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Abstract: Osteosarcoma is a common malignancy with high mortality and poor prognosis due to lack
of predictive markers. Increasing evidence has demonstrated that pseudogenes, a type of non-coding
gene, play an important role in tumorigenesis. The aim of this study was to identify a prognostic
pseudogene signature of osteosarcoma by machine learning. A sample of 94 osteosarcoma patients’
RNA-Seq data with clinical follow-up information was involved in the study. The survival-related
pseudogenes were screened and related signature model was constructed by cox-regression analysis
(univariate, lasso, and multivariate). The predictive value of the signature was further validated in
different subgroups. The putative biological functions were determined by co-expression analysis.
In total, 125 survival-related pseudogenes were identified and a four-pseudogene (RPL11-551L14.1,
HR: 0.65 (95% CI: 0.44–0.95); RPL7AP28, HR: 0.32 (95% CI: 0.14–0.76); RP4-706A16.3, HR: 1.89
(95% CI: 1.35–2.65); RP11-326A19.5, HR: 0.52(95% CI: 0.37–0.74)) signature effectively distinguished the
high- and low-risk patients, and predicted prognosis with high sensitivity and specificity (AUC: 0.878).
Furthermore, the signature was applicable to patients of different genders, ages, and metastatic
status. Co-expression analysis revealed the four pseudogenes are involved in regulating malignant
phenotype, immune, and DNA/RNA editing. This four-pseudogene signature is not only a promising
predictor of prognosis and survival, but also a potential marker for monitoring therapeutic schedule.
Therefore, our findings may have potential clinical significance.

Keywords: noncoding RNA; pseudogene; biomarker; prognosis; survival; machine
learning; osteosarcoma

1. Introduction

Osteosarcoma is the most common malignancy derived from bone, which is originated in
mesenchymal tissue like many other sarcomas. It usually occurs in children and young adults as well as
the elderly with a typical bimodal distribution in age [1]. The incidence of osteosarcoma is 4.4 per-million
among those aged 0–24 years old, and in the second peak of age the disease is usually secondary,
accompanied with Paget’s disease or other bony lesions [2]. The primary therapy for osteosarcoma
is surgery, but the survival of patients with treatment of surgery alone remains disappointing,
around 15–17% [3]. At present, the therapy for osteosarcoma is a combination of chemotherapy and
surgery, which could cure about 70% of the patients. For the patients with localized tumor, the reaction
of chemotherapy is the best predictor to predict prognosis for now [4]. However, for patients with
recurrent or metastatic disease, their overall survival is still not optimistic, which remained at 20%
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for the last 30 years [5]. Notwithstanding in the advances in surgical techniques, targeted therapy,
and tumor immunity, the complications involved with infection and inconvenience resulting from
limb-salvage surgery as well as the low survival rates makes it urgent to develop prediction methods
for the improvement of survival of osteosarcoma patients [2]. Prognostic biomarkers can provide
information about the probable outcome of a cancer relative to disease progression, recurrence,
or death [6]. This could provide considerable help with patient stratification, treatment management,
and monitoring disease status in clinical practice, such as offering personalized therapeutic schedules
for osteosarcoma patients which would benefit enormously [7]. Therefore, it will be very helpful for
treatments of osteosarcoma if accompanied by suitable prognostic prediction.

Pseudogenes are a class of homologues of the corresponding functional genes, which are also
known as ‘gene fossils’ or ‘junk genes’. They belong to a subclass of long non-coding RNAs [8].
Their inability in expressing functional proteins was because of various mutations in their coding
sequences including deletions, insertions, frameshift mutations, etc., which often lead to premature
termination of codons [9]. However, pseudogenes can still have numerous regulatory functions by being
transcribed into small interference RNAs (siRNAs) [10], competitive endogenous RNA (ceRNA) [11],
antisense transcripts [12], and sequestering miRNAs [13]. Studies have shown that aberrant expression
of pseudogenes participate in many diseases including cancer [14]. Some cancer related pseudogenes
could regulate the expression of their corresponding coding genes such as KRAS and KRASP1, KRAS,
and KRASP1 by sequestering the interacting miRNAs [13]. Besides, studies have found aberrant
expression of the pseudogenes of transcription factors is critical for maintaining embryonic stem cell
pluripotency (i.e., NANOG and NONOGP1, POU5F1P1, and OCT4) in cancer [15]. Some cancer related
pseudogenes can be used as biomarkers for prognosis. In hepatocellular carcinoma, high expression
level of the pseudogene RP11-564D11.3 is observed to be related with poor prognosis [16], and in
another study conducted by Ganapathi et al., they found that pseudogene SLC6A10P can work
as a predictive marker for recurrence in high-grade ovarian cancer [17]. However, due to lack of
attention and limited number of samples, the potential of pseudogenes as biomarkers for prognosis in
osteosarcoma has been not studied.

