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Abstract: Human longevity is a complex phenotype resulting from the combinations of context-

dependent gene-environment interactions that require analysis as a dynamic process in a cohesive 

ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome 

sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E 

(APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which 

refers to their effect in age-related Alzheimer’s disease (AD) and cardiovascular disease (CVD). In 

this case, the available literature on APOE and its involvement in longevity is described according 

to an anthropological and population genetics perspective. This aims to highlight the evolutionary 

history of this gene, how its participation in several biological pathways relates to human longevity, 

and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the 

globe. Its potential adaptive role will be described along with implications for the study of longevity 

in different human groups. This review also presents an updated overview of the worldwide 

distribution of APOE alleles based on modern day data from public databases and ancient DNA 

samples retrieved from literature in the attempt to understand the spatial and temporal frame in 

which present-day patterns of APOE variation evolved. 
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1. Introduction 

The study of APOE and its isoforms has spread in all the studies about the genetics of human 

longevity and this is one of the first genes that emerged in candidate-gene studies and in genome-

wide analysis in different human populations. The pleiotropic roles of this gene as well as the pattern 

of variability across different human groups provide an interesting perspective on the analysis of the 

evolutionary relationship between human genetics, environmental variables, and the attainment of 
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extreme longevity as a healthy phenotype. In the present review, the following topics will be 

discussed. 

1. APOE gene and protein structure and function, including the latest theoretical models 

describing its mechanism of action 

2. The role of APOE in human longevity, its physiological functions, and the involvement in 

pathological traits in modern populations 

3. APOE evolution and variability among human populations, including a novel analysis of 

modern and ancient data 

4. The evolutionary mechanisms that maintained APOE deleterious variants in modern human 

populations. 

2. APOE Structure and Models 

Human APOE is a 299-amino acid long protein (34 kDa in weight) belonging to the family of 

amphiphilic exchangeable apolipo-proteins that is expressed in hepatocytes, 

monocytes/macrophages, adipocytes, astrocytes, and kidney cells [1–4]. Structural studies have 

shown two independently-folded domains for the lipid-free protein: an N-terminal elongated 

domain (residues 1–167) forms a 4 α-helix cluster in which non-polar residues face the inside of the 

protein, while the C-terminal domain (residues 206–299) has a more relaxed structure, with α-helices 

generating a largely exposed hydrophobic surface [5,6]. These domains are connected by an 

unstructured hinge that provides a large degree of mobility, which is necessary for the protein to 

fulfill its primary function in the hepatic and extra-hepatic uptake of plasma lipoprotein and 

cholesterol [7]. 

The N-terminal domain contains the low-density-lipoprotein receptor (LDLR) binding region, 

which is a cluster of basic arginine and lysine residues, spanning between positions 135 and 150 in 

helix 4 (an Arg-172 residue in the hinge is also necessary for the binding function [8]).A stretch of 

hydrophobic residues at the end of the C-terminal domain (residues 260–299) is deemed to be 

responsible for binding the protein to lipids as well as for directing oligomerization of lipid-free 

ApoE. Since the monomer is the form that binds to lipids, oligomer dissociation appears to be the 

rate-limiting step of protein lipidation [9,10]. 

The gene itself is located on chromosome 19:q13.3, together with the apoC genes APOC1, 

APOC2, and APOC4, which are members of the exchangeable lipoprotein family, and in proximity to 

the mitochondrial translocase of the outer membrane gene (TOMM40). This is another locus involved 

in the development of AD [11–15]. 

As represented in Figure 1, the combination of two mutations at the APOE gene (rs7412 C/T and 

rs429358 C/T) gives rise to the three main protein variants, called ε2, ε3, and ε4 (or, alternatively, 

APOE2, APOE3 and APOE4) [16–18]. Isoform ε3 has a cysteine in position 112 and an arginine residue 

in position 158, while isoform ε2 has two cysteine residues and isoform ε4 has two arginine residues. 

Several other mutations can act on this background to nuance the effects of the three main variants 

and are involved in diverse cardiovascular pathologies, as reported, for example, in a recent review 

by Matsunaga and Saito [19]. 

While the difference in sequence is limited to a couple of residues, this has a great impact on the 

protein biophysical and, consequently, functional properties, since the change in structural features 

of APOE provides insight on the different behavior of its isoforms [20–26]. 

In particular, the Arg158Cys mutation in isoform ε2 reduces the affinity of the protein for the LDLR 

50-to-100-fold [27] due to the removal of a crucial electrostatic interaction with Asp154. Mutating this 

residue to a neutral alanine has shown that the isoform fully recovers its functionality [28]. 

The mutation Cys112Arg in isoform ε4 does not change its affinity for the receptor but its 

preference for lipoprotein binding shifts from HDL (as do ε3 and ε2) to LDL/VLDL. This occurs 

because charged residues that should be buried in the protein core are, instead, propelled outwards 

and can establish trans-domain interactions that modify the protein structure and, therefore, 

lipoprotein preference, possibly by hindering overall dynamics [29,30]. Mutagenesis experiments 

proved effective in re-establishing the preference of isoform ε4 for HDL [17,29,31,32]. 
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Both domain interactions and intermolecular interactions have been recently confirmed by using 

Forster Resonance Energy Transfer assay (FRET), which is a method to quantify the exchange of 

energy between two fluorescent tags attached to the ends of the APOE protein. These experiments 

showed that there is a consistently significant difference among isoforms, with ε4 showing a higher 

degree of energy transfer for both domain interaction and polymerization. However, a different study 

asserted that conformational changes appeared to reduce the propensity of this isoform to self-

stabilize in tetramers [33,34]. 

