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Abstract: Early stage prediction of economic trait performance is important and directly linked to 
profitability of farm pig production. Genome-wide association study (GWAS) has been applied to 
find causative genomic regions of traits. This study established a regulatory gene network using 
GWAS for critical economic pig characteristics, centered on easily measurable body fat thickness in 
live animals. We genotyped 2,681 pigs using Illumina Porcine SNP60, followed by GWAS to calculate 
Bayes factors for 47,697 single nucleotide polymorphisms (SNPs) of seven traits. Using this 
information, SNPs were annotated with specific genes near genome locations to establish the 
association weight matrix. The entire network consisted of 226 nodes and 6,921 significant edges. For 
in silico validation of their interactions, we conducted regulatory sequence analysis of predicted 
target genes of transcription factors (TFs). Three key regulatory TFs were identified to guarantee 
maximum coverage: AT-rich interaction domain 3B (ARID3B), glial cell missing homolog 1 (GCM1), 
and GLI family zinc finger 2 (GLI2). We identified numerous genes targeted by ARID3B, associated 
with cellular processes. GCM1 and GLI2 were involved in developmental processes, and their shared 
target genes regulated multicellular organismal process. This system biology-based function analysis 
might contribute to enhancing understanding of economic pig traits. 

Keywords: Association weight matrix; Bayes factor; economic trait; single nucleotide polymorphism 
 

1. Introduction 

Growth rate traits, such as average daily gain (ADG) and days to 90-kg body weight (DAYS), 
and production traits, such as backfat thickness (BFAT) and lean percent (PCL), have been typically 
considered as important traits, as they play a major role in the economic success of Korean pig 
breeding programs. Moreover, the lifetime total number born (LTTNB), lifetime number born alive 
(LTNBA), and weaning to estrus interval (WEI) are also economically important for sow longevity 
and reproduction. To date, these economic traits have been genetically improved successfully based 
on traditional best linear unbiased prediction (BLUP), and breeding values of economic traits have 
been used with a selection index to select elite lines in Korean pig breeding. 

Recently, genomic information in the form of dense single nucleotide polymorphism (SNP) 
marker panels (e.g., Illumina, Neogen-GeneSeek, and Affymetrix) has become available for genetic 
evaluation, owing to improvements in genotyping technology and statistical methods. One of its 
applications is in genome-wide association study (GWAS), which has become a powerful genomics 
tool to identify genetic loci or genes underlying quantitative traits in domestic animals [1]. The single 
marker regression (SMR) method was first introduced in GWAS. However, the original and other 
modified SMR versions might have limited application in the estimation of SNP marker effect in the 
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entire genome owing to various reasons: the SMR methods tend to overestimate the SNP marker 
effect as they ignore the effects of other SNP markers [2] and they are insufficient to detect SNPs with 
small effects. Therefore, it is useful to apply the Bayesian approach, which fits all possible multiple 
markers simultaneously, and was originally developed for genomic selection [3]. It has been shown 
to be a better approach for quantitative trait loci (QTL) mapping or GWAS than the SMR method in 
detection power [2,4,5]. Furthermore, Fortes, et al. [6] recently suggested a system biology-based 
strategy called association weight matrix (AWM) that integrates information from GWAS to study 
complex traits and identify candidate genes. Several researchers have applied this methodology 
using p-values of the GWAS result, but there has been no report of the use of a combination of AWM-
methodology and Bayesian approach thus far [7–10]. 

The objectives of the present study were to: (i) conduct a GWAS using the Bayesian method to 
investigate the genetic architecture and chromosomal regions associated with economic traits of pigs, 
including growth rate and production-related traits such as litter size information in Yorkshire 
population using dense SNP panels and (ii) identify the co-associated regulatory network of the 
multi-trait Bayesian approach GWAS using the AWM methodology. 

