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Abstract: Spiders often produce multiple types of silk, each with unique properties suiting them
to certain tasks and biological functions. Orb-weaver spiders can generate more than six types of
silk fibroins, with pyriform silk used to form attachment discs, adhering silk to other surfaces and
substances. The unique higher-order structuring of silk fibroins has been cited as the source of their
remarkable biomechanical properties. Even so, only one full-length gene sequence of pyriform silk
protein 1 (PySp1) from Argiopeargentata has been reported, and studies on the mechanical properties
of natural pyriform silk fibers are also lacking. To better understand the PySp1 family of genes, we
used long-distance PCR (LD-PCR) to determine the sequence of PySp1 in the Araneusventricosus
species. This full-length PySp1 gene is 11,931 bp in length, encoding for 3976 amino acids residues
in non-repetitive N- and C-terminal domains with a central largely repetitive region made up of
sixteen remarkably homogeneous units. This was similar to the previously reported A. argentata
PySp1 sequence, with PySp1 from A. ventricosus also having a long repetitive N-linker that bridges
the N-terminal and repetitive regions. Predictions of secondary structure and hydrophobicity
of A. ventricosus PySp1 showed the pyriform silk fiber’s functional properties. The amino acid
compositions of PySp1 is obviously distinct from other spidroins. Our sequence makes an important
contribution to understand pyriform silk protein structure and also provides a new template for
recombinant pyriform silk proteins with attractive properties.
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1. Introduction

With differing and intriguing high-performance, spider silk can be tougher and lighter than other
natural fibers and synthetic fibers [1]. The advanced female orb-weaving spiders spin more than six
different silk fiber types, also producing watery glue from seven different types of silk glands, with each
specific type of silk having properties suited to its particular roles [2–4]. This intense research has long
been focused on the major ampullate silk (safety thread) which is used as a safety line in case of a fall
and is responsible for the outer frame and spiral radii of the orb-web, with toughness that rivals the
toughest known materials [5–7].Other silks, such as those secreted by the minor ampullate glands, express
temporary capture spiral silks which provide additional web stabilization [8,9]; Flagelliform (Flag) or
capture silk is synthesized in flabelliform glands, and functions as a highly elastic fiber that can ensnare
rapidly moving insects which come in contact with the web [3,10]; Acini form silk serves to wrap prey
and to form the inner liner of the egg case, while tubuli form silk forms its tough outer shell [2,11–14];
compared with other glands, aggregate glands produce a silk glue that is used for coating spiral threads
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to better enable the core fiber to capture prey [15,16]; Pyriform silk is a two-compound material including
the silk fiber and cement-like glue produced in pyriform glands simultaneously [17,18].

As a very different composite silk, the pyriform silk has its own particular function. The pyriform
silk forms the so-called attachment disc which is used for bonding fibers together, ensuring the whole
web framework of spider robust attached to substrates, and connecting dragline silk to surfaces for
escaping rapidly [19]. However, cobweb-weaving spiders produce different attachment discs with
more functions, such as prey capture, locomotion, and egg sacs [17]. The distinct web architecture
produces strong adhesion to affix the web to substrate, even on a very smooth surface provided [20].

The strong adhesive of pyriform silk is the result of the unique protein sequence and micro
structure. Previous studies have focused on the morphology of attachment silk and the molecular
aspect [18–22]. Scanning electron microscopy revealed that the attachment discs are composed of
fibers which are small in diameter and are embedded in a gelatinous substance that has very strong
adhesive properties upon drying [21]. Different from the other silk forms which can be spun as wet
glues or dry fibers, the architecture of pyriform silk reveals it is a combination of both such materials.
Furthermore, the glue and fibers originate from the same glands (pyriform glands) [18,22]. Spider silk
fibroins are very large, highly repetitive, and homogenized by type within a species. In the case of the
major ampullate and minor ampullatespidroins (MaSp and MiSp, respectively), the repetitive regions
contain short, simple repeat units. However, the aciniform and tubuliformspidroin (AcSp and TuSp,
respectively) genes encode longer, much more complicated repeats [12,14,23–25]. The reported pyriform
spidroin (PySp) sequences have similar primary structure with AcSp and TuSp families. For those
spidroins (AcSp, TuSp, and PySp), many long repetitive sequences (>200 amino acids) are surrounded
by short amino (N)- and carboxyl (C)- terminal regions, which are not repetitive. The number of
repetitive units dominate the length of protein sequence. Nonetheless, Pyriform silk proteins have
been discovered fairly recently, and prior to the present study, only one complete PySp1 gene sequence
of Argiopeargentata was identified in 2017 [26].