Recent development in bioinformatics and the availability of large-scale RNA-seq transcriptome
data of multiple cancers with clinical follow-up data provide better approaches to explore the
biomarkers for diagnosis and prognosis, allowing for a better understanding of the mechanism of
cancer and improvement for patients’ outcome [18]. However, most of these studies aimed to construct
a diagnosis or prognosis signature are mainly focused on genes, lncRNAs, miRNAs, DNA methylation,
as well as alternative splicing [18–22], and pseudogenes’ potential as biomarker has been neglected in
osteosarcoma, despite aberrant expression of pseudogenes have been found to be related to multiple
pathological processes in cancer and work as a promising biomarker in other types of cancers [23].

In our study, we applied machine learning analysis including univariate cox regression, LASSO cox
regression, and multivariate cox regression analysis to construct a pseudogene-based signature to
predict the prognosis outcome for osteosarcoma patients. First, by univariate regression, we identified
survival related pseudogenes. Next, we narrow down the significantly prognosis related pseudogenes
by LASSO regression and multivariate regression, from which we constructed a four-pseudogene
based prognostic signature. Then we assessed the clinical utility of this prognostic model and explored
its potential functions. Our findings provide new insights into predicting and evaluating the clinical
outcome of osteosarcoma patients.

2. Materials and Methods

2.1. Data Acquisition

The osteosarcoma RNA sequencing (RNA-seq) expression data and the corresponding clinical
follow-up data were obtained from the public database TARGET (https://ocg.cancer.gov/). In total,
there are clinical information of 274 patients and RNA-seq data of 101 patients. TPM is used in this study
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which is a kind of RNA-seq data scaled by gene length and sequencing depth (M) [24]. After excluding
the samples with incomplete information, as well as pseudogenes with low expression (average TPM
≤ 1 across all samples), 94 osteosarcoma expression data of 1333 pseudogenes accompanied by
corresponding clinical follow-up information was obtained. The expression value was processed as
log2 (TPM + 1) for further analysis [25].

2.2. Construction of Prognostic Signature

Univariate cox regression analysis was performed to screen survival related pseudogenes.
The pseudogenes with p-value < 0.05 were screened as candidate pseudogenes for next analysis (FDR for
p-value adjustment). These candidate pseudogenes were further screened by LASSO regression, which is
an efficient method for regression analysis of high-dimensional predictors [26], and was widely used
in Cox proportional hazard regression model for survival analysis [27]. 10-fold cross-validation
was conducted to select the tuning parameter to determine the magnitude of penalization,
and was then used to choose stable features with nonzero coefficient [28–32]. The coefficients
of screened pseudogenes are as following: RP11_551L14.1 (−0.0943699924), RPL7AP28 (−0.1729184112),
SRSF9P1 (−0.0077455177), ZC3H11B (0.0326745474), RP4_706A16.3 (0.3262156868), AC079781.5
(0.0161718261), NBPF2P (0.1020104257), TMSB10P2 (−0.0997438836), ZNF815P (−0.0104546653),
SLC25A24P1 (0.0271387454), CTA_963H5.5 (−0.0131888444), RP11_241F15.10 (−0.0008593915),
RP11_23J18.1 (−0.0168592205), RP11_326A19.5 (−0.2405703963), RP11_344N17.15 (−0.0439379021).
Then, multivariate regression analysis was performed and pseudogenes with p < 0.05 was selected
for predictive signature construction. Corresponding risk score of each patient was calculated by the
formula: risk score = expression of RPL11-551L14.1 × β (−0.4327) + expression of RPL7AP28 × β

(−1.1344) + expression of RP4_706A16.3 × β(0.6360) + expression of RP11_326A19.5 × β (−0.6503).
Patients were divided into high and low risk groups according to the median risk score (1.23).
The Kaplan–Meier (K–M) survival analysis was performed on the two groups. Furthermore, the receiver
operating characteristic (ROC) analysis was performed to evaluate the predicting efficiency of the
model to predict 3-, 5-, and 8-year survival and the area under curve (AUC) was calculated. All of
these processes were conducted by R software (version 3.5.1).

2.3. Nomogram and Calibration

We combined several basic clinical information with the risk score signature to predict the
3-, 5-, and 8-year survival of osteosarcoma patients by plotting nomogram. Calibration plot,
which demonstrates whether the predicted outcome is similar with the actual outcome, was used to
evaluate the performance of the nomogram. In this section, R package rms was used to plot nomogram
and calibration plot.

2.4. Correlation Analysis of the Four Pseudogenes and Annotation of Their Function

The Pearson correlation coefficients between the expression profiles of the four prognostic
pseudogenes and protein-coding genes (PCGs) were calculated to determine the co-expression
relationships of the pseudogenes and PCGs. The PCGs positively or negatively correlated with the four
pseudogenes were considered as pseudogene-related PCGs for functional analysis. The online Database
for Annotation, Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.gov/summary.
jsp) [33] was used to explore the functions of pseudogenes-related PCGs and p-value < 0.05 was
regarded significant, which is described in detail in our previous studies [19,21,34,35]. The biological
processes and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were presented.

https://david.ncifcrf.gov/summary.jsp
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3. Results

3.1. Clinical Characteristics of the Patients

The osteosarcoma cohort includes data from a total of 274 samples. After excluding samples
without clinical follow-up information, 94 osteosarcoma patients were involved in this study and the
baseline of clinical characters were presented (Table 1). The study flowchart is outlined in Figure 1.