2. Materials and Methods  

2.1. Genotypes and phenotypes 

From 2014 to 2017, 2681 Yorkshire pigs were genotyped using Illumina PorcineSNP60 version 2 
(Illumina, Inc., San Diego, CA) comprising 61,565 SNP markers. After excluding SNPs that were 
unmapped, on sex chromosomes, and those with poor call rates (<0.95), the available number of SNP 
markers was 47,697. Duplicated animals (n = 60) caused by re-genotyping to obtain acceptable call 
rates, and animals with lower call rates (n = 30) were removed after comparing their call rates. We 
also removed animals (n = 19) with call rates <0.90. The parentage test was performed using 
SEEKPARENTF90 software (INIA, Las Brujas, UY) [11] with known parent-offspring in the pedigree 
file. A conflict threshold of 10% was used to detect paternity error and correct the pedigree file. 
Consequently, 244 genotyped animals were removed, and the pedigree file was corrected. 
Furthermore, genotype identification data that could not be matched to the corresponding animals 
in the phenotypic and pedigree files were removed, leaving 1833 animals for further GWAS. Missing 
SNP genotypes (0.27%) were imputed using FImpute version 2.2 [12]. 

All experimental procedures involving animals were conducted in accordance with the Guide 
for Care and Use of Animals in Research and approved by the Institutional Animal Care and Use 
Committee of the National Institute of Animal Science (No. 2015-137). 

2.2. Measurement of economic traits 

Body weights were measured once during performance testing (at approximately 150 days). The 
ADG was calculated as the difference in final weight and initial weight divided by the number of 
days at the time of performance testing. The DAYS was estimated according to the recommendations 
of the Korean Swine Performance Recording Standards (KSPRS), adjusted from birth to the time of 
performance testing. The BFAT was calculated based on the average fat thickness values of the 
shoulder (on the fourth thoracic vertebrae), mid-back (on the last thoracic vertebrae), and loin (on the 
last lumbar vertebrae) measured using the A-mode (amplitude mode) ultrasound device (PIGLOG 
105). The PCL was calculated according to the recommendations of the KSPRS, following previously 
reported procedures [13]. More details of the correction formula for growth and production traits 
were reported by Choy et al. [14]. The three-sow reproduction-related traits LTTNB, LTNBA, and 
WEI were obtained from real phenotypic records. 

2.3. Response variable 

Phenotypic data of 39,518 purebred Yorkshire pigs were collected from three Korea GGP farms 
between 2012 and 2017. Pedigree data from 99,694 individuals were also used. Table 1 shows the 
number of available records, phenotypic means and their standard deviation, variance component, 
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and heritability for each trait. Genetic parameters, breeding values, and the corresponding reliability 
were estimated using a pedigree relationship matrix fitted with ASReml version 4.1 software (VSN 
International Ltd., Hemel Hampstead, UK) [15] for growth rate (ADG and DAYS), production traits 
(BFAT and PCL), and reproductive traits (LTTNB, LTNBA, and WEI). A multi-trait animal model 
was used for those parameters and estimated breeding value (EBV) including fixed effects of farm, 
birth-year, season, and sex. Further, the deregressed estimated breeding value (DEBV) was adjusted 
for parental information by a combination of deregression after adjusting for parental average such 
that the DEBV information contained only their phenotypic information and that of their 
descendants. The response variable was weighted to account for the heterogeneous variance of DEBV 
due to the differences in EBV reliabilities among the genotyped animals. The weighting factor [16] 
for animal 𝒊𝒊 (𝒘𝒘𝒊𝒊) was calculated as follows: 

𝒘𝒘𝒊𝒊 =  
�𝟏𝟏 − 𝒉𝒉𝟐𝟐�

�𝒄𝒄 + ��𝟏𝟏 −  𝒓𝒓𝒊𝒊𝟐𝟐�/𝒓𝒓𝒊𝒊𝟐𝟐��𝒉𝒉𝟐𝟐
 

where, 𝒓𝒓𝒊𝒊𝟐𝟐 is the reliability of DEBV, 𝒉𝒉𝟐𝟐 is the heritability of the trait, and 𝒄𝒄 is the proportion of 
genetic variation that could not be explained by markers. In the present study, 𝒄𝒄 was assumed to be 
equal to 0.40 [17]. After removing animals with reliability <0.10, 1596 registered Yorkshire pigs were 
used in the GWAS. 