Denaturation experiments aimed at testing protein stability again showed different behaviors 

for the three isoforms, with the ε2 N-terminal domain being the most resistant and being followed 

by ε3 and ε4, which is the least resistant isoform, but shows a higher number of stable intermediates 

between its folded and unfolded forms [35–39]. This has been interpreted as isoform ε4 assuming 

partially unfolded stable states at different pH in basic environments, facilitating large 

conformational changes and, in doing so, increasing the remodeling rate of lipoprotein particles. This 

has also been noted with other exchangeable apolipo-proteins, such as APOAI and APOAII [38–41]. 

Higher ε4 catabolism, although being not an index of overall increased efficiency in plasma 

lipoprotein clearance, may justify why APOE4 homozygotes have a lower plasma APOE 

concentration [42–45]. On the other hand, it has been suggested that partially folded APOE is more 

sensitive to proteolysis of the domain-connecting hinge and that isoform ε4 may be more easily 

flagged as “misfolded” due to domain interaction, particularly in the brain [46–50]. 

It is also important to remember that no definitive mechanism for how APOE binds to lipids has 

been elucidated even though different hypotheses have emerged over the years, especially in relation 

to the implication of its isoforms in pathological traits. Starting from the concept of “molten globule” 

[36,51], a hairpin model has been proposed assuming that the protein bends itself so that the LDLR-

binding motif is exposed at one extremity of the structure [31,52–55]. Other studies have suggested a 

conformational heterogeneity of bound apoE, observing that LDLR binding affinity, while higher in 

the bound protein than in the lipid-free protein, is modulated by the particle size, its lipid 

composition, and the presence of other bound lipoproteins [31,52,56–58]. 

A revised model has been recently proposed and considers the high proportion of intrinsically 

disordered regions in the protein (up to a third of the whole molecular structure), multiple 

interactions between the two domains, the presence of evolutionarily conserved residues, and 

structural differences that may justify the lipid-binding preferences of isoforms ε3 and ε4 [20,59]. The 

authors of this work also argue that most structural studies on lipid-bound apoE make use of the 

hepatocyte-secreted protein and plasma lipids, but that the lipid composition in the brain is different 

and the current models may fail to address lipidation mechanisms of astrocyte-synthesized APOE 

[59]. 
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Figure 1. Polymorphisms underlying the three main APOE variants in humans. (A) Chromosome 

location, gene structure, identity of the mutating sites in the gene, and the corresponding mutating 

residues in the context of the protein structure. In yellow, it is indicated as the receptor-binding region 

in helix 4 and, in green, it is the lipid-binding region in the C-terminal domain. Red and black dots 

indicate the genetic variants in APOE and their position in the genomic and protein sequences, 

respectively. (B) Table reporting the haplotypes and corresponding residue combination associated 

to each APOE allele. 

3. APOE Function and Pathology 

Multiple lipid-related physiological functions are associated with APOE. In particular, isoform 

ε3 helps in maintaining the structural integrity of cholesterol-rich lipoproteins and enhances their 

solubilization in blood plasma, regulates lipid homeostasis of both hepatic and non-hepatic tissues, 

facilitates lipid internalization in cells and, when expressed by lipid-laden macrophages after cellular 

clearance, activates the reverse cholesterol transport, redirecting any excess of cholesterol to the liver 

for elimination [60–63]. 

The APOE genotype accounts for the vast majority of AD risk and AD pathology: inheriting one copy 

of APOE4 raises a person’s risk of developing the disease fourfold, while, with two copies, the risk 

increases 12-fold [64]. Raber and colleagues and, at the same time, Saunders and colleagues reported that 

clinical data regarding the association of the ε4 allele with AD suggests that 50% of AD is associated with 

the ε4 allele in the United States [65,66]. APOE4 may be responsible for the accelerated formation of β-

pleated amyloid, as supported by studies showing that individuals with two copies of the APOE ε4 allele 

have a higher risk and earlier onset than heterozygous subject [67]. Moreover, a significant increase in risk 

of EOAD (early-onset Alzheimer’s disease) was found for individuals homozygous for APOE4 regardless 

of family history of dementia, but an increase in EOAD risk for APOE4 heterozygotes could only be shown 

in subjects with a positive family history [68]. 

Experiments with knock-out mice have proven that failed expression of APOE leads to a 

shortened lifespan due to the emergence of typically age-related phenotypes like an altered 

lipoprotein profile (the forefront of atherosclerosis and cardiovascular disease), neurological 
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disorders, type II diabetes, deficits in immune response, and elevated markers of oxidative stress [69–

75]. Moreover, the APOE variants determining the three isoforms ε2, ε3, and ε4 have also been 

associated with the modulation of body mass index (BMI) at statistical significance (p < 10-3) in a meta-

analysis including 27,863 individuals from seven longitudinal cohort studies [76]. This highlights, on 

one hand, that APOE is a pleiotropic gene that simultaneously affects multiple phenotypes, 

depending on the site of protein synthesis (in particular, liver and brain). On the other hand, this 

emphasizes that the manifestations of its impairment fit the definition of aging as a general decline 

in biological functions, decreased stress resistance, and elevated susceptibility to disease that leads to 

an increase in mortality with age [77–79]. 