Table 1. Clinical characteristics of patients in osteosarcoma cohort in this study.

Alive (n = 57) Dead (n = 37) Total (n = 94)

Gender
FEMALE 25 15 40

MALE 32 22 54

Age
Mean (SD) 15.19 (5.75) 14.62 (4.40) 14.97 (5.27)

Median (MIN, MAX) 15 (3, 39) 14 (5, 32) 14.5 (3, 39)

Site
Leg/foot 53 30 83

other 4 7 11

Metastatic status
Metastatic 7 15 22

Non-metastatic 50 22 72

Figure 1. Flowchart of this study. It exhibits the methods and processes of this study to make it easier
for readers to have a better overview of it.

3.2. Identification of Osteosarcoma Survival-Related Pseudogenes

The survival-related pseudogenes were screened using univariate Cox proportional hazards
regression analysis. Using p < 0.05 as the cut off, 125 pseudogenes were identified by the univariate
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analysis as significant to overall survival (Table 2 and Table S1). The top 20 significant survival-related
pseudogenes were demonstrated by Forest plot (Figure 2A).

Table 2. 125 survival related pseudogenes screened by univariate cox regression analysis.

Pseudogene HR CI95 p-Value Pseudogene HR CI95 p-Value

RP4_706A16.3 2.14 1.5–3.05 2.60 × 10−5 RP11_271C24.3 1.65 1.07–2.55 0.023498
RP11_326A19.5 0.57 0.43–0.76 0.000127 NCF1C 0.61 0.4–0.94 0.023523

AC090602.2 1.55 1.19–2.02 0.001094 RP11_551L14.1 0.64 0.43–0.94 0.023633
RPL37P6 1.52 1.18–1.97 0.001415 RPL23AP53 1.54 1.06–2.23 0.023792

RP11_126D17.1 1.61 1.19–2.17 0.00183 ZNF815P 0.53 0.31–0.92 0.024488
NBPF2P 1.84 1.25–2.71 0.001885 AC002075.4 1.41 1.04–1.91 0.025616

RP11_25I15.1 1.53 1.17–2 0.002111 RPL7P47 1.73 1.07–2.8 0.025737
ZC3H11B 1.72 1.21–2.44 0.002279 CTC_451P13.1 1.49 1.05–2.11 0.026269

AP000936.1 1.62 1.18–2.21 0.002517 RP11_36C20.1 1.81 1.07–3.07 0.026794
RPS3AP44 1.96 1.26–3.05 0.00281 RP11_62J1.3 0.54 0.31–0.93 0.026951
SRSF9P1 0.35 0.17–0.7 0.00321 RPL7P9 1.47 1.04–2.06 0.027115

SLC25A24P1 1.79 1.22–2.65 0.003255 RP11_10G12.1 1.45 1.04–2.01 0.027132
CTD_2318O12.1 1.58 1.15–2.16 0.004281 EEF1A1P11 1.44 1.04–1.99 0.027742

RPS4XP16 2.29 1.29–4.07 0.00472 RPL13P12 0.79 0.64–0.98 0.028947
AB019441.29 2.08 1.24–3.48 0.005308 RP11_155G14.5 1.47 1.04–2.08 0.029335
CTA_963H5.5 0.5 0.3–0.81 0.005308 RPL13AP7 1.57 1.04–2.37 0.030481

ZNF37BP 1.82 1.19–2.77 0.0055 RP11_488L18.4 1.47 1.04–2.08 0.030529
EIF1AXP1 1.31 1.08–1.58 0.005551 TMSB4XP8 0.75 0.57–0.97 0.031485
RPL41P2 1.59 1.14–2.22 0.005779 FCF1P2 0.6 0.38–0.96 0.031956

PLA2G12AP1 0.47 0.27–0.81 0.006369 CSPG4P13 1.35 1.03–1.78 0.03249
RP11_23J18.1 0.44 0.24–0.79 0.006523 RPL41P1 1.09 1.01–1.17 0.0327

RP11_535M15.2 1.83 1.18–2.83 0.006615 RPL7P23 1.75 1.05–2.93 0.032774
PTGES3P1 0.5 0.3–0.83 0.006904 RP11_175B9.3 1.32 1.02–1.69 0.033142

RP11_16F15.2 1.79 1.17–2.72 0.006917 RP11_1166P10.1 1.55 1.03–2.31 0.033608
RPL10P3 1.44 1.1–1.87 0.007168 SRP68P3 1.28 1.02–1.6 0.034297

