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Abstract: Globe artichoke represents one of the main horticultural species of the Mediterranean 

basin, and ‘Spinoso sardo’ is the most widespread and economically relevant varietal type in 

Sardinia, Italy. In the last decades, in vitro culture of meristematic apices has increased the frequency 

of aberrant plants in open-field production. These off-type phenotypes showed highly pinnate-

parted leaves and late inflorescence budding, and emerged from some branches of the true-to-type 

‘Spinoso sardo’ plants. This phenomenon cannot be foreseen and is reversible through generations, 

suggesting the occurrence of epigenetic alterations. Here, we report an exploratory study on DNA 

methylation patterns in off-type/true-to-type globe artichoke plants, using a modified EpiRADseq 

technology, which allowed the identification of 2,897 differentially methylated loci (DML): 1,998 in 

CG, 458 in CHH, and 441 in CHG methylation contexts of which 720, 88, and 152, respectively, were 

in coding regions. Most of them appeared involved in primary metabolic processes, mostly linked 

to photosynthesis, regulation of flower development, and regulation of reproductive processes, 

coherently with the observed phenotype. Differences in the methylation status of some candidate 

genes were integrated with transcriptional analysis to test whether these two regulation levels might 

interplay in the emergence and spread of the ‘Spinoso sardo’ non-conventional phenotype. 

Keywords: globe artichoke; in vitro culture; DNA methylation; EpiRADseq; epigenetics; somaclonal 

variation 

 

1. Introduction 

Globe artichoke (Cynara cardunculus L. var. scolymus) is a diploid (2n = 2× = 34), mostly cross-

pollinated species native of the Mediterranean basin, with a genome size of ~1.07 Gbp [1]. It is a 

perennial crop belonging to the Asteraceae family, mostly cultivated for its edible immature 

inflorescence (capitulum), but also exploited as a source for the production of nutraceutically and 

pharmaceutically active compounds [2–6] as well as of biofuels and oil crop [7–10]. The ‘Spinoso 

sardo’ is the most widespread and economically relevant varietal type in Sardinia (Italy). 
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In globe artichoke, the traditional propagation method, based on the use of underground 

dormant buds (‘ovoli’) and vegetative offshoots (‘carducci’), gives rise to some agricultural issues such 

as plant heterogeneity, multiplication low rate, and disease transmission [11,12]. Globe artichoke 

virus-free propagation via in vitro culture of meristematic apices [13–16] has been well-established 

in order to preserve the quality of these élite plants. However, in recent years, breeders observed a 

dramatic increase in the appearance of an aberrant phenotype after open field transplantation of in 

vitro germinated ‘Spinoso sardo’ plantlets (Figure 1). In field, different branches of the same plant 

manifest two highly distinguishable phenotypes: the standard early flowering true-to-type, showing 

large and open leaves, and the late flowering off-type characterized by narrow, darker, and septate 

leaves. 

 

Figure 1. ‘Spinoso sardo’ plants showing aberrant phenotype. (A) Example of an aberrant ‘Spinoso 

sardo’ plant in field, showing branches with both standard true-to-type (red arrow) and off-type 

(black arrow) leaves. (B) In vitro plantlets showing off-type (on the left) and true-to-type (on the right) 

leaves. 

The phenotypic variability observed among regenerated plants, commonly known collectively 

as ‘somaclonal variation’, has a negative agronomical impact as it severely reduces the genetic 

uniformity required for the maintenance of ‘Spinoso sardo’ genotype. In fact, neither ‘Spinoso sardo’ 

plants carrying those alterations nor heads produced by these branches can be commercialized as a 

protected designation of origin (PDO) product ‘Carciofo Spinoso di Sardegna’, lacking the desirable 

élite traits. As these events severely affect the Sardinian agricultural economy, preliminary studies 

were conducted in order to verify if some biological factors (e.g., subculture number, explant size, 

and age) might play a role in triggering such a phenotypical aberration. However, the molecular 

determinants of off-type phenotypes remained far from being elucidated [17]. 

This phenomenon might be associated to both gene mutations and changes in epigenetic marks 

[18]. The off-type appearance is unpredictable and reversible through globe artichoke progenies, 

suggesting that epigenetic mechanisms, rather than genetic mutations, might be triggered during the 

observed phenotypical rearrangement. Epigenetics refers to heritable changes in patterns of gene 

expression that occur without alterations in DNA sequence. Epigenetic mechanisms involve covalent 

modifications of DNA and histones, which affect transcriptional activity of chromatin [19]. Multiple 

aspects of plant development, including flowering time, stress response, and morphological changes, 

are directly or indirectly modulated by epigenetic marks, most of which are related to DNA 

methylation [20–24]. In plants, DNA methylation occurs in the symmetric contexts CG and CHG (H 

= C, A, or T), and the asymmetric context CHH [19]. CG methylation is maintained through hemi-

methylated CG sites, which are complementarily added to the un-methylated newly synthesized 

DNA strand during DNA replication, whereas CHG and CHH methylation are established and/or 

maintained by self-reinforcing loops [25]. 

