Supplementary Information For:

Engineering CatM, a LysR-type transcriptional regulator, to respond synergistically to two effectors

Melissa P. Tumen-Velasquez¹, Nicole S. Laniohan^{1,2}, Cory Momany^{1,2} and Ellen L. Neidle^{1,*}

¹ Departments of Microbiology and ²Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA; <u>dnavgais@uga.edu</u> (M.P.T.-V.); <u>nlanio@uga.edu</u> (N.S.L.); <u>cmomany@uga.edu</u> (C.M.)

* Correspondence: eneidle@uga.edu; Tel.: +1-706-542-2852

This file includes:

Figures

Figure S1. Regulatory model for P_{benA} **Figure S2.** Structural comparisons of BenM-EBD and CatM-EBD **Figure S3.** Changes in BenM-DBD affect relative *benA* expression

Tables

Table S1. *Acinetobacter baylyi* strains Table S2. Plasmids Table S3. Primers

Figure S1. Regulatory model for P_{benA}. While BenM is the primary transcriptional regulator of the *benABCDE* operon, CatM plays a minor role at this region and binds to the same sites as BenM [2,3]. (A) The three underlined binding sites for BenM and CatM each consist of a sequence with dyad symmetry that can interact with the DBD regions of two subunits of a regulatory homotetramer. The perfect dyad symmetry of Site 1 (ATAC-N7-GTAT) matches the consensus for an LTTR-binding motif (T-N11-A within a region of two half sites of dyad symmetry). In Site 2 and Site 3 a one nucleotide mismatch to the consensus sequence reduces the dyad symmetry. The -10 and -35 regions of the *benA* promoter (P_{benA}) are indicated. BenM is negatively autoregulated [2]. (B) In the absence of effectors BenM binds Site 1 and Site 3 to repress transription from P_{benA}. Effectors (benzoate and/or muconate) can alter the protein conformation to shift the position of the tetramer towards binding Site 1 and Site 2 to activate transcription [2]. The model for CatM-mediated P_{benA} regulation is similar, but CatM activates transcription only in response to muconate [7].

Supplementary Figure S2

Figure S2. Structural comparisons of BenM-EBD and CatM-EBD. (A) The structure of one full-length subunit of BenM [1] illustrates the domains and organization of a typical LTTR protein in which the N-terminal DNA-binding domain (DBD) is connected by a linker helix (LH) to an effectorbinding domain (EBD), made up of two subdomains, EBD I and EBD II. The EBDs of LTTRs assume the conformation of periplasmic-binding proteins [4]. A cleft between the two EBD subdomains forms the typical effector-binding site in an LTTR, designated as the primary binding site [5,6]. In BenM and CatM, muconate binds in this primary binding site. In BenM, a secondary binding site exists where benzoate (BEN) can bind. Effectors are shown in space-filling representation [3,5]. (B) The BenM-EBD structure (light grey) shows BEN interacting with residues Y293 and R160 and illustrates the relative positions of the two effectors. E162 and R146 appear to contribute to the synergistic response to BEN and muconate [5]. In the structure of CatM-EBD (dark grey), F293 and H160 replace the corresponding F and R residues of BenM-EBD.

3

Supplementary Information: Engineering CatM, a LysR-type transcriptional regulator, to respond synergistically to two effectors. 2019. Genes. Tumen-Velasquez et al.

Supplementary Figure S3

Figure 4. Changes in BenM-DBD affect relative *benA* expression. Two amino acid replacements in the DBD of BenM (encoded by ACN1254) were engineered to match residues found in CatM at positions 18 and 38. Regulation of a chromosomal *benA::lacZ* fusion by the variant, BenM(F18I,N38K), was compared with that by wild-type BenM (encoded by ACN1232). Neither strain encodes CatM. Cultures were grown on LB and effectors were added (or not) as indicated. LacZ activity is reported relative to uninduced ACN1232 (2.6 ± 0.51 nmol/min/mL/OD600). Activities are averages of at least four repetitions; standard deviations were <20% of the average value.

Supplementary Table S1.

