antiphase with the LTM, as shown in Figure 3C. The results show that the
OnCREB1 expressions are subject not only to circadian rhythm, but also the cycle change. CREB1
has an important transcriptional function in the pathway of long-term memory. As a consequence,
the results also suggested that long-term memory formation is associated with circadian rhythm and
the LD cycle.
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activity of crabs is influenced by light). This process is called “masking” [43,44]. To determine 296 

Figure 7. Temporal expression patterns of cry1, per2, and OnCREB1 in Onchidium reevesii under LD
and DD cycles. (A) Expression of cry1. The expression of cry1 showed a significant effect based on
lighting conditions (light, p < 0.05; time, p > 0.05). Cry1 expressed irregularly in LD conditions (cry1
LD, p > 0.05) and expressed rhythmically in DD conditions (cry DD, p < 0.05), with peak expression at
CT 10 (Bonferroni’s post hoc analysis, ** p < 0.01 for ZT 10 vs. CT 10 at 24 and 48 h). (B) Expression of
per2. Quantitative analysis of per2 revealed a significant effect of sampling time (time, p < 0.05) but not
lighting conditions (light, p > 0.05). The per2 transcripts of LD and DD cycled in phase with each other,
with a peak expression time point at CT/ZT 24. (C) Temporal profiles of OnCREB1 expression sampled
in LD and DD. There was a significant effect of lighting condition × sampling time on OnCREB1
expression (p < 0.05). OnCREB1 has two peak expressions at CT 10 and CT 18 under constant darkness,
and one peak expression at ZT 18 under the light–dark cycle (Bonferroni post hoc analysis, * p < 0.05 for
ZT 10 vs. CT 10 at 24 and 48 h). Statistical analyses of all data were performed using two-way ANOVA
with Bonferroni post hoc analysis for comparisons between groups. Values are means ± SEM (n = 3 for
ZT 3, 6, 10, 15, 18, 22 and CT 3, 6, 10, 15, 18, 22).

4. Discussion

The intertidal mollusk Onchidium reevesii lives in the shoreline area between high and low tides.
These organisms exhibit clocks which are not only tuned to day/night alterations, but also respond
to high/low tide and moon phases. Some studies have suggested that memory is due to circadian
regulation [40,41]. The present study described the learning and memory pattern of Onchidium reevesii
under circadian modulation and LD cycle regulation.

Previous experiments have described the sleep behavioral characterizations to determine the
invertebrate rest state [42]. The Onchidium rest state meets those criteria for sleep, and we found that
Onchidium exhibited robust locomotion mainly during the night.

Interestingly, after training, Onchidium displayed a different duration pattern to that before
training. The Onchidium show a time-of-day effect on memory acquisition, with one elevation during
the light period at ZT 6, and another elevation during the dark period at ZT 18. Sometimes, entraining
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stimuli controlled by oscillators have direct effects on locomotors (e.g., the locomotor activity of crabs
is influenced by light). This process is called “masking” [43,44]. To determine whether the memory
acquisition was completely due to the endogenous rhythm system or masking, animals were trained
in DD conditions and, surprisingly, showed a significant difference at CT 10 compared with ZT 10.
The activity, like circatidal activity, might have been overridden by the LD cycle. Moreover, the masking
of circatidal activity rhythm in intertidal animals is not unusual, and this phenomenon is shown
in Carcius maenas, crabs, Limulus polyphemus, and Apteronemobius asahinai [2,3,45–47]. This masking
mechanism makes animals adapt to changes in the environment [32]. This can explain the fluctuation at
CT/ZT 10, the junction period between day and night, suggesting that the learning rhythm is regulated
by changes in cycles and the endogenous rhythm system.

Another study tested the circadian and diurnal effects on the LTM process (Figure 3C,D). However,
the same tendency was previously observed, and the results for behavior suggested that LTM is largely
subject to the amount of information/learning acquired initially. The results are difficult to square with
other model species that involve different rhythmic modulations of learning and memory [38,48,49],
suggesting not only the involvement of circadian regulations, but also other rhythms or phenomena.
However, it is difficult to reach the conclusion that the LD cycle masks the circatidal rhythm, and the
activity pattern is entirely subject to the circadian rhythm only through behavioral data. Therefore,
molecular results in certain genes should be combined with behavioral data.