Table 1. Variance components and heritability estimated for growth and reproductive traits in 
Yorkshire pigs  

Trait1 N Mean SD Min. Max. 𝝈𝝈𝑨𝑨𝟐𝟐  𝝈𝝈𝑷𝑷𝟐𝟐  𝒉𝒉𝟐𝟐 

BFAT (mm) 39,406 13.76 2.96 7.60 23.20 2.93 6.99 0.36 

ADG (g) 39,516 609.30 74.48 449.00 952.00 0.12 0.35 0.42 

DAYS (days) 39,221 149.3 14.4 112.00 188.00 0.44 1.26 0.35 

PCL (%) 39,508 58.14 2.97 49.60 65.80 3.48 8.33 0.42 

LTTNB 39,518 11.80 2.95 2 25 0.76 7.20 0.11 

LTNBA 39,518 10.65 2.70 1 24 0.73 7.07 0.10 

WEI 12,975 4.88 1.40 1 15 0.15 1.86 0.08 
1BFAT = backfat thickness; ADG = average daily gain; DAYS = days to 90-Kg body weight; PCL = lean 

percent; LTTNB = lifetime total number of born; LTNBA = lifetime number of born alive; WEI = weaning to 
estrous interval. 

2.4. Bayesian method for genome wide association study  

The BayesB [18] method with π set to 0.99 and weighting factors was used to estimate the effect 
of SNP markers and calculate variances attributed to every non overlapping 1-Mb genome window 
using GenSel4R software [19]. BayesB method uses a mixture model that assumes some fraction π of 
SNP markers have zero effect and every SNP marker has locus-specific variances. For each trait, the 
following model was fitted to estimate marker effects: 

𝒚𝒚𝒊𝒊 =  𝝁𝝁 +  �𝒁𝒁𝒊𝒊𝒊𝒊𝒖𝒖𝒋𝒋𝜹𝜹𝒋𝒋 + 𝒆𝒆𝒊𝒊

𝒌𝒌

𝒋𝒋=𝟏𝟏

 

where, 𝐲𝐲𝒊𝒊 is response variable (DEBV) of animal 𝒊𝒊 for the respective trait; 𝝁𝝁 is the population mean; 
𝒌𝒌  is the number of markers; 𝒁𝒁𝒊𝒊𝒊𝒊  is allelic state at locus 𝒋𝒋  in individual 𝒊𝒊 ; 𝒖𝒖𝒋𝒋  is the random 
substitution effect for marker 𝒋𝒋, which follows a mixture distribution for this random substitution 
effect according to indicator variable (𝜹𝜹𝒋𝒋), a random 0/1 variable indicating the absence or presence 
of marker 𝒋𝒋 in the model, with 𝒖𝒖𝒋𝒋 assumed normally distributed N(0,𝝈𝝈𝒖𝒖𝟐𝟐) when 𝜹𝜹𝒋𝒋 = 𝟏𝟏; and 𝒆𝒆𝒊𝒊 is 
a random residual effect assumed to be normally distributed N(0, 𝝈𝝈𝒆𝒆𝟐𝟐). The posterior distribution of 
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the parameters and effects was obtained using Gibbs sampling for 110,000 Markov chain Monte Carlo 
(MCMC) iterations, of which the first 10,000 were discarded for burn-in before estimating posterior 
means of marker effects and variances, saving the results every five cycles. The accumulated 
frequency across iterations of the chain for a particular SNP based on prior π fitted in the model 
(referred to as “model frequency”) can be used as evidence of an informative SNP or QTL [20]. 
However, the adjacent SNPs might be in high linkage disequilibrium (LD) with the same QTL in a 
high-density SNP panel and, hence, the effect of QTL and the SNP model frequency would be spread 
over all SNPs in high LD, which can result in the underestimation of individual SNP effect and model 
frequency [21]. Therefore, a window approach, which accumulates the effects of adjacent SNPs for 
each 1-Mb region, has been implemented in GenSel4R software, and this 1-Mb window approach 
was used to identify informative genomic regions accounting for LD. Initial values for genetic and 
residual variances for BayesB were estimated using a linear mixed model implemented in ASREML 
(Table 1). All procedures were performed using GenSel4R software [19]. In total, 2452 consecutive 
non-overlapping 1-Mb windows across the whole genome were included in the GWAS.  

