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Abstract: Changes in gut microbiota composition have consistently been observed in patients with 

colorectal cancer (CRC). Yet, it is not entirely clear how the gut microbiota interacts with tumor cells. 

We know that tumor cells undergo a drastic change in energy metabolism, mediated by microRNAs 

(miRNAs), and that tumor-derived miRNAs affect the stromal and immune cell fractions of the 

tumor microenvironment. Recent studies suggest that host intestinal miRNAs can also affect the 

growth and composition of the gut microbiota. Our previous CRC studies showed a high-level of 

interconnectedness between host miRNAs and their microbiota. Considering all the evidence to 

date, we postulate that the altered nutrient composition and miRNA expression in the CRC 

microenvironment selectively exerts pressure on the surrounding microbiota, leading to alterations 

in its composition. In this review article, we present our current understanding of the role of 

miRNAs in mediating host–microbiota interactions in CRC. 
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1. Introduction 

An average human intestine contains more than 100 trillion bacteria (collectively known as the 

gut microbiota) [1]. In recent decades, a number of studies have suggested that the gut microbiota is 

crucial to human health and to the development of diseases, including colorectal cancer (CRC) [2–7]. 

Those studies determined that altered microbiota composition and function (dysbiosis) is a common 

signature of CRC. Bacterial candidates such as Fusobacterium nucleatum and Bacteroides fragilis are 

consistently enriched in tumor tissues, and included in that signature. Specific factors in those 

bacteria, including FadA and Fap2 protein from F. nucleatum and B. fragilis toxins, that play a role in 

CRC pathobiology have been identified [8–16]. However, our knowledge of the vast majority of other 

bacteria associated with the CRC microenvironment is limited. Moreover, we are just beginning to 

understand the complex interactions between host and microbiota in CRC, as well as other clinical 

disorders including neurodegenerative diseases [17]. 

In healthy humans, a key factor associated with microbiota variations is host genetics [18–21]. In 

a study of healthy twins, Goodrich et al. found that host genetics drive microbiota composition and 

can also affect the host metabolic phenotype [19]. Several other studies have found an association 

between the abundance of Bifidobacterium species and the presence of single-nucleotide 

polymorphisms (SNPs) in close proximity to the host lactase gene locus [18,22]. This association 

suggests that the Bifidobacterium species conceivably assists the host in metabolizing lactose. 
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A recent CRC study found that loss-of-function mutations in the mitogen-activated protein 

kinase (MAPK) and Wnt signaling pathways are associated with specific sets of microbiota profiles 

[2]. Furthermore, mutations in the tumor-suppressor adenomatous polyposis coli (APC) gene are also 

associated with a distinct inter-microbiota association network [2]. These findings suggest that a 

common genetic factor might orchestrate the dynamic host–microbiota interaction(s) and functional 

relationship(s). Indeed, other recent studies have provided experimental evidence that microRNAs 

(miRNAs) can influence the survival and composition of gut bacteria [3,23,24]. Moreover, miRNAs 

have important intermediate roles in regulating CRC transformation and progression via the action 

of signaling pathways, including MAPK, Wnt, and APC [25,26]. MicroRNAs are small noncoding 

RNAs (about 22 nt) that play an important role in regulating and fine-tuning gene expression [27]. In 

mammalian cells, miRNAs regulate gene expression through posttranscriptional modifications in 

two distinct, albeit paired, mechanisms. First, if the miRNA has an extensive complementary binding 

site in the messenger RNA (mRNA) target, then it will guide the RNA-induced silencing complex 

(RISC) to cleave the mRNA, thus inhibiting translation. Second, if the miRNA only partially binds to 

the 3’ untranslated region (3’UTR) of the mRNA, then the miRNA-RISC will act to repress mRNA 

translation [28]. Both mechanisms lead to the decreased translation of mRNAs, which alters their 

respective downstream functions. Because miRNAs can act upon mRNA targets with limited 

complementarity, each miRNA can target a wide range of mRNAs in mammalian cells and each 

mRNA can be targeted by numerous miRNAs. More than 30% of human genes are estimated to have 

conserved binding sites in the 3’UTR [29]. Clearly, given this vast and enormously complex 

regulatory network, miRNAs are immensely important in regulating critical cellular processes. We 

are only now beginning to understand the sophisticated cross-talk of miRNAs, not only with each 

other, but with the myriad of target mRNAs. 