Most of the research conducted at this point focused on isoform ε4 as the “functionally altered” 

form of APOE in the brain since this is one of the most consistent candidates associated with human 

longevity and the onset of AD, according to GWAS and whole genome sequencing studies 

[62,66,68,80]. 

The finding of unexpectedly large proportions of C-terminal APOE in β-amyloid plaques of 

ε4/ε4 homozygous AD subjects leads to the hypothesis that the partially folded protein is highly 

sensitive to proteolysis [46–50] and this prevents APOE in helping Aβ clearance, favoring instead its 

deposition [81]. By folding into a more helical structure, truncated ε4-165 was shown to have 

deleterious effects on this same process, which stresses that structural integrity is important for AD 

pathogenesis [82–84]. The link with Aβ has also been associated with a higher degree of lysosome 

leakage in neurons, primarily due to the enhanced lipid remodeling activity of isoform ε4 on the 

lysosomal membrane at a low pH [85,86]. 

Experiments on mice have highlighted how isoform ε4 can also cause behavioral deficits in the 

absence of amyloid accumulation and, as with AD in humans, spatial and memory impairments 

increase with age and are observed primarily in females [87–90]. Regarding neuronal plasticity, 

similar studies showed that isoform ε3 associated with VLDL clearly stimulates neurite extension in 

developing neurons by feeding their membrane with lipids, while isoform ε4 inhibits branching 

likely due to effects on microtubule stability mediated by the LDLR-protein signaling pathway. The 

ε4 isoform also inhibits GABAergic input in newly formed neurons [91–94]. 

Furthermore, this isoform has been associated with decreased cerebral glucose metabolism that 

occurs even decades before the cognitive impairment becomes apparent, which suggests an 

interaction with the mitochondrial membrane and components of the respiratory complexes III and 

IV at very early stages of the disease [95–100]. An interesting observation is that mitochondria and 

the endoplasmic reticulum (ER) are intimately connected via mitochondria-associated membranes 

(MAMs) and the protein miofusin-2, so that mitochondrial dysfunction may propagate to the ER and 

affect the secretory pathway [12,101]. If the protein is recognized as unfolded, the pathways of the 

unfolded protein response can activate an inflammatory process by stimulating NF-kB, which is a 

transcription and cytokine regulator that mediates the immune response in cell survival [102–104]. 

Isoform ε4 also shows a decrease in the anti-oxidative properties of APOE as a metal cation 

binding protein. In fact, APOE4 genotype correlates with a higher degree of lipid oxidation and 

presence of hydroxyl radical levels in the blood of post-mortem patients [71,105]. Macrophages 

overexpressing ε4 also display membrane oxidation and generate anion radicals and, as a stress 

response, an increase of the anti-inflammatory protein heme oxygenase 1, was observed [106]. 

Moreover, it has been noted that, because of the cholesterol binding property of APOE and the 

fact that cholesterol is the main component of the envelope of many human-infecting viruses, the 

different behaviors of isoforms ε3 and ε4 may, respectively, impede or ease infections. For example, 

extensive work in the last 20 years showed that herpes simplex virus HSV-1 is frequently found in 

the brain of elderly normal patients as well as AD-affected patients, and it is thought that isoform ε4 

can facilitate the process of colonization and repeated activation of latent colonies through 

inflammation, which exacerbates neural decay at a younger age. It is also suggested that an antiviral 

therapy may be effective in slowing AD progression (see comprehensive reviews in References [107–

109]). The hepatitis C virus, on the other hand, needs APOE for assembling and the host lipid 

metabolism is directly involved in the viral infection [110–115]. Lastly, an interesting set of studies 
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tried to investigate a link between APOE and the modulation of HIV infection as a chronic disease, 

now that the affected individuals can live to older ages thanks to anti-retroviral therapy. Even though 

the overall results are somewhat contrasting, isoform ε4 seems to correlate in different cases with the 

development of HIV-associated neurocognitive disorders, impaired cognition, dyslipidaemia, 

premature brain aging, and increased chance of debilitating opportunistic infections [116–120] (see 

also a comprehensive review in Reference [121]). 

However, one of the most notable associations to be examined is between APOE alleles and 

cardiovascular disease (CVD). A study carried out on nine cohorts (eight of European and one of 

Chinese ancestry) of middle-aged men recruited by the World Health Organization MONICA 

(Monitoring of Trends and Determinants in Cardiovascular Disease) Project showed how variation 

in the relative frequency of the ɛ4 allele could predict 40% to 75% of the variation in coronary heart 

disease (CHD) fatalities among populations and how a 0.01 increase in the frequency of this allele 

could increase CHD death rates by 24.5/100,000 [122]. A study on follow-up data for almost 1000 

Danish and Finnish heart attack survivors similarly denoted that carrying this variant can be a 

prognostic element, as these subjects have an 80% increased risk of dying [123]. A similar conclusion 

is presented by a post-mortem study, performed at the Oslo University Hospital, on over 1500 

individuals who died of natural causes. In the cohort of patients presenting a cardiovascular disease 

(35% of the total), there were significantly more ɛ4 carriers (34% against 29%) and significantly less 

ɛ2 carriers (12% against 14%) than in the rest of the group (p < 0.05) [124]. It has also been recently 

recognized that, not only APOE is associated to cardiovascular risk, but also with the level of 

unsaturated and saturated circulating fatty acids, so that some light is being shed on how 

environmental and dietary factors can mediate the association between APOE variants and adverse 

cardiovascular events [125]. 