2.5. Identification of significant window regions and single nucleotide polymorphism markers 

An additive genetic variance of 1.0%, which was estimated as a fraction of the total genetic 
variance explained by all SNPs, was used as the significance level of putative informative 1-Mb 
window region. Unlike the single marker regression approach, there is no P-value for significance of 
SNP marker in Bayesian approaches. Therefore, the posterior probability of inclusion of each SNP 
marker into the model (model frequency) in MCMC cycles is mostly used as a criterion for detecting 
QTLs [22]. Bayes factor (BF) derived from model frequency was used to determine the SNP with a 
significant association within this region. 

𝐁𝐁𝐁𝐁 =  
𝒑𝒑𝒊𝒊� /(𝟏𝟏 − 𝒑𝒑𝒊𝒊� )
(𝟏𝟏 − 𝝅𝝅)/𝝅𝝅

 

where, 𝝅𝝅 is the prior probability and 𝒑𝒑𝒊𝒊�  is the posterior probability of the fraction of times the SNP 
was distributed. Following the definitions of Kass et al. [23] for the strength of an association based 
on their range of values, the SNP markers with BF > 3.2, > 20, and > 100 were considered “suggestive,” 
“strong,”, and “decisive” evidence, respectively. 

2.6. Association weight matrix construction 

The AWM consists of rows representing genes and columns representing the additive effect of 
each trait based on the results of the GWAS [6]. Before construction, we selected a “weakly” 
significant criterion of Bayes factor of ≥ 3.2 [23], and BFAT was used as a key phenotype among the 
seven traits. Firstly, SNPs that were significantly associated with BFAT or associated with at least two 
phenotypes were selected. Secondly, the SNPs satisfying the distance information of SNPs to the 
nearest annotated coding region of the gene were additionally filtered, i.e., those that were either 
<2500 bp or >1.5 Mb away from the nearest gene were eliminated. Finally, only one SNP was selected 
to represent the gene (the first criterion was the number of statistically significant traits to the SNP 
and the second was more significant to the key phenotype). The partial correlation and information 
theory (PCIT) algorithm was used to identify a significant interaction among the genes and SLP-
related traits using the PCIT library in R [24]. The hierarchical clustering option in PermutMatrix 
software [25] was used to visualize the AWM. To visualize the network of the AWM genes, every 
significant co-associated gene was applied in Cytoscape, and the network density of each gene was 
obtained using the MCODE sub-package [26]. 

2.7. Network analysis using transcription factor and target gene information 

To provide in silico validation of the gene-gene interactions and validate the whole network, 
among various available methods, we used bio-informatics analysis that predicts TFs and their target 
genes [6]. To determine whether a gene is a TF or not, it was compared with the pig and human 
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transcription factor database list sets [27]. The genes identified as TFs required motif information. Sus 
scrofa motif information from the CisBP database [28] was mainly used, and vertebrate data from 
JASPAR [29] were used to supplement missing information. We extracted the flank region sequence 
(upper 2000 bp) of every gene in the whole network from the Ensembl BioMart database [30]. To 
identify locally overrepresented TF binding sites (TFBS), the FIMO tool [31] was used. It detected all 
the TFBS and extracted the significant clusters (P < 0.001) by calculating their score functions [32]. 
The top three TFs were chosen to satisfy the maximum coverage as previously reported [7]. The 
classification analysis of the function of node gene was analyzed by inputting the list of gene 
ensemble ID into the Panther classification system [33].  