 

Based on mounting evidence, we postulate that the altered nutrient composition and miRNA 

expression in the CRC microenvironment selectively influences the surrounding microbiota, leading 

to alterations in its composition. In this review, we present our current understanding of the role of 

miRNAs in mediating host–microbiota interactions in CRC (Figure 1). After highlighting the 

evidence pointing to their central role, we reflect on the future direction of this rapidly evolving field. 
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Figure 1. Host–microRNA–microbiota interactions in colorectal cancer. Microbiota composition has a 

functional effect on the cancer cells, via stromal and tumor infiltrating immune cells by regulating 

various cellular process (1). Microbial-metabolites and other secreted factors affect miRNA/gene 

expression profiles in cells present in the tumor microenvironment. In turn, tumor cells affect the 

microbiota composition of the stromal and tumor infiltrating immune cells through shedding of 

epithelial cells and/or secreting extracellular vesicles (EVs) containing miRNAs (2). The tumor-

miRNAs alter the microbiota composition by affecting the gene expression of the microbiota and by 

delivering cancer-secreted metabolites (3). The tumor-derived miRNAs also have a role in regulating 

stromal and tumor infiltrating immune cells by affecting gene expression through miRNAs delivered 

in EVs (4). Such interactions will finally create a favorable microenvironment for tumor cells that 

include angiogenesis, immune evasion, and microbiota composition (5). 

2. Microbiota and Colorectal Cancer 

In the healthy intestine, the microbiota maintains a stable structure and actively participates in 

energy harvesting and nutrient production from undigested food [30,31]. However, this balance is 

disrupted in patients with CRC. Current evidence suggests that the microbiota regulates host 

functions via both metabolites and secreted factors. 

2.1. Microbial Metabolites 

In a normal colon, the microbiota produces a vast number of metabolites. Some of them, 

including vitamin K, biotin, and short-chain fatty acids (SCFAs), are essential for maintaining 

homeostasis in the colon microenvironment [31]. In fact, the major energy source (∼70%) required by 

colon epithelium is butyrate, which is produced by the microbiota through fermentation of complex 

carbohydrates. Without the microbiota, the colon epithelium undergoes autophagy and fails to 

maintain its normal structure and function [32]. Similarly, mice lacking a microbiota (i.e., germ-free 

mice or those treated by broad-spectrum antibiotics) develop significantly fewer tumors in the colon 

[33–35]. However, in humans, using broad-spectrum antibiotics to treat CRC is not feasible, because 

of the risk of introducing harmful and highly resistant secondary infections such as Clostridium 

difficile. 
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In our current understanding, a few main classes of bacterial metabolites play a key role in the 

pathogenesis of CRC and the immune microenvironment. These metabolites include SCFAs, 

polyamines, secondary bile acids, and phytochemicals. Their role in CRC has been extensively 

reviewed and documented [31,36–38]. We have recently also explored the role of miRNAs in 

mediating the effect of microbial metabolites on CRC and its microenvironment [39]. 

2.2. Microbial Factors 

Early studies consistently found a greater population of F. nucleatum in microbiota samples in 

patients with CRC than in healthy controls [40,41]. This bacterium is commonly found in the human 

oral microbiota and is frequently associated with gum diseases; it is, however, not commonly present 

in the gut microbiota. Through the Fap2 virulence factor, it uniquely binds with the D-galactose-β(1-

3)-N-acetyl-D-galactosamine (Gal-GalNAc) carbohydrate moiety expressed on the tumor surface of 

CRCs [14]. Once it localizes to the CRC microenvironment, it targets the Wnt/β-catenin signaling 

pathway by binding, via association with the FadA virulence factor, to the E-cadherin protein on the 

cell surface [16]. The Wnt/β-catenin signaling pathway is critical during tumor initiation, tumor 

migration, and metabolic reprogramming [42–45]. The role of the Wnt/β-catenin signaling pathway 

in CRC has been previously reviewed [45]. 

Another bacterial protein targeting the same Wnt/β-catenin signaling pathway is the Bacteroides 

fragilis toxin (bft) produced by B. fragilis [46]. The bft virulence factor is able to bind to the E-cadherin 

protein, similar to that of FadA, but additionally cleaves the protein, which can alter the intestinal 

tight-junction function [47]. The Wnt/β-catenin pathway is a major signaling pathway that controls 

the expression of many important tumor-related genes, including MYC. The transcription factor 

MYC, transactivates miRNAs, such as the miR-17-92 cluster, that are highly expressed in CRC [48–

51]. 