A. baylyi Strain	Relevant characteristics ^{b,c}	
ADP1	Wild type (BD413)	
ISA13	catM::OS4013	
ISA36	benM:: Q\$4036	
ACN32	benA::lacZ-Km ^R 5032	[11]
ACN146	benM:: Ω S4036: benMA5146 (point mutation T \rightarrow A in P _{benA})	[11]
ACN157	benM::QS4036; benA::lacZ-Km ^R 5032; benMA5146	[11]
ACN613	catM::sacB-Km ^R 5613	This
	pBAC708/AlwNI X ADP1; selected by Km ^R	
ACN614	benM::ΩS4036; catM::sacB-Km ^R 5613	This
	ISA36 lysate DNA X ACN613; selected by SpSm ^R	study
ACN637	benM::sacB-Km ^R 5624	[12]
ACN662	benM::ΩS4036; catM5662 [CatM(H160R)]	This
	pBAC1109/AatII X ACN614; selected in the presence of sucrose	study
ACN673	benM::ΩS4036; benA::lacZ-Km ^R 5032; catM5662 [CatM(H160R)]	This
	pBAC54/XmnI X ACN662; selected by Km ^R	study
ACN682	benM::ΩS4036; catM5682 [CatM(F293Y)]	This
	pBAC1108/AatII X ACN614; selected in the presence of sucrose	study
ACN685	benM::ΩS4036; catM5685 [CatM(H160R,F293Y)]	
	pBAC1140/AatII X ACN614; selected in the presence of sucrose	study
ACN694	benM::ΩS4036; benA::lacZ-Km ^R 5032; catM5685 [CatM(H160R,F293Y)]	
	pBAC54/XmnI X ACN685; selected by Km ^R	study
ACN717	benM::ΩS4036; benA::lacZ-Km ^R 5032; catM5682 [CatM(F293Y)]	This
	pBAC54/XmnI X ACN682; selected by Km ^R	study
ACN737	<i>benM</i> ::ΩS4036; <i>catM</i> 5737 [CatM(F293Y, I18F)]; Spontaneous Ben ⁺ mutant derived	This
	from ACN682	study
ACN821	benM::ΩS4036; benMA5146; catM::sacB-Km ^R 5613	This
	pBAC708/AlwNI X ACN146; selected by Km ^R	study
ACN822	<i>benM</i> ::ΩS4036; <i>benMA5146</i> ; <i>catM5662</i> [CatM(H160R)]	This
	pBAC1109/AatII X ACN821; selected in the presence of sucrose	study
ACN823	benM::ΩS4036; benMA5146; catM5682 [CatM(F293Y)]	This
	pBAC1108/AatII X ACN821; selected in the presence of sucrose	study
ACN827	<i>benM</i> ::ΩS4036; <i>benMA5146</i> ; <i>benA</i> :: <i>lacZ</i> -Km ^R 5032; <i>catM</i> 5682 [CatM(F293Y)]	This
	pBAC54/XmnI X ACN823; selected by Km ^R	study
ACN831	<i>benM</i> ::ΩS4036; <i>benMA51</i> 46; <i>catM</i> 5685 [CatM(H160R,F293Y)]	This
	pBAC1140/AatII X ACN821; selected in the presence of sucrose	study
ACN832	benM::\OmegaS4036; benMA5146; benA::lacZ-Km ^R 5032; catM5662 [CatM(H160R)]	
	pBAC54/XmnI X ACN822; selected by Km ^R	
ACN839	<i>benIVI:::</i> 254036; <i>benIVIA51</i> 46; <i>benA::lacZ</i> -Km ^k 5032; <i>catM</i> 5685[CatM(H160R,F293Y)]	This
	pbAC54/Amni X ACN831; selected by Km ^K	study
ACN843	ΔbenM5389; catM::sacB-Km ^k 5613	
ACN1090	$\Delta catM51090$	This
	pBAC887/AatII X ACN613: selected in the presence of sucrose	studv

Table S1. Acinetobacter baylyi strains^a

Supplementary Information: Engineering CatM, a LysR-type transcriptional regulator, to respond synergistically to two effectors. 2019. Genes. Tumen-Velasquez et al.

Table S1. continued		
A. baylyi	Relevant characteristics ^{b,c}	Source
Strain		
ACN1095	<i>benM</i> ::ΩS4036; <i>catM</i> 51095 [CatM(I18F)]	This
	pBAC938/AatII X ISA36; selected by growth on benzoate, Ben+	study
ACN1111	benM::ΩS4036; benA::lacZ-Km ^R 5032; catM51095 [CatM(I18F)]	
	pBAC54/XmnI X ACN1095; selected by Km ^R	
ACN1150	0 <i>benM</i> ::ΩS4036; <i>catM</i> 51095 [CatM(I18F)]; <i>catB</i> :: <i>lacZ</i> -Km ^R 5534	
	pBAC675/KpnI X ACN1095; selected by Km ^R	
ACN1193	benM::ΩS4036; catM51188 [CatM(K38N)]	
	pBAC961/AatII X ISA36; selected by growth on benzoate, Ben ⁺	
ACN1194	94 benM::ΩS4036; benA::lacZ-Km ^R 5032; catM51188 [CatM(K38N)]	
	pBAC54/XmnI X ACN1193; selected by Km ^R	
ACN1198	<i>benM</i> ::ΩS4036; <i>catM</i> 51188 [CatM(K38N)]; <i>catB</i> :: <i>lacZ</i> -Km ^R 5534	This
	pBAC675/KpnI X ACN1193; selected by Km ^R	study
ACN1232	<i>benA::lacZ</i> -Km ^R 5032; <i>catM</i> ::ΩS4013	This
	pBAC54/XmnI X ISA13; selected by Km ^R	study
ACN1234	$\Delta benM5389$; <i>catM51234</i> ; [BenM-DBDCatM]; allele replaces wild-type <i>catM</i>	This
	pBAC1025/AatII X ACN843; selected in the presence of sucrose	study
ACN1237	Δ <i>ben</i> M5389; <i>cat</i> M51234 [BenM-DBDCatM]; <i>cat</i> B:: <i>lac</i> Z-Km ^R 5534	This
	pBAC675/KpnI X ACN1234; selected by Km ^R	
ACN1238	$\Delta catM51090; benM::sacB-Km^{R}5624$	
	pBAC709/AlwNI X ACN1090; selected by Km ^R	study
ACN1239	Δ <i>benM5389; benA::lacZ</i> -Km ^R 5032; <i>catM51234</i> [BenM-DBDCatM]	This
	pBAC54/XmnI X ACN1234; selected by Km ^R	study
ACN1240	0 <i>benM</i> 51240; Δ <i>catM</i> 51090; <i>ben</i> M51240; [BenM(F18I)]	
	pBAC936/AatII X ACN1238; selected in the presence of sucrose	study
ACN1249	ΔbenM5389; catM51249 [CatM(I18F,K38N)]	This
	pBAC1040/AatII X ACN843; selected in the presence of sucrose	study
ACN1250	Δ <i>catM51090; benM51250</i> [BenM(F18I,N38K)]	This
	pBAC1041/AatII X ACN1238; selected in the presence of sucrose	study
ACN1251	ΔbenM5389; benA::lacZ-Km ^R 5032; catM51249 [CatM(I18F,K38N)]	This
	pBAC54/XmnI X ACN1249; selected by Km ^R	study
ACN1252	ΔbenM5389, catM51249 [CatM(I18F,K38N)], catB::lacZ-Km ^R 5534	This
	pBAC675/KpnI X ACN1249; selected by Km ^R	study
ACN1254	Δ <i>catM51090; benM</i> 51250 [BenM(F18I,N38K)]; <i>benA</i> :: <i>lacZ</i> -Km ^R 5032	This
	pBAC54/XmnI X ACN1250; selected by Km ^R	study
ACN1264	64 Δ <i>cat</i> M51090	
	pBAC949/AatII X ACN1238	study
ACN1266		
	pBAC675/KpnI X ACN1264; selected by Km ^R	study
ACN1293	$\Delta ben M5389$	This
	pBAC945/AatII X ACN843; selected in the presence of sucrose	study
ACN1294	$\Delta catM51090$; benM51294 [CatM-DBDBenM]; allele replaces wild-type benM	This
	pBAC1074/AatII X ACN1238; selected in the presence of sucrose	study