As anchoring silk, it has unique molecular mechanisms to accomplish these tasks. Studies have
reported that these proteins have alternating proline- and glutamine-rich motifs, each of which are
6–8 amino acids long, as has been shown for the pyriform silk of three species: Argiope trifasciata,
Nephila clavipes, and Nephilengyscruentata [27]. As a rather unexplored silk cement, the pyriform silk
protein composition remains largely unclear. The basic composition of the PySp1 encoding protein
is worth more exploring. More PySp1 gene sequences are still necessary. To better understand the
properties of spider silk proteins, we herein derive the full-length Araneusventricosus PySp1 sequence
via long distance PCR (LD-PCR).

2. Materials and Methods

2.1. PySp1 Degenerate PCR

Members of the A. ventricosus species were located and collected in Shanghai, China, and were
rapidly frozen using liquid nitrogen, followed by storage at −80◦C. The cephalothoraxes of ten
specimens were then used to isolate high molecular weight genomic DNA (HMW-gDNA) using the
Rapid Animal Genomic DNA Isolation Kit (Sangon, Shanghai, China) and treated with RNase A.

According to the N- and C-terminal amino acid sequences of A. argentata, and using PySp1 and
partial repetitive region sequences of A. ventricosus PySp1 that we obtained previously, we constructed
2 degenerate primers as well as 2 gene-specific primers to be used in a degenerate PCR reaction for
these regions (Table 1). A sixamino acids region (KSWVQD) in the N-terminal domain was chosen for
the forward degenerate primer, while the repetitive region was targeted by the reverse gene-specific
primer to amplify the partial N-terminal region (Table 1). Another degenerate primer (GGQVNY)
was designed in the C-terminal region for degenerate reversed primer, together with the forward
gene-specific primer, used for partial C-terminal amplification (Table 1). In order to obtain the target
sequences, agarose gel electrophoresis was used to isolate fragments of multiple different sizes from
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degenerate PCR. These fragments were gel-extracted and sequenced, and then aligned with other
published PySp1 sequences to identify which one is target sequence. Sequencing of these initial DNA
products was used to generate 2 pairs of gene-specific primers for the anchor PCR, as follows: 5′-TTT
TCA ATA GCT GCC GCC TGC-3′ and 5′-CTC GAA CAC CTG TTG TTG CTT C-3′, as well as the
anchor primer 5′-ACT CCT GTG GAA CCA TCG GAC GGG GGG-3′ were utilized in order to amplify
the 5′ end sequence of the N-terminal region. The gene-specific primers 5′-GCA ATC TTC CGT TGC
TCA ATC TC-3′ and 5′-TTC AAG CGG AGC TTC ATC AGG-3′ were utilized to amplify the 3′ end
sequence of the C-terminal region, in accordance with the above anchor primer. The method for
obtaining target sequences was as described above.

Table 1. Primers used for degenerate PCR.

Primer Sequence (5′–3′)

Degenerate forward primer in N-terminal region AARTCNTGGGTNCAGGAC
Gene-specific reversed primer ACTCGCTATCGAATTGAGTGCAC
Gene-specific forward primer ATCAGGAACAGGAGTTGCAGG
Degenerate reversed primer in C-terminal region RTARTTNACYTGTCCTCC