Additionally, F. nucleatum can also induce CRC cell proliferation by upregulating miR-21, via 

activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway via 

toll-like receptor 4 (TLR4) signaling [52]. The Escherichia coli bacterium harboring the pks genomic 

island also plays an important role in CRC. When CRC cells come in contact with the colibactin 

genotoxin produced by E. coli, the cells undergo cellular senescence [53,54]. This process is mediated 

by the cellular upregulation of miR-20a-5p, which results in the downregulation of sentrin-specific 

protease 1 (SENP1). This process then alters p53 small ubiquitin-like modifier (SUMO)ylation, which 

has been shown to affect the growth and metastasis of tumor cells [55]. 

In addition to factors that are virulent, many bacteria also produce beneficial factors that can 

reduce inflammation and modulate the immune system. In germ-free mice, early studies found 

impaired intestinal immune systems, which were amenable to treatment [56]. Specifically, the B. 

fragilis polysaccharide A (PSA) is one such immunomodulatory factor that maintains the proper 

function of CD4+ T cells [57]. Several other polysaccharides produced by B. fragilis are also beneficial 

in maintaining proper immune function. Immunization with B. fragilis polysaccharides, or the 

adoptive transfer of T cells specific to B. fragilis, can even boost the treatment effect of anti-cytotoxic 

T-lymphocyte antigen 4 (CTLA-4) immunotherapy [58]. The seemingly conflicting role of B. fragilis 

within gut bacteria is only the tip of the iceberg in current microbiota research and the fine and highly 

complex balance between functions. 

In light of all this evidence, we created the first system-level map of interactions between host 

miRNAs and the microbiota [3]. Our comprehensive map helped us analyze correlations between 

host miRNA expression levels and mucosa-associated microbiota profiles, specifically in patients 

with CRC.  

3. MicroRNAs and Colorectal Cancer 

Previous studies have identified numerous aberrant miRNA expression patterns in CRC [25,59–

62]. Specifically, the miR-17-92 cluster, miR-21, miR-182, and miR-503 are consistently overexpressed 

in tumor (vs. normal) tissues [3,26,48,49,59,63–71]. Any alteration(s) in expression levels of these 

miRNAs could, in turn, affect a wide array of downstream gene targets. Together, these miRNAs 
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regulate all aspects of tumor pathobiology, including (i) altering tumor metabolism; (ii) promoting 

cell proliferation; (iii) stimulating angiogenesis; (iv) down-regulating tumor-suppressor genes; (v) 

promoting evasion of immune surveillance; and (vi) creating a favorable tumor microenvironment 

that promotes invasion and metastasis. 

Our laboratory previously reported that, during the adenoma to adenocarcinoma transition, 

miR-182 and miR-503 were sequentially overexpressed and targeted the tumor-suppressor FBXW7 

gene [69]. Other researchers have observed, during CRC transformation, an increased expression of 

the miR-17-92 cluster and miR-21 [48,72]. In CRC adenocarcinoma, members of the miR-17-92 cluster 

target transforming growth factor-beta (TGF-β), which in turn stimulates angiogenesis in the tumor 

microenvironment, thus promoting tumor growth [70]. Additionally, miR-19, a member of the miR-

17-92 cluster, downregulates expression of the tumor-suppressor phosphatase and tensin homolog 

(PTEN), thereby activating the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) 

pathway in tumor cells [73]. The AKT/mTOR pathway is the main metabolic sensing pathway, 

responsible for regulating glucose transport into cells [74]. Since glucose is the main fuel source of 

CRC cells, an activated AKT/mTOR pathway promotes tumor cell proliferation [75]. 

The tumor-suppressor PDCD4 gene, which is commonly downregulated in CRC, is a target of 

miR-21 [67]. Inhibiting the PDCD4 gene can lead to an increase in the metastasis potential of tumor 

cells. Another important pathway commonly altered in CRC tumors is the Wnt/β-catenin pathway 

[25,26]. Dozens of miRNAs have been shown to extensively regulate the genes involved in the Wnt/β-

catenin pathway [25].  