The common APOE alleles ɛ2, ɛ3, and ɛ4 are located in a CpG island and the related SNPs impact 

on the quantity of CpG dinucleotide, which impacts the gene DNA methylation. A recent study 

showed that the DNA methylation profile of this genomic region differentiates AD brain if compared 

to that of control subjects [126]. Moreover, a recent study on lymphocytes showed that DNA 

methylation in the APOE gene is associated with age and shaped by genetic variants in the gene [114]. 

A different study in African Americans also suggested that DNA methylation in blood cells may be 

an early indicator of individuals at risk for dementia [127]. 

4. APOE and Human Longevity 

Many studies have attempted to grasp the complexity of the genetics of human longevity [128–

133]: recent findings suggest that alleles associated with this phenotype are population-specific and, 

at the same time, that the achievement of extreme longevity is modulated by mechanisms shared 

among populations [134–136]. One of the most relevant loci identified by many studies (if not all) is 

the APOE gene. 

Candidate gene studies, genome-wide association studies (GWAS) on geographically diverse 

populations, and, more recently, whole-genome sequencing approaches have been aimed at 

uncovering the genetic variants that influence the longevity phenotype and APOE possibly due to its 

involvement in several post-reproductive pathologies, which has emerged as a strong candidate in 

most of them. In this section, a brief overview of the studies on human longevity conducted in relation 

to the three main variants of APOE is presented, with special attention to its isoforms ε2, ε3, and ε4 

arising from the combination of two mutations (rs7412 C/T and rs429358 C/T) [16–18]. 

Several GWAS supported the association between APOE and the longevity trait. For example, a 

Japanese study including 743 centenarians and 822 middle-aged controls found a novel positive 

association between variant rs16835198-G of the gene FNDC5 (which synthetizes a pro-hormone that 

is upregulated by muscular exercise) and APOE alleles in individuals with extreme longevity, which 

further highlights the polygenic nature of this trait [137]. A recent meta-analysis of GWAS examined 

data from 6036 individuals at least 90 years old against a control group of 3757 subjects that died 

between the ages of 55 and 80. A replication of known variants at APOE and FOXO3 genes was 

obtained, but the authors also pointed out the difficulty in locating new alleles associated with 
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survival past the age of 90, possibly because of heterogeneous genetic influences combined with the 

fact that rare variants are not usually picked up by GWAS [80]. A novel statistical method for 

evaluating genome-wide associations starting from previous knowledge of age-dependent and 

disease-related traits that overlap with longevity (i.e., informed GWAS, or iGWAS) was applied to 

reduce the background SNPs possibly associated with extreme ages and to amplify potential signals 

that could be difficult to pick up in small centenarian cohorts [138]. Accordingly, 92 SNPs at eight 

independent loci (including the APOE/TOMM40 locus) were found to be associated with longevity 

at GWAS significance (p < 10-8) and four of these were further replicated in three different validation 

cohorts including the APOE/TOMM40 rs4420638 variant [138]. 

However, other studies failed to identify significant associations. For example, a study involving 

a Chinese cohort of 312 individuals with at least one long-lived parent (i.e., aged over 90) and 298 

controls without a familial history of longevity found no significant correlation between APOE 

isoforms, age, and the levels of blood cholesterol (HDL-C) even though HDL-C levels themselves are 

significantly higher in the longevity group (p = 0.0001) [139]. The first study on a Brazilian cohort, 

including 220 individuals of at least 85 years of age and 232 controls averaging 72 years, was recently 

performed to investigate the association between FOXO3, SOD2, SIRT1, and APOE known variants 

and several phenotypes in oldest-olds. Only an association of two FOXO3 alleles with gender and 

triglyceride levels was confirmed in this case and the authors suggested expansion of the number of 

samples in order to perform a more powerful analysis [140]. 

A similar pattern emerged from candidate gene studies, as some have highlighted putative 

associations between APOE and extreme lifespan, while others have not. For example, a study 

focused on three independent cohorts of centenarians from Italy, Spain, and Japan compared with 

healthy, younger controls confirmed the ε4 allele being negatively associated with extreme longevity 

in all three cases after adjustment for sex, while allele ε2 was positively associated with the same trait 

in the Japanese and Italian cohorts only. This highlighted that the ε4 variant appears to decrease the 

likelihood of reaching extreme ages across ethnicity and geographic origin [141]. A recently 

published paper on 450 individuals of Ashkenazi Jewish ancestry at least 95 years of age contrasted 

with 500 controls without a history of familial longevity, which undertook a full analysis of the coding 

and regulatory regions of APOE. Two common regulatory variants were, thus, found in the proximal 

promoter of the gene (rs405509 and rs769449), which is significantly depleted in the elderly group (p 

< 0.036). Moreover, a significant enrichment of the ε2 allele (p = 0.003) and the ε2/ε3 genotype (p = 

0.005), as well as a reduction of the ε3/ε4 genotype (p = 0.005) were observed in the same group [142]. 