Table S1. continued		
A. baylyi	Relevant characteristics ^{b,c}	Source
Strain		
ACN1301	Δ <i>benM5389; catM51301</i> [BenM-DBDCatM(H160R,F293Y)]; allele replaces wild-type	This
	catM pBAC1078/AatII X ACN843; selected in the presence of sucrose	study
ACN1302	ΔbenM5389; benA::lacZ-Km ^R 5032; catM51301 [BenM-DBDCatM(H160R,F293Y)]	This
	pBAC54/XmnI X ACN1301; selected by Km ^R	
ACN1304	benM51294; ∆catM51090; catB::lacZ-Km ^ℝ 5534	This
	pBAC675/KpnI X ACN1294; selected by Km ^R	study
ACN1307	$\Delta benM5389$; $benA$:: $lacZ$ -Km ^R 5032; $catM51293$	This
	pBAC54/XmnI X ACN1293; selected by Km ^R	study
ACN1308	ΔbenM5389; catM51293; catB::lacZ-Km ^R 5534	This
	pBAC675/KpnI X ACN1293; selected by Km ^R	study
ACN1344	ΔbenM5389; catM51344 [CatM(I18F,K38N,H160R,F293Y)]	This
	pBAC1071/AatII X ACN843; selected in the presence of sucrose	study
ACN1347	ΔbenM5389; benA::lacZ-Km ^R 5032; catM51344 [CatM(I18F,K38N,H160R,F293Y)]	This
	pBAC54/XmnI X ACN1344; selected by Km ^R	study
ACN1359	Δ <i>ben</i> M5389; <i>cat</i> M51301 [BenM-DBDCatM(H160R, F293Y)]; <i>cat</i> B:: <i>lac</i> Z-Km ^R 5534	This
	pBAC675/KpnI X ACN1301; selected by Km ^R	study
ACN1366	$\Delta benM5389; benA::\Omega S51366; catB::lacZ-KmR5534$	This
	pBAC393/AatII X ACN1308; selected by SpSm ^R	study
ACN1367	$\Delta catM51090$; $benA::\Omega$ S51366; $benM51294$ [CatM-DBDBenM]; $catB::lacZ-Km^{R}5534$	This
	pBAC393/AatII X ACN1304; selected by SpSm ^R	study
ACN1369	Δ <i>benM</i> 5389; <i>benA</i> ::ΩS51366; <i>catM</i> 51301 [BenM-DBDCatM(H160R, F293Y)];	This
	catB::lacZ-Km ^R 5534 pBAC393/AatII X ACN1359; selected by SpSm ^R	
ACN1370	$\Delta benM5389; benA:: \Omega S51366; catM51234 [BenM-DBDCatM]; catB::lacZ-Km^{R}5534$	This
	pBAC393/AatII X ACN1237; selected by SpSm ^R	study
ACN1375	<i>benA</i> ::ΩS51366; ΔcatM51090; <i>catB</i> :: <i>lacZ</i> -Km ^R 5534	This
	pBAC393/AatII X ACN1266; selected by SpSm ^R	study
ACN1381	ΔbenM5389; catM5662 [CatM(H160R,F293Y)]	This
	pBAC1140/AatII X ACN843; selected in the presence of sucrose	study
ACN1383	Δ <i>benM</i> 5389; <i>catM</i> 5662 [CatM(H160R,F293Y)]; <i>catB</i> :: <i>lacZ</i> -Km ^R 5534	This
	pBAC675/KpnI X ACN1381; selected by Km ^R	study
ACN1389	$\Delta benM5389; benA::\Omega S51366; catM5662 [CatM(H160R,F293Y)]; catB::lacZ-$	This
	Km ^R 5534 pBAC393/AatII X ACN1383; selected by SpSm ^R	study
ACN1390	Δ <i>benM5389; catM51344</i> [CatM(I18F,K38N,H160R,F293Y)]; <i>catB::lacZ</i> -Km ^R 5534	This
	pBAC675/KpnI X ACN1344; selected by Km ^R	study
ACN1393	$\Delta benM5389; benA::\Omega S51366; catM51344 [CatM(I18F,K38N,H160R,F293Y)];$	This
	catB::lacZ-Km ^R 5534 pBAC393/AatII X ACN1390; selected with sucrose	study
ACN1443	$\Delta benM5389; benA::\Omega Sm^{F}51366; catM51249 [CatM(I18F,K38N)]; catB::lacZ-$	This
	Km ^R 5534 pBAC393/AatII X ACN1252; selected by SpSm ^R	study