The complex microenvironment of the CRC tumor also involves stromal cell and immune cell 

fractions, which can be regulated by cancer-derived miRNAs [76–78]. Studies have found that the 

miR-17-92 cluster, commonly overexpressed in CRC cells, is also upregulated in CRC stromal cells 

[68,72,79]. Strikingly, these miRNAs are not only endogenously produced by stromal cells, but also 

packaged in the microvesicles of tumor cells, and then delivered to stromal cells [80,81]. Similar 

intracellular regulation mediated by miRNAs is also found in immune cell fractions [82]. 

Additionally, endogenous miRNA dysregulation is prevalent in CRC immune cell fractions, usually 

as a downstream effect of tumor-secreted factors such as cytokines and chemokines [83–85]. 

Collectively, this evidence suggests that miRNAs are important in regulating tumor cells, in addition 

to maintaining the tumor microenvironment. It is clear that the relationship between miRNAs and 

CRC is multifaceted, interrelated, and highly complex. 

4. Host Regulation of Microbiota Mediated by MicroRNAs 

In reestablishing germ-free mice with a normal microbiota, studies have found altered intestinal 

miRNA profiles, suggesting that the microbiota regulates host miRNA expression [86,87]. Moreover, 

the responses of intestinal cells to facilitating the microbiota process depends on the cell type, and 

intestinal epithelial stem cells are especially sensitive to microbiota reestablishment [87]. 

Because miRNAs are highly stable, several studies in the clinical arena were able to detect higher 

levels of miR-21 and miR-92a, among other miRNAs, in the fecal samples of patients with CRC 

[65,88,89]. This finding facilitated in developing a noninvasive CRC screening method and 

delineating the potential role of miRNAs in interacting with the trillions of microbes in the human 

gut. 

Intestinal miRNAs develop from two main sources, including the host and the food [23,24]. The 

intestinal epithelial cells are the main contributors of host-derived miRNAs, either via shedding of 

cells or excretion of exosomes. Evidence has shown that miRNAs from food can be absorbed by the 

host and can affect host gene expression [90–92]. But certain food-sourced miRNAs remain stable in 

the digestive tract and reach the intestines [93,94]. This evidence suggests that miRNAs can mediate 

cross-species regulation. The idea remains nascent, so insight into how miRNAs mediate host–

microbiota interactions is still limited. Liu et al. first demonstrated such regulation, showing that 

miRNAs present in the feces can regulate gene expression and growth of bacteria [23]. Specifically, 

they found that mice lacking the Dicer gene, which enables mature miRNA processing, had different 
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microbiota profiles than wild-type mice. More importantly, the study reported that hsa-miR-515-5p 

promoted the growth of F. nucleatum in vitro by targeting the 16S ribosomal RNA (rRNA) gene. 

Notably, however, hsa-miR-515-5p shows very low expression levels in CRC tumors, so they are 

not significantly different from normal tissue. Thus, interactions between hsa-miR-515-5p and F. 

nucleatum might not be significant in CRC pathogenesis. However, more importantly, this study 

found that fecal miRNA transplantation restores fecal microbiota composition in mice with Dicer 

gene knockout. Several recent studies found that fecal microbiota transplantation (FMT) offers a 

potential therapeutic benefit that enables an immunotherapeutic response [35,95–98]. Based on 

growing evidence, it is plausible that fecal miRNAs play an important role in modulating the CRC 

microbiota as well as immunotherapy responses.   

Recently, Teng et al. demonstrated that miRNAs encapsulated in plant-derived exosome-like 

nanoparticles (ELNs) can enter bacteria and alter bacterial genes [24]. The process for bacterial uptake 

of ELNs is determined primarily by the lipid composition of the outer membrane. They found that 

ELNs enriched with phosphatidylcholine were preferentially taken up by the Ruminococcus species, 

whereas ELNs enriched with phosphatidic acid (PA) were primarily taken up by Lactobacillus 

rhamnosus. After the ELNs are taken up by specific bacteria, the miRNA contents are released into 

bacterial cells. Teng et al. also found that mdo-miR7267-3p encapsulated in the PA-enriched ELNs 

targets the Lactobacillus monooxygenase ycnE, which then increases its production of indole-3-

carboxaldehyde (I3A). The I3A metabolite then promotes interleukin-22 (IL-22) production and helps 

repair damaged colon mucosa [99]. 

There is developing evidence to support the notion that host or exogenous miRNAs might be 

biologically active in bacteria, thereby affecting bacterial gene expression. Although small RNAs 

similar to miRNAs exist in bacteria and function similarly to miRNAs, it remains unknown as to how 

miRNAs function in bacteria [100]. Several studies have reported that exogenous miRNAs from plant 

or animal sources can be taken up by human cells and exert biological functions [90–94,101–103]. 