Although changes in DNA methylation may spontaneously arise [26,27], genetic and 

environmental elements are almost certainly more important. The genetic factors affecting DNA 

methylation include the presence of structural variations, such as transposable elements (TEs) 

insertions/deletions (indels), chromosome rearrangements, and mutations in methylation factors 
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[28,29], whereas important environmental conditions include temperature, drought, and other 

stresses [30–33], as well as in vitro culture [34–36]. 

Multiple molecular techniques have been developed to assess variation of genomic DNA 

methylation patterns in plants [37], with whole-genome bisulfite sequencing (WGBS; [38]) being the 

one displaying the highest resolution, yet the most requiring in terms of costs and computational 

processing. Thus, studies concerning the DNA methylation in non-model species, characterized by 

large and complex genomes, mostly rely on restriction-enzyme-based methods such as EpiRADseq 

[39]. 

Despite the availability of the globe artichoke genome sequence [1], as well as some resequencing 

data [40], and the recent identification and partial characterization of the three main classes of 

methyltranferases [41], global epigenomic studies have never been profiled in this species. 

Here, we report an exploratory study on DNA methylation patterns on true-to-type and off-type 

leaves coming from three independent ‘Spinoso sardo’ plants, using the EpiRADseq method [39] with 

some modifications (Marconi et al., in preparation [42]). This approach allowed the identification of 

a set of differentially methylated loci (DML), mainly involved in flower development, 

photosynthesis, and regulation of reproductive processes, suggesting that further investigations on 

in vitro-derived epigenetics changes and their regulation might provide insights on the molecular 

pathways likely involved in the emergence of non-conventional phenotypes in globe artichoke. 

2. Materials and Methods 

2.1. Plant Material, Growth Conditions, and Samples Collection 

Clones of the AGRIS3 selection of ‘Spinoso sardo’, were obtained by AGRIS agency (S’Appassiu 

Research Center, Cagliari, Italy) via in vitro culture of meristematic apices in growth chambers at 22 

°C for 20 days under long day (16-h light, 8-h dark) photoperiods, as previously described [43]. 

Micropropagated plantlets were transferred in soil and grown in growth chambers under the same 

conditions for 20–30 days, then transplanted in open field in Cagliari (S’Appassiu Research Center), 

Italy (39°18 ′N, 8°55 ′E, 17 m a.s.l.). Three independent ‘Spinoso sardo’ plants, showing both true-to-

type and the off-type leaves (Figure 1A) at the same age and developmental stage were chosen for 

sampling. Sample collection was conducted simultaneously for the three biological replicates, 3 

months after open field transplantation, when the aberrant phenotype was evident and stable. Leaves 

from the true-to-type and the off-type branches of the same plant were collected separately, using the 

same tissue portions for each leaf, flash-frozen in liquid nitrogen, and stored at −80 °C. This material 

was used to perform both the DNA and RNA analyses reported below. 

2.2. Library Preparation 

Genomic DNA was extracted from 100 mg of flash-frozen leaves following the CTAB standard 

protocol [44]. Total DNA was quantified using a Qubit fluorometer 2.0 (Thermo Fisher Scientific, 

Waltham, MA, USA) and quality was assessed by 0.8% (w/v) agarose gel electrophoresis. A total of 300 

ng of DNA from each sample were used for EpiRADseq library preparation. Libraries were prepared 

by employing the EpiRADseq protocol [39] with some modifications (Marconi et al., in preparation 

[42]). In brief, three true-to-type and three off-type DNA samples were used to prepare methylation-

context-specific libraries. Firstly, samples underwent a double enzymatic cut (37 °C/4 h) involving the 

methylation-insensitive MseI in combination with a methylation-sensitive enzyme, able to recognize 

exclusively one of the three contexts. For CG, CHH, and CHG methylation contexts, we used AciI/MseI, 

EcoT22I/MseI, and Fnu4HI/MseI combinations, respectively. After restriction reaction and barcoded 

adapter ligation (Table S1), samples were pooled and size-selected, by two purification steps based on 

AMPure XP beads (Beckman Coulter, Brea, CA, USA) to rescue fragments of ~300–500 bp. Pooled 

fragments were then biotinylated at the 5′ end through a single PCR cycle using a P1-biotynilated 

primer. Biotinylated DNA was mixed with Dynal M Streptavidin beads (Thermo Fisher Scientific) and 

bead-fragment complexes were immobilized on a magnetic base. Supernatant was removed, beads 

washed twice, and DNA released from beads with water. Resulting libraries followed a 10-cycles 



Genes 2019, 10, 263 4 of 19 

 

enrichment PCR reaction using adapter specific primers (Kapa Biosystems, Boston, MA, USA) and 

underwent a final beads purification. Library quality and fragment size were checked using Agilent 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and the DNA was quantified by qPCR on a 

Step One Plus Instrument (Applied Biosystem, Foster City, CA, USA) using KAPA library 

quantification kit (Kapa Biosystems). Finally, libraries were sequenced with 1 × 150 bp single read 

chemistry on a NextSeq500 (Illumina, San Diego, CA, USA) instrument, using the High-Output Flow 

Cell configuration to obtain ~30 M reads. 