^a Srains were derived from ADP1, previously known as *Acinetobacter calcoaceticus* or *Acinetobacter sp.* [9] ^b For strains made by allelic replacement, blue text shows the DNA that transformed (X) the recipient strain. DNA was either linearized plasmid (pBAC number/enzyme used to linearize the plasmid) or a cell-free lysate containing genomic DNA of the donor.

^c ΩS and ΩK are omega cassettes for SpSm^R from pUI1638 (or pHP45) and Km^R from pUI1637 [14,15].

Supplementary Table S2.

Table S2. Plasmids		
Plasmid	Relevant characteristics ^a	Source
pUC18	Ap ^R ; cloning vector	
pUC19	Ap ^R ; cloning vector	
pHP45	Source of Ω S drug-resistance cassette, Sp ^R Sm ^R	[15]
pRMJ1	Source of <i>sacB</i> -Km ^R cassette	[17]
pUI1638	Source of ΩS drug-resistance cassette, Sp ^R Sm ^R	[14]
pET-21b	Ap ^R ; T7 expression vector	Novagen
pKOK6	Ap ^R Km ^R ; source of promoterless <i>lacZ</i> ::Km ^R cassette	[18]
pIB1	Ap ^R ; partial <i>cat</i> region (1,443,167-1,449,480) ^b	[19]
pIB3	Ap ^R ; partial <i>catM</i> (1,441,385-1,444,456) ^b	[19]
pIB101	Ap ^R SmSp ^R ; ΩS was excised from pHP45 as a XmaI fragment and ligated to	This study
_	pIB1351 digested with BspEI (1,435,092) ^b	_
pIB1351	Ap ^R ; partial <i>ben</i> region (1,432,125-1,437,224) ^b	[20]
pIGG5	Ap ^R ; partial <i>ben</i> region (1,432,125-1,433,495) ^b	[11]
pIGG13	Ap ^R ; partial <i>ben</i> region with an internal KpnI deletion (1,432,125-1,439,437) ^b .	This study
	This plasmid, linearized with KpnI, allows capture of the A. baylyi	
	chromosomal region containing benM using the gap-repair method [21]	
pBAC7	Ap ^R ; <i>benKM</i> (1,432,124-1,434,525) ^b region in pUC19	[12]
pBAC54	Ap ^R Km ^R ; <i>lacZ</i> -Km ^R cassette in NsiI site (1,435,326) ^b in <i>benA</i> (<i>ben</i> region	
	1,433,877-1,437,224) ^b in pUC19	
pBAC184	Ap ^R ; partial <i>cat</i> region with internal ClaI deletion (1,442,211-1,447,468) ^b .	[13]
	This plasmid, linearized with ClaI, allows capture of the A. baylyi	
	chromosomal region containing <i>catM</i> using the gap-repair method [21]	
pBAC393	Ap ^{R} SmSp ^{R} ; <i>benA</i> Ω S was excised from pIB101 as a NsiI fragment and	This study
	ligated to PstI-digested pIGG5	
pBAC430	Ap ^R ; <i>catM</i> (1,443,682-1,444,590) ^b in pET-21b	
pBAC433	Ap ^{R;} <i>benM</i> (1,443,017-1,433,928) ^b in pET-21b	[2]
pBAC675	Ap ^R Km ^R ; <i>catB</i> (1,444,770-1,445,789) ^b ; <i>lacZ</i> -Km ^R <i>catIJF</i> (1,447,225-1,449,044) ^b in pUC19	[7]
pBAC708	Ap ^R Km ^R ; <i>sacB</i> -Km ^R cassette inserted in <i>catM</i> in pUC19. ADP1 DNA	[13]
	surrounds cassette (1,443,514-1,444,252, upstream of <i>sacB</i>) and (1,444,252-	
	1,444,461 adjacent to the Km ^R marker)	
pBAC709	Ap ^R Km ^R ; <i>benKM</i> region (1,432,128-1,433,880) ^b in pUC19. Contains <i>sacB</i> -	[12]
	Km ^R cassette in SalI site (1,433,494) ^b in <i>benM</i>	
pBAC887	Ap ^R ; Δ <i>catM</i> 51090; PCR of ACIAD1444 [Fragment 1] (1,442,661-1,443,678) ^b	This study
_	with MTV1128 & MTV1129; <i>catB</i> [Fragment 2] (1,444,579-1,445,673) ^b with	-
	MTV1130 & MTV1131. DNA was digested with EcoRI+SmaI [Fragment 1]	
	and SmaI+PstI [Fragment 2] and ligated to pUC18 cut with EcoRI+PstI.	
pBAC936	Ap ^R ; derived from pBAC7 by site directed mutagenesis to introduce a	This study
1	codon change [BenM(F18I); $TTC(F) \rightarrow ATT(I)$ in <i>benM</i> ; (1,433,876-	
	1,433,878) ^b] with primers MTV6 & MTV7.	