RP11_197B12.1 1.41 1.1–1.81 0.007359 RP11_51F16.9 0.57 0.34–0.96 0.034541
MTND4P12 1.3 1.07–1.57 0.007377 FAM86C2P 2.07 1.05–4.08 0.034789

RP11_120B7.1 1.81 1.16–2.82 0.008388 AC073850.6 1.41 1.02–1.94 0.035167
AC005077.14 1.42 1.09–1.83 0.008434 HTR7P1 0.41 0.18–0.94 0.0355

RP11_255H23.5 1.78 1.16–2.73 0.008551 CALM2P2 1.41 1.02–1.95 0.035662
RP11_494O16.3 0.55 0.35–0.86 0.008747 RP11_587D21.1 1.34 1.02–1.76 0.035695

RP1_95L4.4 0.46 0.25–0.82 0.009153 DSTNP2 0.6 0.37–0.97 0.038699
AC010468.1 1.83 1.16–2.9 0.009748 AC144530.1 1.69 1.03–2.78 0.039254

MST1L 1.66 1.13–2.44 0.009936 AC004967.7 1.45 1.02–2.07 0.039533
AC079781.5 1.39 1.08–1.8 0.010811 NCF1B 0.68 0.46–0.98 0.039578
HSP90AB2P 1.87 1.15–3.04 0.011429 RP11_381E24.1 1.64 1.02–2.63 0.039904
AC009474.2 1.45 1.09–1.93 0.01172 RPS3AP6 1.46 1.02–2.08 0.040027

CTB_75G16.1 1.76 1.13–2.74 0.012065 RPL35P2 0.59 0.36–0.98 0.040168
TMSB10P2 0.64 0.45–0.91 0.012102 RPL4P4 2.04 1.03–4.04 0.040672

RP3_342P20.2 1.88 1.15–3.08 0.012513 HLA_H 0.77 0.6–0.99 0.040894
HLA_U 0.6 0.41–0.9 0.012586 RPS15AP12 1.76 1.02–3.04 0.041171

RPL7P32 1.69 1.12–2.55 0.01278 AC141586.5 1.57 1.02–2.44 0.041404
RP11_302I18.1 1.96 1.15–3.32 0.013077 EEF1A1P12 1.4 1.01–1.93 0.041698
RP11_360D2.2 1.39 1.07–1.81 0.013836 ANKRD36BP2 1.39 1.01–1.9 0.042281

EEF1A1P1 1.63 1.1–2.41 0.014059 U47924.6 0.67 0.45–0.99 0.042954
RP11_20O24.1 1.49 1.08–2.05 0.014879 RP11_372E1.1 1.72 1.02–2.89 0.042994

RPS20P22 1.44 1.07–1.95 0.015777 RSL24D1P6 0.56 0.32–0.98 0.043269
RP11_583F2.6 1.5 1.08–2.08 0.016158 RPS26P31 1.49 1.01–2.21 0.044184

SMG1P1 1.57 1.09–2.26 0.016217 GGNBP1 1.51 1.01–2.24 0.044241
RP11_592N21.1 1.55 1.08–2.22 0.016333 FAM195CP 0.67 0.45–0.99 0.044479

SPATA20P1 0.7 0.53–0.94 0.016488 EEF1A1P9 1.32 1.01–1.74 0.044928
RP11_501C14.7 0.55 0.34–0.9 0.016961 CES5AP1 1.25 1–1.55 0.045574

RPL13AP6 1.75 1.1–2.78 0.017922 RP11_553P9.1 1.61 1.01–2.57 0.045933
RPS10L 1.65 1.09–2.49 0.018544 RP11_43F13.1 1.53 1.01–2.34 0.046476
CSAG4 0.65 0.45–0.93 0.019462 CTD_2192J16.15 1.56 1.01–2.42 0.046513
TOB2P1 1.56 1.07–2.27 0.019856 CH507_42P11.2 0.67 0.45–0.99 0.046872

RP11_344N17.15 0.6 0.39–0.92 0.020105 ADCY10P1 1.5 1.01–2.25 0.047079
MLLT10P1 0.66 0.47–0.94 0.020725 RP11_761N21.2 1.33 1–1.76 0.04724

ESPNP 1.29 1.04–1.61 0.021376 RP11_736N17.9 1.29 1–1.66 0.047554
RPL7AP28 0.43 0.21–0.89 0.021683 RP11_504P24.3 1.43 1–2.04 0.047587

RP11_241F15.10 0.64 0.44–0.94 0.022711 RPS26P5 1.35 1–1.81 0.04809
AC011737.2 1.61 1.07–2.42 0.023174 REXO1L1P 1.45 1–2.1 0.048596

RPS11P5 1.45 1–2.09 0.048755
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Figure 2. (A) The forest plot showed the top 20 (20/125) significant survival related pseudogenes
through univariate cox analysis. (B) LASSO coefficient profiles of the survival related pseudogenes.
A coefficient profile plot was produced against the log lambda sequence. Vertical line was drawn
at the value selected using 10-fold cross-validation, where optimal lambda resulted in 15 nonzero
coefficients. (C) Tuning parameter (lambda) selection in the LASSO model used 10-fold cross-validation
via minimum criteria. Dotted vertical lines were drawn at the optimal values by using the minimum
criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). A lambda value of 0.13 was
chosen (lambda.min) according to 10-fold cross-validation. (D) Boxplot showed the expression status
of the four pseudogenes between high risk and low risk group which divided by median risk score.
(E) Forest plot showed results of multivariate cox analysis. Four significant pseudogenes in multivariate
cox analysis were screened out (p-value < 0.05) as candidate to construct the risk model.