3. Results and Discussion 

3.1. Genome-wide association study using single nucleotide polymorphisms markers with Illumina 
PorcineSNP60 

We performed a GWAS using SNP markers on Illumina PorcineSNP60 based on several 
parameters estimated by the BayesB method (i.e., the absolute SNP marker effect, model frequency, 
and the genetic variances explained by SNP markers). Bayesian GWAS applies the threshold for the 
significance of SNP markers based on the derivative of model frequency (i.e., BF) [22]. However, a 
single QTL could spread the effects over multiple SNPs when using high-density SNP panel as a high 
linkage disequilibrium (LD) within adjacent SNP markers. These results may lead to an increase in 
the probability of false positives and false negatives [20]. To overcome these problems, we used two 
thresholds: (i) additive genetic variance by accumulating within 1-Mb chromosomal regions and (ii) 
BF based on the model frequency. The results of the GWAS of growth, productive, and reproductive 
traits including chromosomal and window location (Mb), the percentage variance of 1-Mb genome 
windows, SNP, physical genome position (Mb), additive effect of the significant SNP marker within 
these regions, and BFs in Yorkshire pigs are presented in Tables 2 and 3. In this study, the threshold 
of percentage variance of 1-Mb genomic region and BF used to identify associations with traits were 
> 1.0% and 20, respectively. The Manhattan plots for the analyzed traits are shown in Figure 1.  
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Figure 1. Manhattan plot of genome-wide association study result of 18 porcine autosomes. The y-
axis indicates window variance (%) and x-axis represents the pig autosomal chromosome physical 
map. The red dot horizontal lines represent the threshold of the percent variance of 1-Mb genomic 
region used was above 1.0% to identify associations with traits: (a) backfat thickness (BFAT), (b) 
average daily gain (ADG), (c) days to 90-kg body weight (DAYS), (d) lean percent (PCL), (e) lifetime 
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total number of born (LTTNB), (f) lifetime number of born alive (LTNBA), and (g) weaning to estrous 
interval (WEI). 

Table 2. Informative 1-Mb genome windows and single nucleotide polymorphisms (SNPs) within 
windows associated with growth rate (ADG and DAYS) and production (BFAT and PCL) traits in 
Yorkshire pigs from the GWAS using markers on Illumina PorcineSNP60 

Trait1 SSC_Mb2 GV% 
Informative 
SNP 

rs number 
Position  
(Mb) 

Effect BF3 
Region  
annotation 

Gene annotation 

BFAT 

2_162 3.51 
ASGA0084103 rs81341288 162.15 0.092 57.2 intronic COX8H, IFITM2, 

IFITM3 
ASGA0085784 rs81328276 162.3 0.085 49.58 intronic IFITM2, IFITM3 

2_76 2.87 

MARC0048160 rs81239450 76.09 −0.076 41.77 intergenic 
GNA11(dist = 3121), 
THOP1(dist = 
278492) 

MARC0030590 rs81224732 76.32 −0.056 28 intergenic 

GNA11(dist = 
227056), 
THOP1(dist = 
54557) 

2_0 2.68 

ASGA0097367 rs81317307 0.37 0.132 141.12 intergenic 
IRF7(dist = 63158), 
PHLDA2(dist = 
62536) 

ASGA0098481 rs81318741 0.92 0.039 34.24 intergenic 
NAP1L4(dist = 
452192), FADD 
(dist = 644399) 

15_132 2.31 INRA0050241 rs339585634 132.56 0.126 244.75 intergenic 

LOC100738836(dist 
= 879831), 
ARPC2(dist = 
791438) 

5_65 2.15 ALGA0114229 rs81343150 65.63 0.146 304.09 intergenic 
MFAP5(dist = 49502), 
CD163L1(dist = 
347959) 

14_142 1.13 ALGA0082467 rs80835167 142.22 −0.084 126.1 intergenic 
MCMBP (dist = 
953163), FGFR2(dist = 
277982 

8_11 1.08 MARC0034108 rs81227701 11.32 0.04 40.69 intergenic CD38(dist = 542438), 
QDPR (dist = 1008577) 

14_4 0.89 ALGA0074404 rs80792287 4.23 0.078 136.21 intergenic SYK (dist = 1355883), 
LPL (dist = 230942) 

16_79 0.93 ALGA0091967 rs81462835 79.94 −0.077 133.5 intergenic TNIP1(dist = 1618306) 

ADG 

17_17 1.88 INRA0052808 rs342665431 17.55 0.03 298.75 intergenic BMP2(dist = 135846), 
HAO1(dist = 1265868) 

5_93 1.4 DRGA0006163 rs345168974 93.83 0.025 209.22 intergenic SOCS2(dist = 113304), 
BTG1(dist = 1259303) 

10_28 1.1 ALGA0057938 rs81422478 28.94 −0.02 89.32 intergenic 
TNNI1(dist = 728658), 
ADIPOR1(dist = 
328094) 

1_177 1.03 ALGA0006599 rs80799429 177.01 0.015 54.25 intergenic 
SERPINB10(dist = 
1651991), RNF152(dist 
= 58137) 