Two recent reviews and meta-analyses of polymorphisms associated with human longevity 

recovered genomic data of European and Asiatic cohorts involving centenarians (i.e., 13 cohorts 

[141,143–153] for the 2014 review [154], 12 cohort s [141,143,144,148,149,155–158] for the 2018 review 

[130]), and added newly generated data to obtain groups of at least 2700 centenarian cases and 11,000 

younger controls. The first study highlighted how the likelihood of reaching extreme longevity is 

negatively associated with carrying the ε4 allele, the ε4/ε4, ε3/ε4, or ε2/ε4 genotypes (all p < 0.001), 

while the trait is positively associated with the ε2/ε3 genotype (p = 0.017) [154]. The second study 

ascertained the homogeneity between the European and Asian groups when accounting for ethnicity. 

It also confirmed a significant negative association of the ε4 allele with longevity and a positive 

association of the ε2 variant with the same trait (which was not supported by the 2014 meta-analysis 

[154]) when compared to the ε3 allele (p < 0.0001) [130]. In another meta-analysis, data of over 28,000 

individuals born between 1880 and 1975 were collected from seven studies on population longevity 

and familial healthy aging, with cases ranging from 96 to 119 years and controls from 0 to 99 years. 

Three genetic models (i.e., standard genotypic model, additive model for the effects of the ε2 allele, 

grouping of genotypes containing and not containing ε4) and two definitions of longevity (i.e., age 

at death, age reached by less than 1% of the population) were applied. Results showed that carrying 

the ε2 allele, but not ε4, is associated with significantly increased odds of reaching extreme longevity, 

with decreased risk of death when compared to the most common genotype ε3/ε3, but modest risk 

reduction at the most extreme ages. The opposite is observed for ε4, which acts independently from 

ε2 and associates with decreased odds for extended lifespan and an increased death risk that persists 
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even at extreme ages in all groups. Furthermore, a joint haplotype analysis of five SNPs at the PRVL2-

TOMM40-APOE-APOC1 gene cluster revealed that three haplotypes were individually associated 

with extreme lifespan when compared to the most common haplotype. The first one, containing ε2, 

was associated with a 34% increase in odds of extreme longevity (p = 7.8 × 10-7). The second one, 

containing ε4, was associated with a 50% decrease in the same odds (p = 10-8). The last one was, 

instead, an uncommon haplotype containing ε3 and was associated with a 20% decrease in odds for 

extreme longevity (p = 0.04), which suggests that there are SNPs at this locus that can exert a negative 

effect on longevity independently from the influence of the APOE ε4 allele [159]. 

A more extensive collection of GWAS and candidate gene studies performed in the last 8 years 

and describing APOE gene variants in human longevity is reported in Supplementary Table S1. 

A recently published paper about genetic variants affecting viability over generations in large 

cohorts applied a method for testing the variability in allele frequency across different ages, after 

considering individual ancestry. When applied to the Genetic Epidemiology Research in Adult health 

and Aging (GERA) cohort and to parents of the UK Biobank participants, few common variants 

significantly related to mortality at specific ages were found across the genome, all tagging the APOE 

ε4 allele and the CHRNA3 gene. When testing for viability effects of genetic variant sets, strong 

signals (p < 10-3) were found relating delayed puberty with longer parental lifespan, as well as later 

age of first birth with longer maternal lifespan and, lastly, cholesterol levels and risk of coronary 

artery disease, with a marked difference between male and female participants [160]. 

It is worth noting that recent data from Northern European populations [148,161] clarified that 

APOE variation is associated with the likelihood of reaching extreme longevity not because it is a 

‘longevity gene’ that ‘ensures’ a long life by itself, but due to the fact that it is rather a ‘frailty gene’ 

that slightly influences mortality and, particularly, ε4 is associated with an increased risk for death 

that persists even beyond ages reached by less than 1% of the population [159]. 

5. APOE Evolution and Variability among Human Populations 

Human APOE clusters with members of the groups APOA and APOC in the superfamily of 

exchangeable apolipoproteins. These are structurally and functionally distinct from the non-

exchangeable apolipoproteins APOB48 and APOB100, which make up the core of the lipoprotein 

particles [162,163]. 

Phylogenetic reconstruction using apolipoprotein sequences from representative eukaryotic 

species has shown that an ancestral form of this protein already existed before Metazoan evolution 

(i.e., approximately 750 Mya) and that divergence between the exchangeable and non-exchangeable 

families is equally ancient [162]. Focusing on the human exchangeable superfamily, a similar analysis 

showed that APOE clusters specifically with APOA1, APOA4, and APOA5 (the most recently 

identified human apolipoprotein), are separated from the cluster including APOA2, APOC3, APOC2, 

and APOC1 (the oldest in the cluster). It is also noteworthy that the length of the synthetized protein 

increases from the oldest to the youngest gene [162]. When including the insect apolipo-protein 

ApoLpIII in the analysis, it was found to group by sequence similarity within the human APOE 

cluster, instead of being an outgroup to all human exchangeable proteins. This suggests that the 

divergence of exchangeable apolipo-proteins occurred at an early evolutionary stage, possibly with 

the advent of bilateral symmetry (i.e., approximately 650 Mya), while the origin of ApoLpIII has 

dated back to the emergence of flying insects (i.e., 500 Mya) [162,164,165]. Nevertheless, an extensive 

review of phylogenetic relationships among eukaryotic apolipo-proteins is not the purpose of this 

review [162]. 