Table S2. continued		
Plasmid	Relevant characteristics ^a	Source
pBAC937	Ap ^R ; <i>catM51095</i> [CatM(I18F), A TT (I)→ T TT (F)] (1,444,540) ^b ; <i>catM</i> 5682 [CatM(F293Y), TTT (F)→T A T (Y)] (1,443,714) ^b]; DNA recovered from ACN737 by the gap-repair method [21] using linearized pBAC184	This study
pBAC938	Ap ^R ; Made by excising <i>catM51095</i> [CatM(I18F)] (1,444,540) ^b away from <i>catM5682</i> [CatM(F293Y)] as a NsiI+StuI fragment and ligating to pIB1 digested with the same enzymes.	
pBAC945	Ap ^R ; Made by excising <i>catM</i> as a XbaI+FspI fragment (1,443,168-1,445,025) ^b from pIB1 and ligating to pUC18 digested with XbaI+HincII.	
pBAC949	Ap ^k ; <i>ben</i> region (1,432,125-1,439,437) ^b ; DNA recovered from ADP1 by the gap- repair method [21] using linearized pIGG13	
pBAC961	Ap ^R ; derived from pBAC945 by site directed mutagenesis to introduce a codon change [CatM(K38N), AAA(K) \rightarrow AAT(N) in <i>catM</i> ; (1,444,478) ^b] with primers MTV47 & MTV48.	
pBAC1025	 Ap^R; <i>catM51234</i>; Made by SOEing PCR [22]; fragment 1 [<i>catM</i> (1,442,761-1,444,416)^b, portion encodes EBD-LH amplified with MTV3 & MTV76]; fragment 2 [<i>benM</i> (1,433,755-1,433,928)^b, portion encodes DBD amplified with MTV69 & MTV82]; fragment 3 [<i>catB</i> (1,444,591-1,445,673)^b, MTV81 & MTV1131. Fused fragment was digested with SacI+PstI and ligated to pUC18 digested with same enzymes. 	
pBAC1027	Ap ^R ; Made by amplifying <i>catM51234</i> allele [BenM-DBDCatM] with MTV63 & MTV66. Oligos add a 5'-NdeI and a 3'-XhoI to <i>catM51234</i> . Amplified region was digested with NdeI+XhoI and ligated to pET21-b digested with the same enzymes. Expression construct for BenM-DBDCatM	This study
pBAC1040	Ap ^R ; derived from pBAC938 by site directed mutagenesis to introduce a codon change [CatM(K38N); AAA(K) \rightarrow AAT(N) in <i>catM51095</i> ; CatM(I18F); (1,444,478) ^b] with primers MTV47 & MTV48.	This study
pBAC1041	Ap ^R ; derived from pBAC936 by site directed mutagenesis to introduce a codon change [BenM(N38K); AAT(N) \rightarrow AAA(K) in <i>benM51240</i> ; BenM(F18I); (1,433,816) ^b]; with primers MTV43 & MTV44.	
pBAC1045	Ap ^R ; Made by amplifying <i>catM51249</i> allele [CatM(I18F,K38N)] with MTV65 & MTV66. Oligos add a 5'-NdeI and a 3'-XhoI to <i>catM51249</i> . Amplified region was digested with NdeI+XhoI and ligated to pET21-b digested with the same enzymes. Expression construct for CatM(I18F,K38N)	This study
pBAC1066	 Ap^R; derived from pBAC1040 by site directed mutagenesis to introduce a codon change [CatM(F293Y); TTT(F) →TAT(Y) in <i>catM51249</i>; CatM(I18F,K38N); (1,443,714)^b] with primers MTV1132 & MTV1133. 	
pBAC1069	Ap ^R ; derived from pBAC1025 by site directed mutagenesis to introduce a codon change [CatM(F293Y); TTT(F) \rightarrow TAT(Y) in <i>catM1234</i> ; BenM-DBDCatM; (1,443,714) ^b with primers MTV1132 & MTV1133.	This study