2.3. Bioinformatics Analysis 

Since the EpiRADseq method is based on methylation-sensitive enzymes that do not cut the 

genome when a cut site is methylated (and thus do not deliver a sequence read), the quantity of reads 

mapping to a particular locus provide evidence for the degree of methylation. Therefore, the 

detection of methylation status for each locus was obtained by counting methylated/un-methylated 

loci for each experimental sample. All the scripts used in the pipeline are reported in Supplementary 

Materials File S1. 

2.3.1. Demultiplexing and Cleaning of Reads 

Raw reads were quality filtered running Sickle (https://github.com/najoshi/sickle), followed by 

removal of adapter sequences through Scythe (https://github.com/vsbuffalo/scythe). Reads 

belonging to CG and CHH libraries were demultiplexed using the process_radtags tool (STACKS 

v.1.19 package, [45]), which identified and assigned reads to each individual on the basis of 7-bp 

custom barcode sequences (trimmed after the analysis) and expected adjacent sequence derived from 

the context methylation-sensitive enzyme restriction. A manual demultiplexing of CHG reads, which 

were not recognizable by process_radtags, was conducted with a custom bash script mimicking the 

computations steps of process_radtags. 

2.3.2. Differentially Methylated Loci Identification 

According to Reference [39], the analysis underwent a multistep approach (schematically 

reported in Figure S1): (i) creation of a pseudo-reference merging all loci of each library type (i.e., 

AciI, EcoT22I, and Fnu4HI) using the clustering algorithms Rainbow and CD-HIT [46,47]; (ii) mapping 

the reads on the relative pseudo-reference with BWA [48], using the mem command with default 

parameters; (iii) counting methylated/un-methylated loci and producing count-files for each library 

(loci-count files). Biased loci were preliminarily filtered out, using a Student’s t-test p < 0.05, adjusted 

for multiple testing using the Benjamini and Hochberg method [49]. All the loci (loci-count files) 

showing corrected false discovery rate (FDR) values below 0.05, were used for principal component 

analysis (PCA) analysis and hierarchically clustering. PCA was obtained using R tools implemented 

in https://biit.cs.ut.ee/clustvis/. Hierarchically clustering was performed using Genesis Software 

(http://genome.tugraz.at/, [50]), with default parameters, maintaining all the replicate values. To 

provide a stringent list of statistically significant loci between true-to-type and off-type loci, in each 

methylation context, we used pairwise exact test of the negative binomial distribution implemented 

in edgeR [51] pipeline (Fisher’s exact test p < 0.01) applied to mean data, setting true-to-type as wild-

type condition. All loci that satisfied such conditions were defined as differentially methylated loci 

(DML) and used for further bioinformatics analyses. 

2.3.3. DML Annotation 

Differentially methylated loci were, then, back-aligned on the globe artichoke genome with 

BWA-SW command [48] and functionally annotated intersecting loci coordinates with the ‘2C’ 

(www.artichokegenome.unito.it, [38]) and the ‘Spinoso di Palermo’ [40] globe artichoke annotation 

data with BEDTools (http://bedtools.readthedocs.io, [52]). For the classification of structural features, 

we defined three possible genomic locations harbouring loci: (i) upstream regions (2,000 bp upstream 

of the translational start, start codon), (ii) intragenic regions (coding DNA sequence, CDS), and iii) 
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downstream regions (2,000 bp downstream of the translational stop, stop codon). Unknown genomic 

regions were further annotated using tBlastx (https://blast.ncbi.nlm.nih.gov/Blast.cgi) within 

Arabidopsis proteome, with default parameters and assigning putative functions to hits with e-value 

< 1e-10. Differentially methylated loci datasets underwent a Gene Ontology (GO) categorization using 

an online GO mapper suite (https://go.princeton.edu/cgi-bin/GOTermMapper), selecting a plant 

generic GO slim mode. 

2.4. RNA Isolation and Gene Transcription Analysis 

RNA was extracted from 100 mg of flash-frozen leaves with the RNeasy Plant Mini Kit (Qiagen, 

Hilden, Germany) following the manufacturer’s instructions. RNA samples were retro-transcribed 

in cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystem). cDNA of 

true-to-type and off-type samples were tested on Step One Plus Real Time PCR (Applied Biosystem) 

and the transcript level was calculated using the ΔΔCT method. As housekeeping genes, actin 

(XM_025103545) and elongation factor 1 (EF1, XM_025112661) were chosen for their stability of 

transcript level [53]. RT-qPCRs were performed in three biological and three technical replicates 

using 2X Power SYBR® Green PCR Master Mix (Applied Biosystem). PCR conditions comprised an 

initial incubation of 95 °C/10 min, followed by 35 cycles of 95 °C/15 s and 60 °C/45 s. Melting curve 

analysis was performed at the end of amplification. Standard curves were analyzed using Step One 

Plus software. Primers used in this analysis were designed on the ‘Spinoso di Palermo’ re-sequenced 

genome [40] using Primer 3 v.4.1.0 software (http://bioinfo.ut.ee/primer3/) and their sequences are 

reported in Table S2. A T-test was performed to assess the statistical significance of different 

transcript levels between the three true-to-type and three off-type replicates. 