3.3. Construction of the Prognostic Pseudogene Signature for Osteosarcoma

The predictive model was constructed based on the 125 survival-related pseudogenes using
LASSO regression. The LASSO Cox regression model was used to select variables in order to avoid
overfitting of the predictive model, and 15 pseudogenes with non-zero coefficient were selected
with the minimum criteria (Figure 2B,C). Multivariate Cox proportional hazards regression analysis
was then performed, and the significant pseudogenes (p < 0.05) were used to construct the model.
A four-pseudogene (RPL11-551L14.1, RPL7AP28, RP4-706A16.3, and RP11-326A19.5) based risk model
was finally obtained (Figure 2E; Table 3), and a risk-score formula was established according to
their expression levels. The four-pseudogene risk score for each patient was calculated, and the
patients were divided into high and low risk groups (N = 47 each) according to the median risk
score (Figure 2D; Table 4, Table S2).
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Table 3. Results of multivariate cox regression analysis for the 15 pseudogenes screened by
LASSO regression.

Characteristics Hazard Ratio CI95 p-Value Significance

RP11_551L14.1 0.63 0.4–0.99 0.044 *
RPL7AP28 0.42 0.2–0.89 0.023 *
SRSF9P1 0.68 0.3–1.55 0.36
ZC3H11B 1.29 0.85–1.96 0.235

RP4_706A16.3 1.55 1–2.41 0.049 *
AC079781.5 1.16 0.84–1.6 0.372

NBPF2P 1.56 0.86–2.82 0.14
TMSB10P2 0.88 0.55–1.41 0.589
ZNF815P 0.62 0.3–1.27 0.193

SLC25A24P1 1.35 0.8–2.3 0.264
CTA_963H5.5 0.71 0.37–1.37 0.311

RP11_241F15.10 0.64 0.4–1.01 0.057
RP11_23J18.1 0.91 0.46–1.78 0.773

RP11_326A19.5 0.51 0.32–0.8 0.004 **
RP11_344N17.15 0.72 0.44–1.18 0.193

Table 4. Score and clinical information of the osteosarcoma cohort.

High Risk (47) Low Risk (47) Total (94)

Gender
Female 23 17 40
Male 24 30 54

Age
Mean (SD) 14.8 (5.27) 15.13 (5.36) 14.97 (5.29)

Median (min,max) 14 (5, 39) 15 (3, 32) 14.5 (3, 39)

Metastatic status
Metastatic 15 7 22

Non-metastatic 32 40 72

Site
Leg/foot 39 44 83

Other 8 3 11

Risk score
Mean (SD) 5.55 (10.15) 0.47 (0.32) 3.01 (7.58)

Median (min,max) 2.53 (1.23, 66.4) 0.5 (0.01, 1.21) 1.23 (0.01, 66.4)

Status
Alive 28 38 66
Dead 19 9 28

3.4. Predictive Value of the Four-Pseudogene Signature

Kaplan–Meier survival analysis was performed to assess the potential prognostic value of the
four-pseudogene signature, which revealed significantly worse prognosis of the patients in the high-risk
group (p < 0.0001; Figure 3A). In addition, ROC analysis was used to determine the accuracy of this
signature in predicting the 3-, 5-, and 8-year survival (Figure 3B), and the respective AUCs were 0.885,
0.878, and 0.796, indicating high sensitivity and specificity of this signature. In addition, a higher
risk score was associated with shorter survival and more death events (Figure 3C). Taken together,
this four-pseudogene signature-based risk model can distinguish the high-risk osteosarcoma patients
from the low-risk patients, indicating a prognostic significance for osteosarcoma.
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Figure 3. (A) The Kaplan–Meier estimates of the OS for high-risk and low-risk patient cohorts grouping
by the four-pseudogene signature (N = 94). The OS differences between the two groups were determined
by the two-sided log-rank test. It can be concluded that higher risk scores are significantly associated
with worse OS (p < 0.0001). (B) ROC analysis of sensitivity and specificity for the four-pseudogene
signature in predicting the OS of patients for 3-, 5-, and 8-years. (C) The distribution of four-pseudogene
risk score, patients’ survival status and pseudogene expression signature were analyzed. As the risk
score rising, the patients had a shorter survival time, more death events and the expression value of
four pseudogenes ascended or decreased. OS: overall survival.