2.2. Long-Distance PCR for Full-length PySp1 Gene

Two gene-specific primers were constructed as a means of amplifying the full-length PySp1 gene.
A forward primer 5′-AGC GAT GTC TTG GAC CCT GGG GCT TC-3′ was designed in N-terminal
region, while a reverse primer5′-CTA TCC AAG TGC TGC AAG TAC G-3′ was designed in the
C-terminal region. Because of the large size of PySp1, we used Phusion high-fidelity DNA polymerase
(NEB Beijing, China) to guarantee precise LD-PCR amplification. The reaction was conducted using
the following conditions: 98 ◦C for 1 min, 30 amplification cycles (98 ◦C for 5 s; 56 ◦C for 20 s; 72 ◦C
for 10 min), and 72 ◦C for 2 min. Following the amplification of the PySp1 gene, the amplified DNA
products were gel-extracted based on provided directions (Sangon, Shanghai, China) and ligated
with pEASY-blunt zero cloning vector (TRANSGEN Beijing, China), followed by Escherichia coli
transformation. PySp1 vector insertion validation was conducted based on PCR and restriction enzyme
digestion in concert with agarose gel electrophoresis. Those plasmids containing a complete PySp1
gene were then sequenced by the Beijing NoVogene Bioinformatics Technology Company.

2.3. Sequencing and Assembly

Agarose gel electrophoresis was used to isolate DNA from plasmids, which then underwent Qubit
quantification. The plasmid DNA was then sequenced via an Illumina HeSeq 4000-PE150 machine
using massive parallel sequencing. Paired-end A-tailed adaptors were used for the library construction
at the Beijing Novogene Bioinformatics Technology Co. Ltd., with PCR amplification of a 500 bp insert
and a mate-pair library with an insert size of 5 kb.

For quality control, we removed all adaptor sequences, reads containing poly-N and low quality
(with quality score to be less than 5) from the dataset using Fastp [28], and then used SOAP de novo to
assemble the remaining clean reads into scaffolds, after which they were used for gap-closing.

2.4. Sequence Analysis

SignalP v. 4.1 was used for predicting PySp1 N-terminal signal cleavage peptide [29]. This sequence
was compared to other previously reported silk protein sequences, using Geneiousv.7.1.7 for sequence
alignments. For phylogenetic analyses, the N- and C-terminal domains of available silk proteins were
selected if available within the NCBI database (All the accession numbers given in Supplementary Table S1)
and analyzed with MEGA 6 [30]. For geneious alignment, we used the Protein Weight Matrix (Gonnet),
and set the gap open penalty and gap extension penalty to 10 and 0.2, respectively. The conserved
spidorinN- and C-terminal regions from the complete A. ventricosus PySp1 were aligned to 20 published
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spidroins, which also have both N- and C-terminal regions using ClustalW [31]. The N- and C-terminal
regions were aligned with default setting, and the alignments were adjusted by eye, and were then
concatenated for phylogenetic analysis (Figure S1). Maximum likelihood (ML) searches for best trees and
bootstrap were conducted for 1,000 replicates with the Jones–Taylor–Thornton (JTT) model of amino acid
substitutions. The Kyte–Doolittle method was used to approximate hydrophilicity using Expasy tools
(www.expasy.org) [32], while PSIPRED v3.3 was used for secondary structure predictions [33]. DNAman
and DNAssist were used to assess codon usage and amino acid composition [34].

3. Results

3.1. PySp1 Primary Structure

We sequenced and assembled one positive clone containing 11,935 base pairs (bp) from the
genomic Araneusventricosus DNA (accession: MH376748), which contained an 11,931 bp long open
reading frame (ORF) encoding a predicted 3,976 aa PySp1. No introns were detected. A. ventricosus
PySp1 has five regions: a non-repetitive N-terminal region (150 aa), a long N-terminal linker region
(256 aa), a repetitive central region that dominates ~85% of the protein (3372 aa), a short C-terminal
linker region (109 aa), and a non-repetitive C-terminal region (89 aa) (Figure 1).
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Our analysis predicted the presence of a signal peptide cleavage site to be located between amino 
acids 24 and 25 (probability score: 0.845) (Figure 1). 

The predicted N-terminal domain sequence secondary structure contains 5 α-helices in regions 
similar to previously reported structures [24,25] (Figure 2). The C-terminal domain, in contrast, 
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Figure 1. Complete A. ventricosus pyriform spidroin 1 (PySp1) sequence. The starting position is marked
by amethioine (M), with an asterisk in the stop position. The sequence contains the non-repetitive N- and
C-terminal regions, as well as two linker regions and the highly repetitive central region. Bold italics
mark the signal peptide region. The underlined region is the N-linker. Gaps (-) are used for repeat unit
alignment. Black is used to denote the non-repetitive N- and C-terminal, while linker regions are blue.