2.5. miRNA Target Genes Analysis 

Genic DML were subjected to a miRNA target analysis using the psRNATarget 

(http://plantgrn.noble.org/psRNATarget) tools using the C. cardunculus specific miRNA database 

(miRBase release 21) and default conditions (i.e., schema V2, 2017), considering a maximum 

expectation of 5 and inhibition of translation for mismatches in the 10th to 11th mature miRNA 

nucleotides. A GO enrichment analysis of miRNA target genes was implemented using the 

enrichment term engine (GO terms, KEGG pathways/INTERPRO domain) implemented in STRING 

(https://string-db.org), with false discovery rate <0.01. 

2.6. Accession Code 

Sequencing raw data were deposited in Sequences Read Archive under the accession number 

SRP150592. 

3. Results 

3.1. Sequencing Results 

Illumina sequencing generated 27.28 M raw reads, which were de-multiplexed in the three 

methylation-context-specific original libraries. In particular, three datasets containing 14.92 M, 8.58 

M, and 2.27 M reads were populated for the CG (AciI library), CHH (EcoT22I library) and CHG 

(Fnu4HI library) context, respectively. Approximately 3.5% of reads were identified as low quality 

after the process of trimming and cleaning and were removed (Table S1). The remaining 26.3 M reads 

(96.5%) were kept for mapping and subsequent bioinformatics analyses (Table S1). 

3.2. Differentially Methylated Loci 

For each context-specific set of loci, a pseudo-reference was constructed [39]. Reads from specific 

libraries were back-aligned on each pseudo-reference with an average mapping efficiency of 97% for 

CG, 92.1% for CHH, and 98.4% for CHG. Overall, 121,694 loci in CG, 172,934 in CHH, and 117,195 in 

CHG contexts were assessed and the number of high-quality reads mapped to each locus was 
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counted. Biased loci were filtered-out and 5,036 CG, 5,552 CHH, and 2,171 CHG high-quality loci 

were retained for further analyses. To detect consistent shift in methylation patterns between true-

to-type and off-type samples, PCA and hierarchical clustering analyses of filtered DML were 

performed, considering all the replicates. PCA for all the three contexts graphically showed the 

separation between samples based on methylation levels of DML (Figure S2). The first component 

(PC1) accounted for 82.5%, 79.6%, and 83% of the total variance, for CG, CHH, and CHG, respectively, 

and clearly discriminated off-type from true-to-type replicates indicating that methylation changes 

occurs between these two contrasting phenotypes. The three resulting heatmaps displayed a 

consistent methylation trend between true-to-type and off-type biological replicates (Figure 2). In CG 

and CHH contexts, an almost even distribution between hypo (~47%, 2,367 out of 5,036, and 2,601 out 

of 5,552, respectively) and hyper (~53%, 2,669 out of 5,036, and 2,951 out of 5,552) methylated loci was 

observed in true-to-type samples compared to the off-type ones. Differently, in CHG, roughly 40% of 

DML showed a hypo-methylated (862 out of 2,171) and ~60% a hyper-methylated (1,309 out of 2,171) 

behavior in true-to-type samples compared to the off-type ones (Figure 2). The edgeR pipeline 

provided a stringent list of statistically significant loci for each context of methylation; in particular, 

1,998 DML in CG, 458 DML in CHH, and 441 DML in CHG were observed. Using DML sequences 

and coordinates extrapolated from the main clusters of each heatmap, we observed that loci detected 

in CG and CHG were mainly present in intragenic regions (44% and 68%, respectively), while the 

majority of CHH loci were in upstream regions (54%), where gene promoters are normally located 

(Figure 3). 

 

Figure 2. Heatmaps of CG, CHH, and CHG differentially methylated loci. Normalized loci, expressed 

as log2 (Fold Change) of the relative count numbers, from three replicates of true-to-type and off-type 

samples, were clustered using hierarchical average linkage clustering and Euclidean distances (p ≤ 

0.05). Columns and rows represent samples assayed (true-to-type on the left, off-type on the right) 

and differentially methylated loci (DML), respectively. For each methylation context two main 

clusters are distinguishable, showing an opposite methylation trend between true-to-type and off-

type phenotypes. Color-code of differential methylation state is reported on the bottom left, resulting 

in values between −3 (= maximum level of methylation; blue) and 3 (= no methylation; orange). 
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Figure 3. Genome-wide distribution of DML. Different localization of differentially methylated loci 

in the three contexts of methylation is highlighted in the bar plots. N is the library-specific number of 

DML obtained in the bioinformatics analysis. Upstream regions are identified in a window of 2,000 

bp upstream the translational start (start codon), intragenic regions overlap with coding DNA 

sequence (CDS), downstream regions refer to a window of 2,000 bp downstream the translational 

stop (stop codon). 