2_2 0.89 M1GA0002244 rs81362590 28.34 −0.017 103.16 intronic CPT1A 

DAYS 
17_17 2.22 INRA0052808 rs342665431 17.55 −0.065 764.87 intergenic BMP2(dist = 135846), 

HAO1(dist = 1265868) 

5_93 1.12 DRGA0006163 rs345168974 93.83 −0.032 111.06 intergenic SOCS2(dist = 113304), 
BTG1(dist = 1259303) 

PCL 

2_162 5.87 
ASGA0085784 rs81328276 162.3 −0.212 154 intronic IFITM2, IFITM3 

ASGA0084103 rs81341288 162.15 −0.13 61.09 intronic COX8H, IFITM2, 
IFITM3 

2_0 4.48 ASGA0097367 rs81317307 0.37 −0.287 1268.4 intergenic IRF7(dist = 63158), 
PHLDA2(dist = 62536) 

2_76 1.49 MARC0048160 rs81239450 76.09 0.053 25.2 intergenic GNA11(dist = 3121), 
THOP1(dist = 278492) 

15_132 1.37 INRA0050241 rs339585634 132.56 −0.078 77.91 intergenic 
LOC100738836(dist = 
879831), ARPC2(dist = 
791438) 
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5_65 1.28 ALGA0114229 rs81343150 65.64 −0.362 214.29 intergenic 
MFAP5(dist = 49502), 
CD163L1(dist = 
347959) 

6_157 1.15 M1GA0009131 rs81394508 157.39 −0.175 221.8 intergenic 
GUCA2B (dist = 
903014), MIR30C-
1(dist = 85847) 

14_4 1.06 ALGA0074404 rs80792287 4.23 −0.121 281.92 intergenic SYK (dist = 1355883), 
LPL (dist = 230942) 

7_18 0.99 MARC0003814 rs80894864 18.13 0.15 205.05 intergenic ID4(dist = 1948801), 
PRL (dist = 284338) 

4_42 0.86 INRA0013856 rs337241703 42.84 0.131 110.57 intronic CPQ 

1BFAT = backfat thickness; ADG = average daily gain; DAYS = days to 90-kg body weight; PCL = lean 
percent; 2SSC_Mb = Sus scrofa chromosome_megabase-pair; 3Bayse factor 

Table 3. Informative 1-Mb genome windows and single nucleotide polymorphism (SNPs) within 
windows associated with reproduction traits in Yorkshire pigs from the GWAS using markers on 
Illumina PorcineSNP60 

Trait1 SSC_Mb2 GV% 
Informative 

SNP 
rs number 

Position  
(Mb) 

Effect BF3 
Region  

annotation 
Gene annotation 

LTTNB 

16_78 1.45 ASGA0074339 rs81462568 78.56 0.057 79.31 iIntergenic TNIP1 (dist = 236491) 

1_9 1.13 DIAS0003564 rs80972878 9.86 −0.044 53.1 iIntergenic 
SOD2 (dist = 373282), 

TAGAP (dist = 183449) 

16_44 1.1 
MARC0073405 rs81259195 44.88 0.031 34.12 intergenic RGS7BP (dist = 1268524) 

ASGA0073217 rs81459064 44.83 0.02 20.38 intergenic RGS7BP (dist = 1315507) 
LTNB

A 
1_177 1.38 ASGA0004992 rs80843328 177.74 0.034 23 intergenic 

RNF152 (dist = 679283), 
MC4R (dist = 808927) 

WEI 12_57 1.96 ASGA0092942 rs81311789 57.41 −0.024 100.2 intergenic 
NTN1 (dist = 349904), 
GLP2R (dist = 32195) 

1LTTNB = lifetime total number of born; LTNBA = lifetime number of born alive; WEI = weaning to estrus 
interval; 2SSC_Mb = Sus scrofa chromosome_megabase-pair; 3Bayse factor 

3.2. Growth-related traits 

In the present study, the most informative 1-Mb window region was detected on SSC17 at 17 
Mb, which explained 1.88% and 2.22% of additive genetic variances for ADG and DAYS traits, 
respectively. Furthermore, the most significant QTL was found at 17.55 Mb on SSC17 (rs342665431) 
with the highest BF: 298.75 and 764.87 for ADG and DAYS traits, respectively. A previous study [21] 
reported that the most significant SNP (rs342665431) was from the BMP2 gene on SSC17, which is 
consistent with our results. The BMP2 gene is a member of the bone morphogenetic protein family 
that regulates early myogenesis. We also found identical informative 1-Mb window regions between 
the growth-related traits and SNP located at the 93-Mb position of SSC5 (rs345168974) with 1.40% 
and 1.12% additive genetic variances for ADG and DAYS traits, respectively. 