3.2. N- and C-Terminal Regions

As silk proteins need to undergo trafficking through the endoplasmic reticulum and into secretory
pathways, they contain key secretory signaling elements [10]. We thus used signalP v.4.1 to assess the
N-terminal region of this PySp1 protein in order to predict the presence of a signal peptide. Our analysis
predicted the presence of a signal peptide cleavage site to be located between amino acids 24 and 25
(probability score: 0.845) (Figure 1).

The predicted N-terminal domain sequence secondary structure contains 5 α-helices in regions
similar to previously reported structures [24,25] (Figure 2). The C-terminal domain, in contrast, contained
just 4 α-helices (Figure 2), similar toAcSp. We further detected two N-terminal cysteines in A. ventricosus
PySp1. The first cysteines located between helix 1 and 2, and the other one located in helix 4 (Figure 2).

www.expasy.org
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Figure 2. N- and C-terminal domain and repeat unit secondary structures.

We further predicted A. ventricosus PySp1hydrophilicity, revealing an alternating profile for the
entire length of this protein (Figure 3). The C-terminal domain was more hydrophobic than was the
N-terminal domain when averaged across all residues (0.482 vs.0.026, respectively). The N-terminal
domain did, however, have a higher hydrophobicity amplitude than did the C-terminal domain
(N-terminal domain max = 3.2, C-terminal domain max = 2.3) (Figure 3).
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Figure 3. Kyte and Doolittle hydropathicity plots of A. ventricosus PySp1. Positive scores indicate
hydrophobicity. NT: N-terminal domain, R8: repeat # 8, CT: C-terminal domain.

To determine the phylogenetic placement of Araneusventricosus PySp1 within the family of silk genes,
we constructed a maximum likelihood (ML) tree of concatenated N- and C-terminal amino acid sequences
(Figure 4). This result shows that pyriform spidroinoriginates from a single spidroin gene family clade
sister to a large grouping of AcSp, TuSp, MiSp, MaSp, and Flag sequences (Figure 4). To analyze the
conservation of N- and C-terminal domains for A. ventricosus PySp1, we aligned these domains sequences
among three types of spidroins (PySp1, AcSp1, and TuSp1) which including long and complex repeats.
Multiple sequence alignment of the amino acid sequence of A. ventricosus PySp1 with available spider
pyriform silk sequences is shown in Figure 5. In the case of the N- and C-terminal regions, A. ventricosus
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showed the closest amino acid identity with the pyriform silk protein of the spider Araneusdiadematus
(79% and 89% identity, respectively) (Figure 5A,C). However, the alignment of repetitive sequences
showed the amino acid sequences from A. ventricosus and A. gemmoides were much more closely related
(84% identity) than other spiders (Figure 5B).
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Figure 5. Alignment of the repeat units, N- and C-terminal domains amino acid sequences of three
types of spidroins (PySp1, AcSp1, and TuSp1). (A,C) Alignment of N-terminal domain amino acid
sequences (A) and C-terminal domain amino acid sequences (C). (B) Alignment of repeat units’ amino
acid sequences. Gaps are represented by dashes. Missing data coded as “?”. The amino acid residues
are represented by different colors. Species abbreviations and accession numbers in Supplementary
Table S1.

3.3. Distinctive N-linker Region

The primary molecular structure of A. ventricosus PySp1 exhibited two linkers (a long N-linker
and a short C-linker) locate between non-repetitive terminal regions and repetitive region (Figure 1).
As the same as the N-linker of A. argentata PySp1, the N-linker for A. ventricosus PySp1 contains
a short 114 aarepetitive region which consists of two types of repeats (QQQYEXSQASIA and
QQQYXXSQQQASIX). Glutamine (41.2%), Alanine (16.7%), and Serine (15.8%) are the most common
amino acids within the repetitive N-linker. The hydrophilicity of N-linker was analyzed as above,
revealing that it displays strong hydrophilicity (average = −1.202, min = −2.656) (Figure 3).