Focusing on the investigation of human-specific apolipo-proteins characteristics, comparison of 

the protein sequence of human and primate APOE reveals that the non-human apolipo-protein has 

arginine in position 112, like human isoform ε4. This suggests that ε4 is the ancestral variant and 

recent analyses of Denisovan DNA (a specimen of archaic human found in 2010 in the Denisova cave, 

in the Altai Mountains in Siberia) also corroborate such a hypothesis [166,167]. Unfortunately, this 

information is not yet fully disentangled for the Neanderthal genomes. The other non-synonymous 

variants detected among the species do not alter the size or charge of the residues and are not located 
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in functional domains [162]. The only fundamental difference, then, involves residue 61, where 

humans present an arginine, while all other primates have a threonine. The Thr61Arg substitution 

introduces a bulkier, positively charged residue near the equally charged Arg112, by which it is 

projected out of the N-terminal helix bundle. This repositioning allows for Arg61 in ε4 to be involved 

in domain interactions that affect the isoform structure, which makes the protein less stable, but 

readier in binding large, lipid-rich lipoproteins. It is, however, unclear how the mutation that 

originated human ε4 from an ancestral APOE could provide a net evolutionary advantage. Theories 

including the consumption of cholesterol-rich meat, the presence of pathogens in uncooked foods, 

and increasing brain size during human evolution have been proposed as well as random DNA 

photooxidation following the loss of body hair [162,168]. 

One of the most intriguing hypotheses for the development of longevity despite the presence of 

a deleterious APOE isoform, however, postulates a link with increased physical activity, over the 

evolutionary history of the genus Homo, that helped in counterbalancing a higher risk of 

cardiovascular disease [169]. Haplotype analysis revealed that the origin of isoforms ε2 and ε3 in 

humans can be dated back to 200,000 to 300,000 years ago [170], while the increase in physical exercise 

occurred much earlier in time, possibly around 1.8 Mya, when Homo erectus abandoned the sedentary 

lifestyle of the forests to become a hunter-gatherer. Long foraging distances and the ability to run for 

extended periods of time, to either follow prey or flee from danger, require endurance and increased 

levels of aerobic activity, which is related to the conversion of body fat into usable energy and is in 

stark contrast with the cardiovascular effects induced by the ε4/ε4 haplotype [171–173]. This likely 

relaxed the limitation on lifespan imposed by the deleterious allele and is in accordance with fossil 

dating and palaeodemographic analyses that testify an increase in the number of older individuals 

throughout the evolution of H. erectus and then H. sapiens [174], as well as the extension of post-

reproductive lifespan in concert with the development of a hunter-gatherer lifestyle [169,175,176]. 

However, in modern populations, isoform ε4 is only the second-most common APOE variant, 

which shows the highest frequency in indigenous populations of Central Africa (40% in Aka Pygmies, 

38% in Tutsis, 33% in Zairians, and 29% in Fon), Oceania (49% in the Hui population of New Guinea, 

26% in the Mowanjum aboriginal tribe of Western Australia and in Polynesians from American 

Samoa) and Mexico (27% for the Huychol in Nayarit [177]). Isoform ε3, instead, shows peaks of 94% 

in the Alberta Hutterite people of Canada, 90% in Mexican Mayas, 88% in the Basque and Sardinian 

populations of Europe, and 86% in Han Chinese. As highlighted in Figure 2 and reported in 

Supplementary Table S2, a distinct latitudinal gradient for ε4 can be observed across Europe (5% to 

10% in Spain, Portugal, Italy, and Greece, up to 16% in France, Belgium, and Germany, up to 23% in 

the Scandinavian peninsula, with peaks of 31% in the Saami population of Finland) and it has been 

also reported in China (5% to 17.5% in 19 distinct populations) [178–181]. In the context of the present 

review, data have been also gathered for a cohort of 134 Italian centenarians and 350 healthy, younger 

controls, so that 484 samples were enrolled in three Italian areas (North, Center, and South Italy) and 

clustered according to their place of birth. DNA samples were recovered after approval by the Ethical 

Committee of Sant’Orsola-Malpighi University Hospital (Bologna, Italy). As shown in 

Supplementary Tables S3 and S4, when individuals from both groups were separately clustered by 

macroareas [182,183], a definite gradient could be observed for the ε4 allele in both centenarians and 

controls, with frequencies of 0.125 and 0.124, respectively, in Northern Italy, 0.052 and 0.063 in 

Central Italy, and 0.026 and 0.039 in Southern Italy. Although sample size is relatively small in the 

latter group, the increase in frequency from South to North at both a regional and a continental level 

follows a pattern that has been already observed. For example, in Italy and in Europe, for other genes 

involved in lipid metabolism [182,184,185], this suggests that isoform ε3 may be selected against ε4 

at lower latitudes, but this does not explain the evolutionary advantage of the single amino acidic 

mutation Arg112Cys provided in giving rise to the now most frequent APOE variant worldwide 