3.3. Production-related traits 

We found 15 significant QTLs within 12 informative chromosomal regions (significance level > 
1.0% additive genetic variance or BF > 20) on SSCs 2, 4, 5, 6, 7, 8, 14, 15, and 16 for BFAT and PCL. 
The most significant 1-Mb window region explaining 3.51% and 5.87% of additive genetic variances 
was captured on SSC2 at 162 Mb, including two SNPs (rs81341288 and rs81328276) in BFAT and PCL. 
The QTL window located on SSC at the beginning, which explained 2.68% and 4.48% of additive 
genetic variances, included SNPs (rs81317307 and rs81318741) for BFAT and PCL. Furthermore, 
rs81317307 was the most significant SNP based on BF (1268.40) associated with PCL. Van Laere, et al. 
[34] reported that the IGF2 gene on SSC2 has an important role in the development of skeletal muscle 
and BFAT as well as postnatal muscle regeneration and hypertrophy. Other QTL windows were also 
detected on SSC2 at 76 Mb, which explained 2.87% and 1.49% of additive genetic variances for two 
production-related traits. The most significant SNP located on SSC5 at 65 Mb (rs81343150) was 
identified based on BF (304.09) for BFAT.  
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3.4. Reproduction-related traits 

Some candidate chromosomal regions and QTLs associated with reproduction-related traits 
were identified. We found six significant QTLs within five informative chromosomal regions on SSCs 
1, 12, and 16 for reproduction-related traits. Among those genes, the superoxide dismutase 2 (SOD2) 
gene has been reported to have one polymorphism associated with male infertility [35]. Considering 
the results of the GWAS, a few QTLs for LTTNB, LTNBA, and WEI but no QTL were identified for 
NPW, which might be due to low heritability (Table 1) and relatively smaller sample size for detecting 
significant QTL regions. Another reason for this result might be high criteria of significance. Because 
of the high cut-off criteria for the significance level of the traditional single trait GWAS strategy, it is 
difficult to determine the useful QTL on those reproduction-related traits [36]. 

3.5. Co-association network based on association weight matrix 

The constructed AMW consisted of 215 (211 genes and 4 SNPs) × 7 (traits), and each cell 
represents their z-value normalized additive effect (Figure 2a). To visualize this, Permutmatrix 
software [25] was used. There were three main obvious findings in the visualized matrix. First, the 
genes had strong effects on both of body-related traits (PCL and BFAT) and growth-related traits 
(DAYS and ADG). Second, PCL and BFAT, and DAYS and ADG pairs, respectively, were almost the 
compensate tendency by the effects of the genes. This was an obviously understandable deduction 
from the meaning of the traits (e.g., meat percentage information versus fat information for PCL and 
BFAT). Another finding is that it was difficult to identify the specific tendency of the effect on 
reproductive traits (LTTNB, LTNBA, and WEI) because it was quite different from that on the traits 
of the two groups mentioned above and it had a weak effect (relatively dark compared to other 
groups). Therefore, research on those reproduction-related traits is limited by the traditional GWAS 
method [36] and AWM-based approach has recently emerged as a useful option [6,10].  