3.3. DML Annotation and GO Categorization Analysis 

Functional annotation of DML was conducted on the bases of the available ‘2C’ globe artichoke 

reference genome (www.artichokegenome.unito.it). The DML located within coding regions were 

960 of which 720 out of 1,998 in CG, 88 out of 458 DML in CHH, and 152 out of 441 DML in CHG 

methylation contexts (Table S3). 

Gene ontology (GO) analysis of all coding DML revealed different GO terms (Figure 4). Among 

biological processes (BP), remarkable GO terms were observed in: photosynthesis, transmembrane 

transport, reproduction, protein folding, chromosome organization, protein targeting, 

developmental maturation, and anatomical structure formation involved in morphogenesis. With 

respect to molecular functions (MF), prevalent GO terms were: ion binding, oxidoreductase activity, 

transmembrane transporter activity, ATPase activity, peptidase activity, unfolded protein binding, 

protein transporter activity, and cytoskeletal protein binding. For cellular components (CC), the most 

relevant GO terms were: cytoplasm, plastid, protein-containing complex, thylakoid, plasma 

membrane, mitochondrion, vacuole, nucleoplasm, chromosome, cytoskeleton, and endosome. 
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Figure 4. Gene ontology (GO) categorization of genic DML—(A) biological processes; (B) molecular 

functions; (C) cellular components. The blue bars indicate input, represented by all true-to-type and 

off-type loci, while the orange bars indicate background genome genes. 

3.4. Gene Transcriptional Analysis 
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A subset of interesting genes for each methylation context was selected for additional 

transcriptional analyses. We focused on 14 genes, which showed a perfect restriction site in the locus 

sequence and are involved in epigenetic and transcriptional regulation of organ and developmental 

maturation and plant reproduction (e.g., GO:0021700, GO:0048646, and GO:0000003), processes likely 

fitting to our contrasting phenotypes [54–68] (Table 1). In order to study whether the transcription of 

differentially methylated genes varies between true-to-type and off-type biological replicates, qPCRs 

on the cDNA derived from the same leaves used for the EpiRADseq analysis were performed. Five 

genes, namely ATX1, SCAR2, TPL, TSO1 and MED33A, showed a statistically significant difference 

in transcription between true-to-type and off-type replicates (Table 2 and Figure S3). 

Table 1. Features belonging to a subset of differentially methylated loci. Loci are characterized by 

context, hypo-methylation (‘−‘) or hyper-methylation (‘+’), genomic position, gene ID, and putative 

function. 

Locus epi-RADseq Context 
True-to-type 

locus 

Off-type 

locus 
Gene name 

Genomic 

position 
Gene ID Function Ref. 

E8364_L143 ACI - + IDM1 exon Ccrd_v2_02819_g02 epigenetics regulation [51] 

E245746_L143 FNU - + AHK2 exon Ccrd_v2_04778_g02 plant organ size, flowering time and plant longevity [52] 

E232952_L143 ACI + - ATX1 exon Ccrd_v2_10262_g06 regulation of flowering [53, 54] 

E258509_L71 ECO - + HST exon Ccrd_v2_10596_g06 regulation of morphogenesis [55] 

E421706_L143 ACI - + COL2 exon Ccrd_v2_11089_g07 circadian-clock dependent regulation of flowering time [56] 

E225812_L143 FNU - + ARF19 exon Ccrd_v2_11769_g08 lateral organ development [57] 

E243304_L143 FNU - + TSO1 exon Ccrd_v2_12311_g08 flower organogenesis and development [58] 

E339914_L127 ECO - + SCAR2 exon Ccrd_v2_13193_g09 regulation of plant morphogenesis and flowering [59] 

E243912_L143 FNU - + MED33A exon Ccrd_v2_13680_g09 transcriptional regulation of flowering time [60] 

E255497_L143 ACI - + JMJ25 exon Ccrd_v2_19643_g13 epigenetic regulation of development [61] 

E172485_L143 FNU - + HAP2 exon Ccrd_v2_22114_g15 plant reproduction organs [62] 

E256023_L143 ECO + - TPL exon Ccrd_v2_22902_g16 regulation of flowering [63] 

E244185_L143 ACI + - ANL2 exon Ccrd_v2_26026_scaffold_1939 epigenetic regulation of flowering time [64] 

E245348_L143 FNU - + FRS5 exon Ccrd_v2_10161_g06 light-induced regulation of plant development [65] 

Table 2. Transcriptional and miRNA target analyses of a subset of differentially methylated genes. 

For each gene transcription level, miRNAs and presence in the interactomic analysis are reported. 