3.4. Core Repetitive Region

The repetitive portion of A. ventricosus PySp1is composed of 15 complete repeats (213 aa each),
after which there is a partial repeat (177 aa) leading into the C-terminal linker region (Figure 1).
One sequence in these repetitive motifs was particularly noteworthy and has also been identified in
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other pyriform fibroins (Figure 5B) [27]. The PXPXP motif is made of proline alternating with primarily
alanine and arginine. However, the number of the QQ containing motif (QQxxxx), which has been
identified in previouswork, is less than in other species (Figure 5B) [21].Pairwise comparisons of the
repetitive units of A. ventricosus PySp1 revealed them to be highly conserved in terms of their amino
acid and DNA sequences, as has been seen in other silk fibroins including TuSp1 and AcSp1 [12,14,23].
Many repeats have a 100% amino acid sequence identity (Figure 6). Although the repeat unit is 213 aa
long, just 30 sites herein were variable in the aligned 16 repeats, with variations primarily located in
the 5′ region of this terminal repeat (Figure 6). By comparing this PySp1 sequence with those of A.
argentata, A. gemmoides, N. clavipes, and A. ventricosus, we found there to be a high conservation of
repetitive units both within and between PySp1 orthologs (Figure 5B) (Table S2).
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Figure 6. Alignment of the 16 repeat units (R1 through R16) of Araneusventricosus PySp1.

Silk fibroin sequences are known to be heavily AT-biased for the third base in codons in the MaSp
and MiSpsequences [23,25]. This predicted protein is expected to have a weight of ~400 kDa, and to
be primarily composed of serine (23.6%), alanine (17.8%), and glutamine (13.6%) (Figure 7). This led
us to assess codon usage for serine, alanine, and glycine, as well as total base composition for the
coding sequences of A. ventricosus PySp1 (Figure S2). The result showed preferential use of A and T in
alanine, glycine, and isoleucine codons. There were 626 alanines in the PySp1 sequence, and GCA
codon accounted for 50% of the alanines. Of 160 glycines in the PySp1 sequence, only two were GGC.
99%of these sequenceswere encoded by GGA, GGG, and GGT. There were 143 isoleucines in the PySp1
sequence, none wereencoded by ATC. Serine codons were similarly A and T enriched in MaSp, MiSp,
and Flag, whereas there was only a slight enrichment in A. ventricosus PySp1. Interestingly, A/T and
C/G content was similar when analyzing the whole protein coding sequence, in spite of preferential
A/T usage in the wobble positions.
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The hydropathy profile for repeat unit of A. ventricosus PySp1 predicted slight hydrophilicity for
each repeat unit (average = −0.015) and lower amplitude hydrophobicity than in N- and C-terminal
domains (Figure 3). The predicted secondary structure of the repeat units shows that nearly half of the
structures predicted are α-helices. However, the PXPXP motifs are not located in any helices (Figure 2).

Because of their extensive repetitive sequences and large sizes, and because of the 3′ bias of
mRNA-based cloning techniques, few spidroin gene sequences published to data are in full length.
Pyriform spidroin genes have been sequenced with more success, but to date only one annotated
full-length gene sequence from Argiopeargentata has been made available [26]. In this study, we report
the full-length Araneusventricosus pyriform silk DNA sequence, encoding a protein that constructs the
attachment discs produced by this orb-weaving spider. We found that this gene lacks introns, and thus
PySp1 possesses only one enormous exon containing 11,931 bp of coding sequence. The primary
structure for A. ventricosus PySp1 shows that it has a highly repetitive central region between
non-repetitive N- and C-terminal domains with a novel N-linker and a short C-linker (Figure 1).