OnCREB1 gene expression after 24 and 48 h showed the same tendency as the per2 gene during the
light–dark (LD) cycle, which suggested that memory-related gene OnCREB1 expression is associated
with the circadian rhythm. Some studies showed that overexpressing the per gene in flies could
enhance long-term memory [50]. The per gene encodes an essential component of the circadian
clock, and per regulates the circadian process through a transcriptional negative feedback loop [51,52].
Furthermore, a previous study found that phosphorylation of MAPK underwent a circadian oscillation,
and MAPK can activate the CREB [53,54]. Thus, the circadian rhythms in memory-related gene
OnCREB1 might also be related to the circadian gene per2. Constant darkness is necessary to evaluate
whether the endogenous circadian rhythm drives the time-of-day effect, and it can also test other
rhythms without the light–dark zeitgeber. Surprisingly, the OnCREB1 gene had two peak expressions
under the complete darkness condition (DD), the tendency of which was different from that in LD.
Interestingly, a new peak was expressed rhythmically, the time point of which, in accordance with ZT
10, showed MUR differences in behavior experiments. Intertidal animals can release their previous
rhythms (circalunar and circatidal rhythms) when exposed to the DD cycle [3,32]. Therefore, the
critical agent in circatidal/circalunar rhythm is tested by the cry1 gene. A previous study suggested
that cry1 is connected with behavioral tidal rhythms [10], and that cry1 was sensitive to moonlight
and likely to be controlled by a key element of the lunar clock [16]. The cry gene has been explored
in previous research to study its role in the circatidal rhythm and its relationship with circalunar
rhythm [10,16]. Cry1 expressed irregularly in the LD cycle, and the steady expression peak of cry1
shown at CT 10 in DD is the same as that of the time points of the peak expression of OnCREB1. Cry1
increased at CT 10 under DD conditions but showed a decreasing sensitization response, consistent
with cry expression, inhibiting the phosphorylation of CREB and thus influencing memory activity [55].
The increasing OnCREB1 mRNA level at CT10 was opposite to that of memory activity, and similar
negative feedback was also found in Aplysia [56]. The peak expression of cry1 and OnCREB1 at CT 10
was not shown in LD but appeared in DD, suggesting that these are circalunar rhythm-related genes
and memory-related genes, at least partially suppressed by LD cycles. The per2 expression pattern
did not show differences between LD and DD, and it seemed that the endogenous circadian clock
enables them to express a daily rhythm in the absence of light–dark cues. Therefore, the memory
pattern in LD is possibly the result of an LD masking effect and circadian rhythm, and the memory
activity during the DD cycle might be controlled by the interaction of circadian and other rhythms
without the LD masking effect. Although the transcriptional regulation of CREB1 genes was associated
with long-term memory [57], the phosphorylation of CREB is also a critical step with implications on
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long-term memory [58]. Therefore, the phosphor-CREB/total CREB ratio could also be considered to
enhance the study of LTM.

The study shows that the sea slug Onchidium harbors more than a circadian clock, even when
kept in a laboratory for a long time. The results of this study were different from the rhythms of LTM
in other model species [59,60]; this can be explained by the difference in species and species behavior.
For instance, no circadian modulation in LTM has been observed in some rat species, while some
studies show that strain differences affect circadian modulation in other rat species [61]. Another
reason is that Onchidium, as an intertidal animal, lives in a harsh environment and thus harbors more
biological rhythms [1,7], and the results shown in LTM contribute to the interactions of the circadian
clock and LD cycle. Taken together, these results established relationships among LTM, circadian
rhythms, and the LD cycle. A limitation of this study is the lack of monthly data for cry1 expression
and behavior experiments. We gathered those data every few hours more than four days apart, and the
small sample size did not allow for a longer experiment. The free-running rhythm was not considered
in this study and will also need to be pursued further to make the conclusion more complete. Further
studies will be necessary to determine the LTM pattern of Onchidium under natural conditions over a
long period to study circatidal modulation.
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