Gene 

Name 
Transcription Level miRNA Target 

Interactome miRNA 

Target 

ATX1 
Down-expressed in 

off-type 

Cca-miR6107, cca-miR167, cca-

miR172 
- 

SCAR2 
Down-expressed in 

off-type 
cca-miR319 yes 

TPL 
Down-expressed in 

off-type 
Cca-miR396b yes 

TSO1 
Down-expressed in 

off-type 

Cca-miR395b, cca-miR395c, cca-

miR6116-5p 
- 

MED33A 
Down-expressed in 

off-type 
cca-miR160a yes 

3.5. microRNAs Target in Silico Analysis 

The analysis revealed that some coding differentially methylated loci were either putative 

miRNA targets or secondarily involved in miRNA pathways (S4 Table). In details, 442 putative 

miRNA-miRNA target associations were predicted, consisting of 236 unique target genes and 59 

unique miRNAs. To investigate any relations among those genes found to be jointly differentially 

methylated and putative miRNA target, an interactomic map was established (Figure 5). Regarding 

the interactions observed in the network made of DML putative target of miRNA, a number of 205 

nodes and 313 edges were observed (average node degree = 3.05). Considering the value of 211 as the 

expected number of edges for 205 nodes, this network had significantly more interactions than 

expected (PPI enrichment p-value = 4.13e-11). A sub-network was observed, related to (1) primary 

metabolic process (GO:0044238, 77 genes, Figure 5), mostly involved in photosynthesis. In addition, 
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we observed some enrichments, likely coherent with phenotype: (1) regulation of flower 

development (GO:0009909, 8 genes); (2) regulation of reproductive process (GO:2000241, 7 genes). To 

prove that the enrichment above reported was not an effect of bioinformatics artefacts and 

rearrangements, a random sampled set of sequences was assayed as well, without producing any 

enrichment. Among all the putative miRNA targets revealed by psRNA target analysis, the 

statistically significant genes for transcriptional analysis (ATX1, SCAR2, TPL, TSO1 and MED33A, 

Table 2) showed to be in silico targets of miRNAs involved in plant developmental processes such as 

flowering transitions, floral meristem formation, or cell differentiation (e.g., miR167, miR160, miR172, 

and miR396, Table 2, Table S4). 

 

Figure 5. Interactome graph of the DML miRNA target and selected GO enrichments. Enrichments 

are highlighted as red/blue/green dots, as shown in the legend. 

4. Discussion 

Vegetative multiplication is the privileged method for the propagation and the maintenance of 

élite genotypes to preserve their characteristic traits. However, it has been well established that in 

vitro techniques favor the emergence of unwanted variability in many species [69,70]. Some examples 

of this phenotypic variability are the ‘mantled’ flowers in oil palm [71], the bushy plants in gerbera 

[72], the dwarf ‘choke-throat’ or giant plants in banana [73,74], and the variation of the leaf shape in 

begonia [75]. 

Globe artichoke ‘Spinoso sardo’, is an elite varietal type, which has been recently registered as a 

PDO product (namely ‘Carciofo Spinoso di Sardegna’, IT/PDO/0005/0687), representing the most 

profitable income for Sardinian rural economy. The in vitro culture of meristematic apices is a 

common method used to obtain systemic pathogen-free globe artichoke plants and a higher clonal 

multiplication rate compared to conventional agamic multiplication. Although, in species such as 

sweet potato [76] and cassava [77] meristem micropropagation has often been reported as the 
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technique that allows growers to obtain plants more faithful to the parental plant phenotype, in globe 

artichoke, a phenotypic variability already described [78,79] occasionally happens. Indeed, in 

‘Spinoso sardo’ production, some plants show two different phenotypes: the off-type, characterized 

by highly pinnate-parted leaves and a late budding of the inflorescence, in contrast with the desirable 

true-to-type phenotype. This phenomenon is unpredictable and may occur in micro-propagated 

plants in in vitro phase as well as later, in open fields. Phenotypic, cytological, and biochemical 

deviations expressed in the progeny of plants regenerated from in vitro culture are known as 

‘somaclonal variation’ [80]. 

Genetic (i.e., single base-pair changes, chromosome deletions, translocations, insertions, and 

changes in ploidy) as well as epigenetic (e.g., DNA methylation) alterations are often associated with 

in vitro propagation. Both these alterations are genotype-dependent [81] and influenced by the 

explant source, as well as by the stressful in vitro environmental conditions (i.e., high relative 

humidity, culture period length, high concentrations of sugars and plant growth regulators, and low 

light availability, [18]). Even though there is no doubt that DNA sequence mutations are the primary 

cause of growth defects, local DNA methylation variants and correct transmission of epigenetic 

marks are crucial for plant development [36]. Alterations in global methylation patterns in in vitro 

culture have been reported [82], and reflect the adaptation process of cells to a different environment 

which includes the response to signals that may trigger switches in the developmental program. So 

far, in ‘Spinoso sardo’ factors like the number of subculture cycles, the sampling period and the 

relative size of offshoots (containing meristem apex) have been investigated to study their potential 

correlation with the off-type phenotype emergence [43,83]. Results showed that the sampling period 

did not influence the number of aberrant phenotypes [83]. On the other hand, the percentage of off-

type plants grew with the increase in the number of subcultures and the reduction in the size of the 

explant [80]. The unpredictability of the phenomenon seems in line with the hypotheses of either 

genetic or epigenetic changes as a cause of the off-type plants. However, morphological variance in 

each plant does suggest an epigenetic cause (rather than genetic). Baránek and collaborators [84] 

found consistent differences in methylation sensitive amplification polymorphism (MSAP) profiles 

of daughter plants recovered from field cuttings and micro-propagated nodal segments of two 

grapevine varieties. Kitimu and collaborators [70] combined MSAP and methylation sensitive GBS 