Table S2. continued			
Plasmid	Relevant characteristics ^a	Source	
pBAC1071	Ap ^R ; Site directed mutagenesis of pBAC1066 to change a codon [CatM(H160R);	This	
	CAT(H) →CGG(R) in the <i>catM</i> allele encoding CatM(I18F,K38N,F293Y);	study	
	(1,444,112-1,444,113) ^b] with primers MTV1134 & MTV1135		
pBAC1074	1074 Ap ^R ; <i>benM51294</i> ; Made by SOEing PCR [22]; fragment 1 [<i>benM</i> , (1,432,152-		
	1,433,755) ^b , portion encodes EBD-LH amplified with MTV94 & MTV97];	study	
	fragment 2 [<i>catM</i> (1,444,418-1,44,591) ^b , portion encodes DBD amplified with		
	MTV96 & MTV99]; fragment 3 [<i>benA</i> (1,433,930-1,434,954) ^b , MTV95 & MTV98.		
	Fused fragment was digested with SacI+PstI and ligated to pUC18 digested		
	with same enzymes.		
pBAC1078	Ap ^R ; derived from pBAC1069 by site directed mutagenesis to introduce a codon	This	
	change [CatM(H160R); CAT(H) \rightarrow CGG(R) in <i>catM</i> allele encoding BenM-	study	
	DBDCatM(F293Y); (1,443,714) ^b with primers MTV1134 & MTV1135.		
pBAC1086	Ap ^R ; Made by amplifying <i>catM51301</i> allele [BenM-DBDCatM(F293Y,H160R)] with	This	
	MTV63 & MTV66. Oligos add a 5'-NdeI and a 3'-XhoI to <i>catM51301</i> . Amplified	study	
	region was digested with NdeI+XhoI and ligated to pET21-b digested with the		
	same enzymes. Expression construct for BenM-DBDCatM(F293Y,H160R)		
pBAC1085	Ap ^R ; Made by amplifying <i>catM</i> 51344 allele [CatM(I18F,K38N,H160R,F293Y)]	This	
	with MTV65 & MTV66. Oligos add a 5'-NdeI and a 3'-XhoI to <i>catM51344</i> .	study	
	Amplified region was digested with NdeI+XhoI and ligated to pET21-b		
	digested with the same enzymes. Expression construct for		
	CatM(I18F,K38N,H160R,F293Y).		
pBAC1108	Ap ^R ; derived from pBAC945 by site directed mutagenesis to introduce a codon	This	
	change [CatM(F293Y); TTT(F) \rightarrow TAT(Y) in <i>catM</i> ; (1,443,714) ^b with primers	study	
	MTV1132 & MTV1133.		
pBAC1109	Ap ^R ; derived from pBAC945 by site directed mutagenesis to introduce a codon	This	
	change [CatM(H160R); CAT(H) \rightarrow CGG(R) in <i>catM</i> ; (1,443,714) ^b with primers	study	
	MTV1134 & MTV1135.		
pBAC1140	Ap ^R ; derived from pBAC1108 by site directed mutagenesis to introduce a codon	This	
	change [CatM(H160R); CAT(H) \rightarrow CGG(R) in <i>catM5682</i> [CatM(F293Y)];	study	
	(1,443,714) ^b with primers MTV1134 & MTV1135.		

^aAp^R, ampicillin resistant; SmSp^R, streptomycin and spectinomycin resistant; Km^R, kanamycin resistant; ΩS omega cassette encoding SmSp^R and ΩK encoding Km^R [14,15]; *sacB*-Km^R, dual selection cassette containing a counterselectable sacB marker and Km^R cassette [17]. ^bGenomic positions in ADP1 (NCBI reference NC_005966)

Supplementary Table S3.

MTV95

MTV96

TGCTG

Primers Sequence $(5' \rightarrow 3')$ Uses and Notes MTV3 GAGTCA **GAGCTC**CGAGTTAAAGCGTC Used to make BenM-DBDCatM (pBAC1025); with MTV76 amplifies 1653 bp of ACIAD1444-catM; SacI site MTV6 With MTV7 for TTC \rightarrow ATT mutagenesis; codon TAATTTGTCTGCGGCTTTGGT<mark>AAT</mark>GCTTTGC TCCTCAACCAC change in benM; BenM(F18I) MTV7 With MTV6 for TTC \rightarrow ATT mutagenesis; codon GTGGTTGAGGAGCAAAGCA**TTA**CCAAAGCCG CAGACAAATTA change in benM; BenM(F18I) MTV12 For EMSA, with MTV26 amplifies PbenA CAAGATTTTGAATTTGTCGGC MTV26 For EMSA, with MTV12 amplifies PbenA GCTAGTATTAATGACGGGAAT MTV43 With MTV44 for AAT \rightarrow AAA mutagenesis; AATCCCCAATTCTTCTTCAAG**TTT**TTGAATT codon change in *benM*; BenM(N38K) TGTCGGCTTAAGG MTV44 With MTV43 for AAT \rightarrow AAA mutagenesis; CCTTAAGCCGACAAATTCAA<mark>AAA</mark>CTTGAAGA codon change in benM; BenM(N38K) AGAATTGGGGATT With MTV48 for AAA \rightarrow AAT mutagenesis; MTV47 ATTCTTCTTCGAGATTTTG**A**AT codon change in *catM*; CatM(K38N) GAGGGG MTV48 CCCCTCAGCCGACAAATTCAAAATCTCGAAG With MTV47 for AAA \rightarrow AAT mutagenesis; codon change in *catM*; CatM(K38N)AAGAAT MTV63 TCAATT**CATATG**GAACTTAGACATCTCCGC Used with MTV64 to amplify *benM* and to introduce a **Ndel** site for cloning to pET21-b MTV64 Used with MTV63 to amplify *benM* and to TCAATT**CTCGAG**CCAGTTTGGCGGCTCAGTA introduce a **Xhol** site for cloning to pET21-b; AA removes stop codon MTV65 Used with MTV66 to amplify *catM* and to TCAATT**CATATG**GAACTAAGACACCTCAGA introduce a **Ndel** site for cloning to pET21-b MTV66 Used with MTV65 to amplify *catM* and to TCAATT**CTCGAG**TTCGATGAGTGGCCTGATA ТG introduce a **XhoI** site for cloning to pET21-b; removes stop codon Use to make BenM-DBDCatM (pBAC1025); with MTV69 CTGATAAAAAAACATGCCTGCTTCTGTTGTC TTGACCGGTCTGCT MTV82 amplifies 174 bp of *benM*; overlapping sequence (*catM*) for SOEing PCR [22] MTV76 AGACCGGTCAAGACAACAGAAGCAGGCATGT Use to make BenM-DBDCatM (pBAC1025); with TTTTTTTTTCAG MTV76 amplifies 1653 bp of ACIAD1444-catM; overlapping sequence (benM) for SOEing PCR [22] MTV77 AACTTTTCAGCAGCTTTGGA For EMSA, with MTV79 amplifies PcatB MTV79 For EMSA, with MTV77 amplifies PcatB ACATTTAAAGGCGCCTTGAT MTV81 **GCGGAGATGTCTAAGTTCCAT**TTATACGCCC Use to make BenM-DBDCatM (pBAC1025); with TAATTGGT MTV1131 amplifies 1083 bp of *catB*; overlapping sequence (benM) for SOEing PCR [22] MTV82 <mark>ACCAATTAGGGCGTATAAA</mark>TGGAACTTAGAC Use to make BenM-DBDCatM (pBAC1025); with MTV82 amplifies 174 bp of *benM*; overlapping ATTCTCCGC sequence (*catB*) for SOEing PCR [22] MTV94 GAGTCA **GAGCTC**ATGGAAGTTTTGCCTGAAT Use to make CatM-DBDBenM (pBAC1074); with MTV97 amplifies 1604 bp of *benK-benM*; SacI site CGATTGAC