3.5. The Four-Pseudogene Signature Is an Independent Prognostic Predictor of Osteosarcoma

To detect the possible contribution of other factors like age, gender, and metastatic status on patient
survival, we also grouped the patients according the above variables, and applied the four-pseudogene
signature to different sub-groups. There were 40 males and 54 females in the osteosarcoma cohort,
which did not differ significantly in terms of the risk score distribution (Figure 4A). In addition,
the high-risk patients had significantly shorter overall survival (OS) (p < 0.01) in both the male and
female groups (Figure 4B,C) with respective five-year AUC values of 0.753 and 0.805 (Figure 5A,B),
indicating that the four-pseudogene signature was independent of gender. There was also no
significant difference in the distribution of the risk score of younger (<18 years, N = 72) and older
(>18 years, N = 22) patients (Figure 4D). Furthermore, the low-risk patients had significantly longer
OS (p < 0.01; Figure 4E,F), and similar five-year AUC values (0.888 and 0.861; Figure 5C,D) in
both age-stratified groups, indicating that the four-pseudogene signature was also independent
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of age. Based on metastatic status, the patients were divided into non-metastatic and metastatic
groups. The both have a similar risk score and a shorter OS in high risk group (Figure 4G–I), and the
five-year AUC values were 0.87 and 0.89 for non-metastatic and metastatic respectively (Figure 5E,F),
indicating that the four-pseudogene signature was independent of metastatic status. Taken together,
the four-pseudogene signature can be applied to osteosarcoma patient subgroups stratified on the
basis of clinical characteristics, and is an independent prognostic predictor for osteosarcoma.

Figure 4. (A) The dot plot showed the distribution of risk score based four-pseudogene between male
(N = 54) and female (N = 40). The risk score is not different between male and female (p-value > 0.05).
(B,C) Kaplan–Meier analyses of patients with osteosarcoma in different gender cohorts, grouping based
on their gender: male (N = 54), female (N = 40). Kaplan–Meier analysis with two-sided log-rank test was
performed to estimate the differences in OS between the low-risk and high-risk patients in male cohort
and female cohort. (D) The dot plot showed the distribution of risk score based four-pseudogenes
between different age group (<18 and ≥18). The risk score is not different between the two groups
(p-value > 0.05). (E,F) Kaplan–Meier analyses of patients with osteosarcoma in different age cohorts,
grouping based on their age at initial diagnosis: <18 (N = 72), ≥18 (N = 22). Kaplan–Meier analysis
with two-sided log-rank test was performed to estimate the differences in OS between the low-risk
and high-risk patients in <18 and ≥18. (G) The dot plot showed the distribution of risk score based
four-pseudogenes between different metastatic status group (non-metastatic = 72 and metastatic = 22).
The risk score is not different between the two groups (p-value > 0.05). (H,I) Kaplan–Meier analyses
of patients with osteosarcoma in different metastatic status cohorts. Kaplan–Meier analysis with
two-sided log-rank test was performed to estimate the differences in OS between the low-risk and
high-risk patients in metastatic and non-metastatic groups.
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Figure 5. (A,B) ROC analyses of sensitivity and specificity for the four-pseudogene signature in
predicting the OS of patients for 3, 5, and 8 years in the gender groups. (C,D) ROC analyses of
sensitivity and specificity for the four-pseudogene signature in predicting the OS of patients for 3, 5,
and 8 years in the age groups. (E,F) ROC analyses of sensitivity and specificity for the four-pseudogene
signature in predicting the OS of patients for 3, 5, and 8 years in the metastatic groups.

3.6. Combined Pseudogene and Clinical Risk Score Is an Independent Predictor of Survival

To combine the basic clinical status (age, gender, site, and metastatic status) with the
four-pseudogene signature for predicting patient survival, we constructed a multivariable cox
probability hazard model to predict the 3-year, 5-year, and 8-year survival, and visualized it by
a nomogram with an assigned score for each term (Figure 6A). Both the forest plot and the nomogram
indicated that the risk score is an independent predictor for patient survival (Figure 6B). We also tested
the stability and accuracy of the nomogram in terms of agreement between prediction and actual
survival. The model performance is shown in Figure 6C and represents perfect prediction.
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Figure 6. (A) Nomograms combining 4-pseudogene signature and clinical information to predict 3-, 5-,
and 8-year survival probability of patients. (B) Forest plot showed results of multivariate cox analysis
with 4-pseudogene signature and clinical information. The 4-pseudogene signature is an independent
factor (p-value < 0.001). (C) The calibration of each model in terms of agreement between predicted
and observed 3-, 5-, or 8-year outcomes. Model performance is shown by the plot, which is highly
relative to the 45-degree line, representing perfect prediction.