The whole network created by the PCIT analysis based on AWM information consists of 226 nodes and 
6921 edges (Figure 2b). The rectangle node indicates seed on the network and the diamond node is uncluttered 
based on the MCODE analysis of Cytopscape application. Based on the comparison with the TF database, 
ARID3B, ATF6B, DMTF1, GCM1, GLI2, ISL1, KDM5B, KLF17, NFYC, NPAS3, and WDHD1 were 
identified as TFs. Among them, five TFs (ARID3B, GCM1, GLI2, ISL1, and NFYC) had motif information. 
Each TF and its target gene network were matched using FIMO tool analysis and, finally, the top trio network 
consisting of 43 genes and centered on ARID3B, GCM1, and GLI2 was constructed (Figure 2c).  
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Figure 2. Functional gene network from the genome-wide association study using association weight 
matrix (AWM). (a) Visualizing the AWM using permutmatrix software. Each cell (i, j) is the z-score 
normalized additive effect of ith-trait on jth-SNP. (b) Entire network: The nodes represent 226 genes 
and the 6,921 edges represent significant correlations between the nodes. The color scale corresponds 
to the MCODE score, where the red nodes represent a high network density. (c) A subset of the 
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network showing the top three transcription factors in the in silico validated targets. The diamond-
shaped nodes are transcription factors. 

The AT-rich interaction domain 3B (ARID3B) encodes a member of the AT-rich interaction 
domain (ARID) family of DNA-binding proteins [37]. Studies have reported that the ARID3B gene 
affects the regulation of limb development [38]. However, the function of the ARID3B gene in pigs 
has not been studied comprehensively. The ARID3B has 13 in silico validated target genes (CTTNBP2, 
DRC1, ENSSSCG00000017864, FAM134C, ICA1L, KIAA1324L, LOC100038019, LOC100155829, 
LOC100518725, MMP1, PARS2, PDE4B, and POLR2G), most of which (six out of 13 genes, DRC1, 
ENSSSCG00000017864, LOC100518725, PARS2, PDE4B, and POLR2G) are involved in the cellular 
process (Figure 2c). Many of them were essential genes for survival. For example, DRC1 is essential 
for motile cilia function in algae and humans, and POLR2G encodes the RNA polymerase II subunit 
G [39,40]. Moreover, PARS2 encodes a putative member of the class II family of aminoacyl-tRNA 
synthetases and those with mutations in PARS2 could have Alpers syndrome [41]. 

The second member of the trio TF, GCM1, is a well-known TF involved in the regulation of 
expression of placental growth factor (PGF) and other placenta-specific genes [42]. Within the top trio 
network, GCM1 targets 20 genes (AATF, ADAM33, ALS2CL, CHRNA3, CLSTN2, CTTNBP2, DRC1, 
EPC2, FAM134C, GUCY1A2, ICA1L, KIAA1324L, KIRREL3, LOC100523745, LOC100626814, LRFN2, 
MAP3K14, PLAT, PPP6R3, and RGL1). Among them, three (CLSTN2, MAP3K14, and KIRREL3) were 
involved in developmental process, similar to GCM1. 

Finally, GLI2 functions as a transcription regulator in the Hedgehog (Hh) pathway. Sonic Hh 
(Shh) functions as a conserved morphogen in the development of various organs in metazoans—from 
Drosophila to humans [43]. It has also been reported that GLI2 is required for the proper development 
of placental labyrinth [44]. Among the 20 target genes of GLI2 (ADAM33, ALS2CL, ARHGAP39, 
CHRNA3, DAB1, ENSSSCG00000027019, EPC2, GUCY1A2, KIAA1324L, KIRREL2, LOC100155825, 
LOC100515685, LRFN2, OXNAD1, PKM, PPFIBP1, PPP6R3, SMARCD1, STAG1, and TNS3), two 
(DAB1 and KIRREL2) were related to the developmental process. The GCM1 and GLI1 modules 
shared eight target genes (ADAM33, CHRNA3, LRFN2, GUCY1A2, EPC2, PPP6R3, ALS2CL, and 
KIAA1324L). 

4. Conclusions 

This study not only provides a list of chromosomal regions and SNPs associated with 
economically important traits, but also their candidate associated genes. The information about the 
SNP markers and chromosomal regions associated with the studied traits could be considered as 
prior information in a genomic selection model. Additionally, to the best of our knowledge, this is 
the first study to propose a BF-based regulatory gene network, unlike AWM with p-value information 
reported previously. This co-association regulatory network created using BFAT as a key trait, would 
facilitate the validation of the genetic understanding of other economically important traits in pigs. 
These biologically non-similar traits` network could be very useful for the development of improved 
breeding strategies in the future. Further studies are needed to clarify the specific molecular or 
cellular processes of interaction among the TF trios and their target gene networks predicted to 
determine economically important traits in pigs. 
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