Table S3. Primers

MTV97 Use to make CatM-DBDBenM (pBAC1074); with GGCTTCAGACCGAAAGTGACTCCTGAGGGTC MTV94 amplifies 1604 bp of *benK-benM*; overlapping sequence (*catM*) for SOEing PCR [22] 11

Use to make CatM-DBDBenM (pBAC1074); with

MTV98 amplifies 1604 bp of *benA*; PstI site

sequence (benM) for SOEing PCR [22]

Use to make CatM-DBDBenM (pBAC1074); with MTV99 amplifies 174 bp of *catM*; overlapping

Supplementary Information: Engineering CatM, a LysR-type transcriptional regulator, to respond synergistically to two effectors. 2019. Genes. Tumen-Velasquez et al.

GATGAT**CTGCAG**TGCCTGTTTTTCTTTACGA

<mark>GGCGTACTGATAAAAAAGTGACCCTCAGG</mark>A

GTCACTTTAGCCGGTCTGAA

Table S3. continued		
Primers	Sequence $(5' \rightarrow 3')$	Uses and Notes
MTV98	CACAAAATATCTGAGGTGTCTTAGTTCCAT	Use to make CatM-DBDBenM (pBAC1074); with
	TAAAAATACTCCATAGG	MTV95 amplifies 1604 bp of <i>benA</i> ; overlapping
		sequence (<i>catM</i>) for SOEing PCR [22]
MTV99	<mark>TATAATAAAATACCTATGGAGTATTTTTAA</mark> A	Use to make CatM-DBDBenM (pBAC1074); with
	TGGAACTAAGACACCTC	MTV96 amplifies 174 bp of <i>catM</i> ; overlapping
		sequence (benA) for SOEing PCR [22]
MTV1128	CG GAATTC AGCGCTCACACAAAAATT	With MTV1129 amplifies 1653 bp of ACIAD1444
		for deletion of <i>catM</i> ; EcoRI site
MTV1129	TGC CCCGGG AATATGTCTGAAAAATT	With MTV1128 amplifies ACIAD1444 for deletion
		of <i>catM</i> ; Smal site
MTV1130	TG CCCCGGG TGTTCTTAGTTCCATTTA	With MTV1131 amplifies <i>catB</i> for deletion of <i>catM</i> ;
		Smal site
MTV1131	GATGAT CTGCAG CTCCAGTGTTTCAAAGG	With MTV1130 amplifies <i>catB</i> for deletion of <i>catM</i> ;
		PstI site
MTV1132	GTGCGTTGC <mark>ATA</mark> CACCTCCTGGACACAG	With MTV1133 for TTT \rightarrow TAT mutagenesis;
		codon change in <i>catM</i> ; CatM(F293Y)
MTV1133	CTGTGTCCAGGAGGTG <mark>TAT</mark> GCAACGCAC	With MTV1132 for TTT \rightarrow TAT mutagenesis;
		codon change in <i>catM</i> ; CatM(F293Y)
MTV1134	GTTCTTT CCG CAACACGATACGTCGAATTG	With MTV1135 for CAT \rightarrow CGG mutagenesis;
		codon change in <i>catM</i> ; CatM(H160R)
MTV1135	CAATTCGACGTATCGTGTTG <mark>CGG</mark> AAAGAAC	With MTV1134 for CAT \rightarrow CGG mutagenesis;
		codon change in <i>catM</i> ; CatM(H160R)