3.7. Functional Analysis of the Predictive Pseudogenes

Correlation analysis was used to identify the protein coding genes co-expressing with the
pseudogenes, followed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis to determine their function. The top 10 correlated PCGs of each
pseudogene and their relationship are presented as a network (Figure 7A). The genes with highest
correlation to each pseudogene were as follows: RPL11-551L14.1—EHMT2, RPL7AP2 8—HMG20B,
RP4-706A16.3—ING5, and RP11—326A19.5—ABHD2 (Figure 7B). The functions of the pseudogenes as
per GO (BP, biological process) and KEGG analyses are shown in Figure 7C,D. We found RP11-326A19.5
is associated with cell migration and adhesion such as wound healing, focal adhesion, and pathways in
cancer. The RPL11-551L14.1 is participating in regulation of transcription and molecular metabolism.
As for RP4-706A16.3, it plays a role in translation of ribosome. Lastly, RPL7AP28 may be related to
immune regulation of MHC. A simple summary table for all results was in Table 5.
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Figure 7. (A) Network of 4 pseudogenes and their top 10 correlated genes. The correlation between
pseudogenes and genes were performed by Pearson correlation analysis. The interaction among
genes were generated by STRING database. Yellow dots represent pseudogenes, red dots present
positive corelated genes and blue dots represent negative corelated genes. The dot size represents node
degree. (B) The representative of corelated genes. The dot plots show the most correlated genes of
each pseudogenes. (C) The gene ontology enrichment analysis for the four pseudogenes correlated
genes were carried out in DAVID to reveal the potential function of the four pseudogenes. The top
five significant biological process terms for each pseudogene were shown. (D) The KEGG pathway
enrichment analysis for the four pseudogenes correlated genes were carried out in DAVID to reveal
the potential pathways in which the four pseudogenes are involved. The top five significant pathway
terms for each pseudogene were shown.
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Table 5. A simple summary table for results of this article.

Total PG Studied PG Survival-Related PG Signature-PG

14,126 1333 125 4
3Y-AUC 5Y-AUC 8Y-AUC KM-P-value

Whole patients
0.885 0.878 0.796 <0.0001

Gender subgroup (male)
0.82 0.828 0.707 0.0064

Gender subgroup (female)
0.965 0.947 0.947 <0.0001

Age subgroup (<18)
0.902 0.888 0.788 <0.0001

Age subgroup (≥18)
0.828 0.861 0.796 0.038

Metastatic subgroup (non-meta)
0.871 0.87 0.743 0.00014

Metastatic subgroup (meta)
0.91 0.89 0.89 <0.0001

Gene signature
0.821 0.861 0.781 <0.0001

Combined signature
0.937 0.956 0.871 <0.0001

PG: pseudogene; Y: year.

3.8. Comparison and Combination of Gene-Signature and Pseudogene-Signature

To compare the performance of coding genes as signature with pseudogenes, we used the same
method listed in the manuscript, and obtained a two-gene signature predicting the prognosis of
osteosarcoma patients (MT1A, HR: 1.41 (95% CI: 1.18–1.69); MPV17L2, HR: 0.39 (95% CI: 0.24–0.65))
(Figure 8A,B). The Kaplan–Meier showed that the two-gene signature can distinguish high risk and low
risk patients efficiently. The OS difference between the two groups was significant and high-risk group
was associated with worse OS (p < 0.0001) (Figure 8C). ROC analysis revealed that the AUC of the
signature predicting the 3-, 5-, and 8-year survival are 0.821, 0.861, and 0.781 respectively (Figure 8D).
Compared with the pseudogene model (3-, 5-, and 8-year AUCs were 0.885, 0.878 and 0.796), it seems
that the pseudogene-based model has a better performance in our study. Additionally, we combined
the gene signature and pseudogene signature together to explore whether the pseudogenes can provide
an additional power to the prediction of gene signature or they can work together to give a better
performance than alone (Figure 9A). The ROC curve and K–M plot showed that the combined signature
can also distinguish the high-risk and low-risk patients and the performance of predicting prognosis
is satisfactory (Figure 9B,C). Comparing the three signatures by AUC of ROC curve, the combined
signature performed best in sensitivity and specificity in which the AUC is 0.956 (5 years), indicating the
genes and pseudogenes can work together to make a better prediction (Figure 9D).
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Figure 8. (A) Tuning parameter (lambda) selection in the LASSO model used 10-fold cross-validation
via minimum criteria. Dotted vertical lines were drawn at the optimal values by using the minimum
criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). A lambda value of 0.22 was
chosen (lambda.min) according to 10-fold cross-validation and 8 genes were identified for further
analysis. (B) Forestplot showed results of multivariate cox analysis. Two significant coding genes in
multivariate cox analysis were screened out (p_value < 0.05) as candidate to construct the risk model.
(C) The Kaplan–Meier estimates of the OS for high-risk and low-risk patient cohorts grouping by the
two-coding gene signature (N = 94). The OS differences between the two groups were determined by
the two-sided log-rank test. It can be concluded that higher risk scores are significantly associated with
worse OS (p < 0.0001). (D) ROC analysis of sensitivity and specificity for the two-gene signature in
predicting the OS of patients for 3, 5, and 8 years.
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Figure 9. (A) Forest plot showed results of multivariate cox analysis for the combination model of
genes and pseudogenes. (B) ROC analysis of sensitivity and specificity for the combination signature in
predicting the OS of patients for 3, 5, and 8 years. (C) The Kaplan–Meier estimates of the OS for high-risk
and low-risk patient cohorts grouping by the combination signature (N = 94). The OS differences
between the two groups were determined by the two-sided log-rank test. It can be concluded that
higher risk scores are significantly associated with worse OS (p < 0.0001). (D) ROC analysis of sensitivity
and specificity for the comparison among the two-gene signature, four-pseudogene signature, and
combination signature in predicting the OS of patients for 5 years and combination signature performed
better than the other two.