(msGBS; [85]) to survey for DNA methylation variations between samples of cassava (Manihot 

esculenta) taken from field-grown cuttings and those recovered from meristem culture. Therefore, this 

study was aimed at understanding whether DML could be the basis of the phenotypic difference 

between true-to-type and off-type. Due to the complexity of the globe artichoke genome and the lack 

of epigenetic data for this species, here we employed EpiRADseq to gain a general picture of globe 

artichoke genome-wide DNA methylation. Despite their limited resolution, methylation assessments 

based on restriction-enzyme have been largely performed in the last decade and still represent the 

most used and feasible strategies to study DNA methylation patterns in wild non-model plants [86–

88]. In this study, EpiRADseq protocol [39] was employed with some modifications (Marconi et al., 

in preparation [42]). In particular, to study the CG context, the commonly used HpaII enzyme [39,86] 

was replaced with AciI, which is completely inhibited in the presence of methylated cytosine in its 

restriction site. Furthermore, the use of Fnu4HI enzyme, which recognizes the 5′-GCNGC-3 ′site, and 

EcoT22I, which has a 5′-ATGCAT-3′ site, allowed us to study the methylation in the CHG and CHH 

contexts, respectively. Our approach allowed the investigation of DML between true-to-type and off-

type sets of samples in the plant-specific three-methylation contexts, where they showed differences 

in both genomic position (Figure 3) and correspondence with DNA methylation levels. Interestingly, 

most of them belong to genes directly or indirectly involved in reproductive processes and organ 

development and morphogenesis (Figure 4), which are largely affected by environmental stresses 

and DNA methylation switches. 

Methylation in all contexts is located within transposable elements, which are nearly 

ubiquitously methylated in land plant genomes to guarantee biological integrity and transcriptional 

homeostasis [89]. In addition to transposons, DNA methylation frequently occurs in active plant 

genes [90]. Although there is evidence that methylation is shaped by transcriptional activity in 
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Arabidopsis [91], how this synergistic interplay of DNA methylation and transcription takes place in 

non-model species has not been explored yet. Bioinformatics analysis highlighted a set of 14 

candidate genes (Table 1) harboring significant differences in methylation level between true-to-type 

and off-type samples, which were thus used to assess transcriptional analysis. Five genes (TPL, 

SCAR2, MED33A, ATX1 and TSO1, Table 2) showed a statistically significant difference in 

transcriptional level between the true-to-type and the off-type biological replicates, with a decrease 

in the transcriptional activity of off-type replicates (Figure S3). However, cytosine methylation status 

is different among those genes. Namely, SCAR2, TSO1, and MED33A were hypo-methylated in the 

restriction site, recognized by the restriction enzymes used in this analysis, in true-to-type samples 

compared to off-types, while ATX1 and TPL were hyper-methylated (Table 1). All the differentially 

methylated loci for these were located in exons (Table 1), thus it was difficult to predict their 

transcriptional activity, since the effects of DNA methylation in gene bodies (GbM methylation) still 

remains cryptic [90]. The unknown consequences of GbM and the possible intervention of different 

layers of regulation other than DNA methylation might be some plausible explanations to the 

observed absence of correlation between methylation status and transcriptional activity of the 

candidate genes. 

The absence of statistical significance in the other genes analyzed might be due to tissue-culture 

stress that induces a high spectrum of phenotypic and molecular changes in plant regenerants [34,75]. 

Moreover, it is difficult to minimize the biological variability in aberrant plants due to non-controlled 

conditions in open field production. 

Although growth chambers and greenhouses offer the advantage that cultivation conditions can 

be set to the experimental needs and repeatedly applied to check reproducibility of observations, 

results obtained in a controlled environment often display low correlation with field assays [92,93]. 

Moreover, even in climate-controlled phyto-chambers, which are supposed to provide the best 

possibility to dissect plant traits with good reproducibility, micro-environmental variations can 

highly affect experimental reproducibility, as reported for the model plant Arabidopsis thaliana [94]. 