References

- 1. Ruangprasert, A.; Craven, S.H.; Neidle, E.L.; Momany, C. Full-length structures of BenM and two variants reveal different oligomerization schemes for LysR-type transcriptional regulators. *J. Mol. Biol.* **2010**, *404*, 568-586.
- 2. Bundy, B.M.; Collier, L.S.; Hoover, T.R.; Neidle, E.L. Synergistic transcriptional activation by one regulatory protein in response to two metabolites. *Proc. Natl. Acad. Sci. U. S. A.* **2002**, *99*, 7693-7698.
- 3. Craven, S.H.; Ezezika, O.C.; Momany, C.; Neidle, E.L. LysR homologs in *Acinetobacter*: Insights into a diverse and prevalent family of transcriptional regulators. In *Acinetobacter Molecular Biology.*, Gerischer, U., Ed. Caister Academic Press: Norfolk UK, **2008**; pp. 163-202.
- 4. Schell, M.A. Molecular biology of the LysR family of transcriptional regulators. *Annu. Rev. Microbiol.* **1993**, *47*, 597-626.
- 5. Ezezika, O.C.; Haddad, S.; Clark, T.J.; Neidle, E.L.; Momany, C. Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. *J. Mol. Biol.* **2007**, *367*, 616-629.
- 6. Maddocks, S.; Oyston, P. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. *Microbiology*. **2008**, *154*, 3609.
- Ezezika, O.C.; Collier-Hyams, L.S.; Dale, H.A.; Burk, A.C.; Neidle, E.L. CatM regulation of the benABCDE operon: functional divergence of two LysR-type paralogs in *Acinetobacter baylyi* ADP1. *Appl. Environ. Microbiol.* 2006, 72, 1749-1758.
- 8. Juni, E.; Janik, A. Transformation of *Acinetobacter calcoaceticus* (Bacterium anitratum). *J. Bacteriol.* **1969**, *98*, 281-288.
- Vaneechoutte, M.; Young, D.M.; Ornston, L.N.; De Baere, T.; Nemec, A.; Van Der Reijden, T.; Carr, E.; Tjernberg, I.; Dijkshoorn, L. Naturally transformable *Acinetobacter* sp. strain ADP1 belongs to the newly described species *Acinetobacter baylyi*. *Appl. Environ. Microbiol.* 2006, *72*, 932-936.

- Romero-Arroyo, C.E.; Schell, M.A.; Gaines, G.L., 3rd; Neidle, E.L. *catM* encodes a LysR-type transcriptional activator regulating catechol degradation in *Acinetobacter calcoaceticus*. *J. Bacteriol.* 1995, *177*, 5891-5898.
- 11. Collier, L.S.; Gaines, G.L., 3rd; Neidle, E.L. Regulation of benzoate degradation in *Acinetobacter* sp. strain ADP1 by BenM, a LysR-type transcriptional activator. *J. Bacteriol.* **1998**, *180*, 2493-2501.
- 12. Craven, S.H.; Ezezika, O.C.; Haddad, S.; Hall, R.A.; Momany, C.; Neidle, E.L. Inducer responses of BenM, a LysR-type transcriptional regulator from *Acinetobacter baylyi* ADP1. *Mol. Microbiol.* **2009**, 72, 881-894.
- 13. Seaton, S.C.; Elliott, K.T.; Cuff, L.E.; Laniohan, N.S.; Patel, P.R.; Neidle, E.L. Genome-wide selection for increased copy number in *Acinetobacter baylyi* ADP1: locus and context-dependent variation in gene amplification. *Mol. Microbiol.* **2012**, *83*, 520-535.
- 14. Eraso, J.M.; Kaplan, S. PrrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in *Rhodobacter sphaeroides*. *J. Bacteriol.* **1994**, *176*, 32-43.
- 15. Prentki, P.; Krisch, H.M. In vitro insertional mutagenesis with a selectable DNA fragment. *Gene.* **1984**, *29*, 303-313.
- 16. Yanisch-Perron, C.; Vieira, J.; Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* **1985**, *33*, 103-119.
- 17. Jones, R.M.; Williams, P.A. Mutational analysis of the critical bases involved in activation of the AreR-regulated sigma54-dependent promoter in *Acinetobacter* sp. strain ADP1. *Appl. Environ. Microbiol.* **2003**, *69*, 5627-5635.
- 18. Kokotek, W.; Lotz, W. Construction of a *lacZ*-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. *Gene.* **1989**, *84*, 467-471.
- 19. Neidle, E.L.; Ornston, L.N. Cloning and expression of *Acinetobacter calcoaceticus* catechol 1,2dioxygenase structural gene *catA* in *Escherichia coli*. J. Bacteriol. **1986**, 168, 815-820.
- 20. Neidle, E.L.; Ornston, L.N. Benzoate and muconate, structurally dissimilar metabolites, induce expression of *catA* in *Acinetobacter calcoaceticus*. *J. Bacteriol*. **1987**, *169*, 414-415.
- 21. Gregg-Jolly, L.A.; Ornston, L.N. Recovery of DNA from the *Acinetobacter calcoaceticus* chromosome by gap repair. *J. Bacteriol.* **1990**, 172, 6169-6172.
- 22. Horton, R.M.; Cai, Z.L.; Ho, S.N.; Pease, L.R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. *Biotechniques.* **1990**, *8*, 528-535.