[178–180,186]. Studies on this topic report a higher structural stability and functional flexibility of 

isoform ε3, which can also be associated with metal binding, oxidative stress resistance, 

micronutrient uptake, enhanced neuronal repair following damage, and an energy-conserving 

phenotype [187–191] (see a comprehensive review on adaptation to dietary changes in Reference 



Genes 2019, 10, 222 10 of 31 

 

[192]). However, being more adaptive and responsive to environmental changes does not justify that 

all the ailments of isoform ε4 is associated with, tend to be post-reproductive. Theories have been 

recently introduced that several derived alleles (including those at the APOE gene) with a protective 

effect on cognition after menopause may result from late-life selection through an increase in younger 

kin survival. The proposal of this “grandmother effect” may explain the predominance of the ε3 allele 

in a trans-generational way by assessing that the extension of the post-reproductive lifespan as a 

healthy phenotype requires the prevention of age-related cognitive decline to increase the survival 

of younger kin under grandparental care. Moreover, cultural transmission through generations is 

known to shape the social structure of modern foraging populations, which enhances the survival 

probability of the individuals belonging to networks that are enriched in multi-generational sharing 

of knowledge [175,176,193,194]. 

 

Figure 2. Frequency distribution of APOE alleles in 82 countries. Data from the 1000 Genome Project 

have been integrated with those published in Singh et al. 2006. (A) Frequency distribution of the ε2 

variant. (B) Frequency distribution of the ε3 variant. (C) Frequency distribution of the ε4 variant. 

6. APOE Trade-Offs 

Human longevity is a complex phenotype in which small contributions from a high number of 

genetic variants participate to define most age-related traits in later life. Isoform ε4 of APOE is 

involved in several cardiovascular and neural pathologies that become apparent at a post-

reproductive age. Many studies in the last decade tried to find explanations as to why such a 

deleterious variant has been maintained at high frequency in many human groups, particularly in 

indigenous populations of Africa and Oceania [178]. The main collected findings suggest an 

association between isoform ε4 and a number of population-specific and environment-related 

beneficial effects that compensate for the damage induced by the same variant in later life 

[175,176,187,189,193]. 

The observation that the most detrimental effects of APOE (CVD, AD, reduced lifespan) mainly 

affect individuals of affluent populations, while most African groups do not develop significant 

impairment despite presenting the highest frequencies of isoform ε4, prompted a study on a rural 

Ghanaian population characterized by high levels of mortality from widespread infectious diseases. 

The analyses conducted pinpointed an association between the exposure of fertile women to high 

pathogen levels and a higher degree of fertility (ε4 carriers have one more child than non-carriers, 

while ε4 homozygous women have 3.5 more children on average). Such polymorphism may be 

maintained because it favors reproduction in a context where limited survival at older ages 

spontaneously delays the detrimental effects of the isoform. Conversely, individuals living in 
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modernized societies, less affected by pathogens and capable of reaching an older age, have no need 

for the positive reproductive advantage conferred by this allele and have, instead, more probability 

to manifest the related negative repercussions [195]. Moreover, several candidate gene studies 

conducted on cohorts from industrialized countries (e.g., Iran, Turkey, United States) seem to 

highlight a positive relationship between cardiovascular disease and thrombophilia, as induced by 

lipid clearance dysfunction through the ε4 variant, and occurrences of two or more consecutive 

miscarriages before the 20th week of gestation. These studies compared groups of affected women 

and fertile negative controls with at least two successful pregnancies. In all cases, a statistically 

significant enrichment in the ε4 variant was found for the cohorts affected by recurrent pregnancy 

loss as well as a significant positive association of the ε3/ε4 and ε4/ε4 genotypes with the analyzed 

phenotype [196–200]. 

Another study relating pathogen exposure to the preservation of the deleterious isoform was 

performed on the Tsimane population of Amazonian foragers. Results highlighted that ε4 carriers 

with a high eosinophil count (a sign of parasitic infection) perform better in cognitive tests than the 

non-infected carriers, irrespective of their age [201,202]. 

Some publications also support the thesis that the extremely long span of human survival 

beyond fertile age is an exception in the world of primates and mammals and is tightly linked to the 

practice of inter-generational cooperative child rearing, which potentially developed early in hunter-

gatherer societies. The role of the grandmother is, in this case, equally parted in practices of active 

support, information transfer, and building of social networks that can result in extensive sharing of 

resources, which favor the survival and growth of the younger individuals. In this case, the positive 

effects of differential survival and reproductive success in early life are mirrored by deleterious 

cognitive deficiencies at an older age, when natural selection is absent [175,193]. 

Other studies have proposed that the main advantage provided by isoform ε3 when it first 

emerged, around 200,000 years ago, relates to an early shift in dietary habits. More organized hunting 

methods and the use of fire enhanced the quantity of fat-rich meat introduced with diet, which 

ultimately helped extend the human lifespan. Survival to reproductive age and beyond would, in 

this case, require both an efficient clearance of excess cholesterol from the blood and a stronger 

inflammatory response to food-borne pathogens, which is provided by the more ancient isoform ε4 

[168,192]. 

The ε4 allele is an independent risk factor in age-related mortality and all-cause mortality. Since 

it hampers longevity, one would expect a general reduction of allele frequency with increasing age. 