As previously reported spider silk proteins for other species, A. ventricosus PySp1 has a high
glutamine content, at 13.6% of the amino acid composition. Other such proteins, including minor
ampullate and aciniform spidroins, serine, alanine, and glycine, are often the three most abundant
amino acids, whereas glutamine is relatively rare (Figure 7). For example, A. ventricosus MiSp is
predicted to be 35% glycine and just 2% glutamine. By contrast, A. ventricosus PySp1 is predicted to
have 13.6% glutamine as well as just 4.5% glycine (Figure 7). In general, the amino acid biases of
AcSp1, TuSp1, and PySp1 are slighter than MaSp and MiSp. Although not as strong as what can be
seen in major and minor ampullate spidroins, biased codon usage is also observed in A. ventricosus
PySp1. The biased codon usage in PySp1 may be due to a specific mRNA secondary structure that
increases mRNA stability, and controls the silk gene transcripts as well asthe gland-specific tRNA
pool. In the case of silkworm Bombyx mori, the biased codon usage was determined by mRNA or
chromatin structure rather than tRNA population [35]. Like the B. mori silk gland, the major ampullate
gland of N. clavipes develops an isoaccepting tRNA that forms with gland specificity [36]. The slight
hydrophilicity of repetitive regions can be explained by the hydrophilic amino acid (Gln and Ser)
region. Glutamine is thought to promote protein aggregation so that these pyriform spidroinsare
able to undergo the necessary self-assembly into fibers after extrusion [21]. Therefore, it seems that
glutamine-rich and more hydrophilic regions in repeat contribute to spidroin self-assembly.
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Short linkers (<100 aa) are common in other spidroin [23,24]. However, the N-linkers in A. argentata
and A. ventricosus PySp1 are longer in length inover 200 amino acids, with 498 aa and 256 aa, respectively
(Figure 1) [26]. Moreover, the two N-linkers both contain a short repetitive region. Although the
N-linker of A. ventricosus PySp1 contains fewer amino acids than does that of A. argentata, the repetitive
region in N-linker from A. ventricosus PySp1 has similar length to A. argentata (114 aa vs 112 aa).
The unique N-linker in PySp1 contains a glutamine-rich region that is significantly hydrophilic than
other regions (Figure 3). Therefore, the function of N-linker is worth exploring. Given the previous
studies [21], we hypotheses that the N-linker could regulate protein to form silk fibers or glue through
affect rate of self-assembly.

The repetitive segments that compose much of the spidroin proteins have been found to be linked
with the unique molecular properties of spider silk [5,8,37]. While these repetitive regions are short in
some spidroins, they are longer and more complex in others [12,21,23,26]. In AcSp1 and TuSp1, as an
example, the structure of these repeats is long and highly complex, being similar at the amino acid
and DNA coding levels [23,38,39]. Still other spidroins including MaSp and MiSp are made up of
amino acid motifs in recurring patterns called “ensemble repeats” [40]. The A. trifasciata and N. clavipes,
and A. ventricosus pyriform spidroin repeat regions are also similar to AcSp1 and TuSp1 repeats with
regard to their complexity and length (Figures 1 and 6) [24,27,38,39].

The mechanical diversity of spider silk fibers islinked to the molecular structures of spider silk proteins.
So far, the mechanical properties of 5 types of fibrous silks have been reported [3]. However, the mechanical
performance of natural pyriform silk fibers is unknown because of its tiny structure and thee difficulty in
collecting it. Our complete PySp1 sequence provides a new template for studies on mechanical properties
of silk fiber through recombinant DNA technologies. Scientists have investigated the possibility of new
materials by producing recombinant spider silk to specific mechanical features [41–43]. In addition,
recently, a massive spider silk production system in Bombyx mori has been reported [43]. The researchers
successfully replaced the silkworm fibroin heavy chain gene (FibH) with MaSp1 gene (1.6 kb) fused with
partial FibH (1.1 kb) and produced 35.2% MaSp1 protein amounts in transformed cocoon shells [43].
However, these studies are all focused on the MaSp1gene. Like the MaSp gene, a desired application
of PySp1 could be exploited for next generation materials. Future research could construct mini PySp1
recombinant silk protein to investigate the properties of pyriform silk fibers and prepare them for
new materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/6/425/s1.
Figure S1: Alignment of concatenated N- and C-terminal regions from sequences with both terminal regions on
NCBI. N-terminal regions end at amino acid position 170 (blue line). Missing data coded as "?". 120 amino acids
long per line. Species abbreviations and accession numbers in Supplementary Table S1; Figure S2: The codon usage
of PySp1 gene; Table S1: Abbreviations and accession numbers used in Figures 4 and 5. All accession numbers
from NCBI; Table S2: The percent identity of PySp1 repetitive units among five spider species in Figure 5B.
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