4. Discussion

With the application of chemotherapy in the 1970s, the treatment of osteosarcoma has made great
progress. However, survival rate of metastatic and relapse cases remains to be unsatisfactory, and the
poor prognosis of such patients is the major problem for osteosarcoma [36]. Thus, identification of
novel biomarkers to predict patients’ outcome might help to customize more personalized therapy
and would be able to improve their prognosis. Growing evidence supports the role of pseudogenes
in the oncogenesis and progression in different cancers [23,37,38] and there are also a few studies
which recognized the importance of pseudogenes in osteosarcoma [39,40]. High throughput RNA-seq
has paved the way for exploitation of various biomarkers for the diagnosis and prognosis of many
cancers including osteosarcoma [18,41,42]. In this study, we took a systematic analysis for the
potential role of pseudogenes as prognostic predictor and provided first evidence of survival related
pseudogenes of osteosarcoma. We made several important discoveries during the course of this analysis.
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First, we identified 125 survival-related pseudogenes using univariate Cox analysis, and most of them
are risk factors (91/125) which may play the oncogenesis role. Second, we identified a four-pseudogene
signature and established a scoring system that was significantly associated with the OS of osteosarcoma
patients. This signature helped to stratify the low- and high-risk groups and predicted the OS of
osteosarcoma patients with high sensitivity and specificity. Out of four, RP4-706A16.3, is a risk factor
and the another three are protective factors. Of the four pseudogenes we have identified, none were
reported before, suggesting that these pseudogenes were newly found and required more attention.
Third, in order to validate the applicability in different patients and extend the signature to various
subgroups, K–M survival analysis and ROC curve analysis were performed in different subgroups.
We found that it was independent of other potential predictors—including age, gender, and metastatic
status—and the performance of predicting survival was satisfactory. As for the important clinical
feature-stage, we did not perform related analysis on it due to the incompleteness of the stage
information. Further studies and data are needed to uncover the role of stage. We visualized the
pseudogene signature and the other clinical information by a nomogram to simplify the use of this
signature in clinical practice. Last, to further understand the biological function and explore the
underlying oncogenic mechanism of the four pseudogenes, co-expression analysis was employed.
Results showed the four pseudogenes were involved in multiple biological processes and pathways
including malignant phenotype, immune, and DNA/RNA editing, which might be the underlying
mechanism of osteosarcoma progression. Last, we compared the gene signature and pseudogene
signature by ROC curve and found the pseudogene signature is a little better than the gene signature.
The AUC of them were very close indicating the two signatures may have similar performance.
Maybe the patient sample size leads to these results, a large size cohort is needed to verify this finding.

There are some limitations and shortcomings in this study that cannot be ignored. First, this study
was mainly focused on data mining and data analysis, which are based on methodology and the
results were not validated using experiments. Further experiments are needed to verify the findings
of this study. Second, the datasets we were able to obtain were limited as we could only obtain one
osteosarcoma dataset that contained both patient RNA-seq data and clinical follow-up information.
If there were another dataset that matched our requirements, it could have been used to further
validate our results. Additional datasets should be included to obtain a better result. Besides, there is
currently no other study exploiting pseudogene signature for osteosarcoma, meaning that we also
cannot validate our result in another independent study. Third, when constructing a pseudogene
signature for prognosis, one must take it into consideration of the application of such a model.
Since different methods of detecting pseudogenes might lead to different results, the procedure
of detection, quantification, and determination of transcriptional activity of pseudogenes must be
standardized [43]. Therefore, the four newly found prognosis-related pseudogenes deserve more
attention and the next step for our research is to validate our results using experiments. We hope that
these results could give other researchers inspiration for further study.

5. Conclusions

Taken together, we identified a novel four-pseudogene signature for osteosarcoma which is
a promising independent survival predictor and served as an important biomarker for guiding the
clinical treatment of osteosarcoma to improve management for patients. In addition, our findings
provide new insights into exploring the underlying molecular mechanisms of osteosarcoma, and present
a promising new prognostic marker. Therefore, our findings in the signature have a very promising
clinical significance.
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