Additional studies are required to ascertain whether miRNAs can indeed affect bacteria and to 

delineate the precise mechanism(s). 

5. Metabolic Changes in Colorectal Cancer and Microbiota Mediated by MicroRNAs 

The prevailing “driver-passenger” model suggests that dysbiosis in the CRC microbiota is 

initially caused by colonization of driver bacteria. This is followed by a gradual change in the tumor 

microenvironment, an increase in the number of driver bacteria, and secondary colonization of 

passenger bacteria that benefit from the changed environment [104]. That model, together with other 

studies, suggest that a gradual metabolic change in the tumor microenvironment during cancer 

progression could be the cause of dysbiosis [31]. Again, we explored that issue in our recent review 

of the role of miRNAs in mediating the effect of microbial metabolites on CRC and its 

microenvironment [39]. 

One of the hallmarks of tumor growth is their increased use of glycolysis as a main energy 

source, known universally as the Warburg effect [105]. Because the normal colon uses butyrate as its 

major energy source, any change in that source preferred by proliferating tumor cells will 

undoubtedly profoundly alter the nutrient composition of the tumor microenvironment [106,107]. 

Indeed, several studies have found altered metabolite levels in CRC tissues and stools [107–110]. A 

significantly lower glucose level and higher levels of lactate and fatty acids have been found in CRC 

tumor tissues, as compared with adjacent normal tissues. In stool samples from patients with CRC, a 

higher level of amino acids and a lower level of fatty acids have also been observed [108]. 

Interestingly, the CRC microbiota has shown reduced carbohydrate metabolism and an increase in 

the biosynthesis of amino acids and fatty acids [41]. In CRC, the switch in the nutrient source 

preferred by proliferating tumor cells appears to alter the nutrient composition in the tumor 

microenvironment. At the same time, the nutrient metabolism of the tumor microbiota seems to 

complement the nutrient needs of the tumor. This could be due to factors associated with the tumor 

nutrient microenvironment, and by the miRNAs excreted by tumor cells, on the surrounding 

microbiota [3]. Given the role of miRNAs in mediating such metabolic changes, we believe that 
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miRNAs play a central, if not critical role, in mediating host–microbiota metabolic interactions in 

CRC. 

6. Conclusions and Perspectives 

With thousands of bacterial species living in the human digestive tract, it is becoming quite 

evident that they profoundly affect human health. Our review of the recent literature regarding CRC 

underscores a complex metabolic interplay between the host and its microbiota, mediated in part by 

miRNAs. Based on the current literature, we offer five major points in host–microbiota interactions 

mediated by miRNAs (Figure 1):  

1. The CRC microbiota has reduced representation of beneficial bacteria. These bacteria 

produce metabolites and other factors that can potentially slow CRC progression, in part via 

the modulation of miRNAs that regulate tumor cells. 

2. Dysregulation of miRNAs in tumor cells can affect the survival, or the gene expression, of 

certain bacteria in the microbiota.  

3. Dysregulated miRNAs in tumor cells can be packaged and delivered to both stromal and 

immune cell fractions, creating a more favorable microenvironment for tumor cells. 

4. Overrepresentation of oncogenic bacteria in the CRC microbiota can modulate tumor cells, 

as well as the tumor microenvironment, through miRNA modulation, thereby resulting in a 

more favorable condition for tumor growth. 

5. This negative feedback loop perpetuates CRC progression.  

Potential methods to break such a negative feedback loop include: 

1. Interfering with host-mediated microbiota modulation by designing strategies to deliver 

anti-miRNAs to block the effect of host-miRNAs on the microbiota.  

2. Modulating the microbiota through miRNAs that promote the growth of beneficial bacteria 

while suppressing the growth of oncogenic bacteria, in conjunction with chemotherapy or 

immunotherapy. 

Based on both experimental and computational data, we conclude that miRNAs mediate and 

critically influence host–microbiota interactions. Clearly, miRNAs are a major part of a complex web 

of highly dynamic interactions. Other factors, such as nutrient availability in the CRC 

microenvironment, could also play an important role. In the future, it will be imperative to use a 

combination of approaches to comprehensively survey the CRC microenvironment, in order to 

discover all potential players in mediating such interactions. 
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