Because the purpose of our research was to set the bases to untangle the possible triggers of off-types 

appearance after transplantation, a field experiment was necessary. In the attempt to reduce 

variability within biological replicates, several efforts to maintain uniformity of the sampled material 

and an accurate selection of plants sharing the same age and developmental stage were applied. Our 

data showed that, although sensitive to environmental variations, DNA methylation changes are 

coherent in the three biological replicates of true-to-type and off-type samples (Figure 2), 

demonstrating the reliability of our experimental setup. On the other hand, transcriptional analysis 

displayed a high degree of variability as only 5 genes (out of the 14 tested), showed a reproducible 

expression level within replicates, suggesting that other regulation mechanisms might interfere with 

the transcriptional activation of the candidate genes selected (e.g., histone modification, miRNAs, 

etc.) 

We also evaluated another level of epigenetic control likely affecting the ‘Spinoso sardo’ aberrant 

phenotype, focusing on microRNAs (miRNAs) regulation. miRNAs are involved in both 

transcriptional and epigenetic regulations, which are organized by a multiple combination of 

interfering pathways [95–98]. A fine-tuned balance between microRNAs and their target genes is 

fundamental to promote leaf differentiation and plant development [99,100]. Due to their impact on 

gene expression mechanisms, numerous studies arose with the purpose of elucidating miRNAs 

specificity and their function in plant growth [101,102]. Our results showed some in silico connections 

between DML and miRNA pathways involved in the machinery of flowering time and plant 

development (Table 2, Table S4). This was also supported by the interactomic analysis highlighting 

many links between candidate genes in the network, also supported by the protein–protein 

interaction (PPI) enrichment (average node degree = 3.05, p-value = 4.13e-11), which appeared higher 

than expected. 

As an example, we highlighted a DML present in TPL (TOPLESS) [66] which, in globe artichoke, 

is a putative target of the leaf shape-regulatory miR396 [103]. ATX1 is a histone H3K4 

methyltransferase responsible for floral organ development [56,57]; we observed that, in our data, it 
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is a putative target of miR172 and miR167 whose role in flowering has been fully demonstrated [104]. 

There are also evidences about the direct influence of miR156/157, which regulation is often combined 

with miR172, on ATX1 [105], alluding to their potential contribution to flowering time defects in globe 

artichoke. Moreover, SCAR2 is, in silico, targeted by miR319 which is normally associated to the TCP 

transcription factors family involved in organ and flower development [106], suggesting that a 

similar regulation might take place in SCAR2 molecular pathway. The aforementioned genes also 

reflect the most significant difference in transcription level between true-to-type and off-type plants 

(Figure S3). 

Once more, due to the reduction-of-complexity nature of EpiRADseq, we cannot propose the 

causality of changes in methylation of some miRNA-related genes and the phenotype observed in 

the field, but merely show a likely correlation between methylation target sites and ‘Spinoso sardo’ 

developmental transitions. Although an accurate experimental validation is needed in order to 

elucidate the biological significance of our findings, these in silico data open a new possible scenario 

about a dual DNA methylation and miRNA-mediated regulation of plant development in ‘Spinoso 

sardo’ ecotype. 

5. Conclusions 

We demonstrated that the application of the EpiRADseq protocol on ‘Spinoso sardo’ genotypes 

allowed the identification of different methylation patterns between true-to-type and off-type 

leaves sampled on the same plant. The functional annotation of DML allowed us to identify 

candidate genes coding for proteins involved in flower development and its regulation, 

maintenance of epigenetic modifications, and vegetative development. Further research focused on 

biological mechanisms and technological advances in the coming years are likely to broaden our 

understanding on which molecular and environmental cues elicit the emergence of off-type plants. 

These will increase the opportunities to monitor and control crop epigenomes [107] for the stable 

improvement of agricultural traits of élite cultivars. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Flow-chart 

of bioinformatics pipeline. The flowchart underlies the key points of sequence processing. Arrows indicate the 

sequential steps that raw reads underwent during the analysis. Programs (in white), input (in light-blue), and 

output (in orange) files, are also indicated in the legend (top right), Figure S2: PCA of relative methylation level 

at DML for each sequence context, CG, CHH, and CHG. Numbers in brackets indicate the fraction of overall 

variance explained by the respective component (PC1 and PC2), Figure S3: Transcription analysis. qPCR 

evaluation of transcriptional activity was carried out for five selected genes belonging to the three methylation 

contexts: ATX1 (CG), SCAR2 and TPL (CHH), MED33A and TSO1 (CHG). White bars represent true-to-type 

replicates, while off-type are indicated in grey. Error bars represent SD (n = 3). All genes reported show 

statistically significant differences in transcription levels between the three true-to-type and off-type replicates 

based on T-test (p ≤ 0.05), Table S1: Mapping statistics. For each sequenced sample indicated in Column 1, 

numbers of raw reads, cleaned-trimmed reads, uniquely and multi-mapped reads and duplicates removed are 

reported (Columns 2–5, respectively), Table S2: List of primers used for qPCR analysis, Table S3: Differentially 

methylated loci, present in coding sequences, output of edgeR analysis. Both genes ID, referred to globe 

artichoke reference genome, and EpiRADseq ID notation, referred to the DML, are reported for the three 

methylation contexts, Table S4: List of putative miRNA targets, File S1: Bioinformatics pipeline for the sequence 

reads analysis. 
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