However, the disease risk association seems to vary in an ethnic-related way. For example, 

hypertension and brain hemorrhage risks are increased only in Asian and European ε4 carriers 

[203,204], while African and Hispanic Americans show an increased risk for Alzheimer disease even 

in the absence of ε4, which allows for its accumulation in older age cohorts, because it is less 

detrimental [178,205]. Other studies have shown how this variant may exert negative pleiotropy, 

which grants protection to the infant brain and against infections at a younger age. This 

counterbalances the deleterious effects that may be induced later in life [206–209]. 

Lastly, isoform ε2 has a worldwide frequency of around 7% and a patchy distribution, with 

peaks in Southeast Asia, Australia, and some African populations (up to 19%) and absence in most 

indigenous American groups [178]. The effects of this isoform are opposite to those of ε4. Carriers 

show a lower risk and delayed onset of cognitive decline and a significantly reduced risk of 

cardiovascular disease, but increased infection rates at a young age [208,210–214]. Given the opposite 

effects of the two isoforms, the only current explanation for their simultaneous high frequency in 

several indigenous African populations is that selection acts for ε2 and ε4 against ε3, but no definitive 

selective mechanism has been described so far [162]. 

Other possible explanations for the latitudinal distribution of APOE variants and the 

maintenance of ε4 relate to its role in immunity. As highlighted by ecological and biogeographical 

research, there is a clear relationship between the current distribution of human infectious diseases, 

latitude, average temperature, humidity, and population density, with harmful bacteria flourishing 

in hot, wet climates and in densely populated areas of the world [215,216]. Studies involving knock-
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out chimeras in mice suggest that APOE deficiency (also mimicking reduced functionality of ε4) leads 

to cholesterol build-up in dendritic cell membranes, which enhances antigen presentation via lipid 

rafts and increasing T-cell activity (hampering macrophage function [106,217]) regardless of ensuing 

hypercholesterolemia. This has also been directly observed in humans, where subjects expressing the 

ε4 isoform have a higher activated T-cell count when compared to carriers of the other isoforms [218]. 

However, earlier studies on mice also highlighted that APOE-deficient specimens may show a 

significantly reduced immune response to specific pathogens by becoming more susceptible to 

Lysteria monocytogenes and Klebsiella pneumoniae infections [72,73,219]. As described in paragraph 3.2, 

several viruses require the most common form of APOE to build their particles and invade human 

cells. In fact, it has been observed that isoform ε4 may hamper virion synthesis and compete with the 

hepatitis C virus for access to LDL receptors, which reduces liver damage in exposed populations. 

For example, in the Italian peninsula, the North-South gradient of hepatitis C incidence overlaps with 

a reverse gradient in ε4 distribution [220,221]. It is less clear how the different isoforms of APOE 

interact with the herpes simplex virus and HIV even though the mechanisms proposed in a review 

by Kuhlman et al. (2010) suggest that ε4, in this case, poses less competition to cell entry, which is 

also helped by the enhanced presence of lipid rafts in the cell membrane [222]. A relationship between 

APOE4 conservation, enhanced immune response, and pathogen distribution can be further justified 

by studies highlighting how carriers of this allele show higher levels of the anti-parasitic cytokine 

interleukin-3 (IL-3) and the pro-inflammatory tumor necrosis factor (TNFα) when exposed to 

endotoxins [223,224]. This seems to be especially important in the extreme case of Gram-negative 

infections since their toxins are membrane lipopolysaccharides (LPS) that can be collected by 

lipoproteins and redirected by APOE to the liver for inactivation. Reduced functionality of this 

protein can, thus, lead to hampered endotoxin clearance, overstimulation of macrophages, 

overproduction of inflammatory cytokines, and a stronger immune response leading to sepsis in the 

afflicted subject [225]. 

While local accumulation of the ε4 isoform in indigenous populations can be justified by the 

prevalence of infections in the absence of medical care, it can also be associated with a stronger 

inflammatory response to food-borne pathogens [168,192]. Other dietary factors, such as vitamin D 

and bone calcium assimilation, which were proven to be higher in both humans and transgenic mice 

carrying the ε4 allele [188,191], may have been crucial in the adaptation of populations living at 

extreme latitudes to the reduced amount of UV radiation. This justifies the North-South distribution 

of ε4 observable in Europe [188]. 

Many recent studies also considered a relationship between APOE and the gut microbiota, since, in 

this context, APOE can simultaneously exert its double role in lipid assimilation and immunity. Several 

experiments using APOE knock-out mice have shown that the diet can modulate gut microbiota 

composition such as with an enrichment in Firmicutes when mice were fed a typically Western diet. In 

turn, this relates to the amount of metabolic endotoxins in the bloodstream that stimulated a chronic 

inflammatory state [226,227]. On the other hand, if mice feeding on a hyperlipidic diet were immunized 

against their own gut microbiota, a significant decrement in serum inflammatory cytokines could be 

observed together with a reduction in atherosclerotic plaques, which suggests an interesting trade-off 

mechanism that balances the immune response against the resident microbiota with immune regulation 

of inflammation mediated by apolipoprotein E [228]. Other studies on obese mice and knock-out mice fed 

on regular chow versus a Western diet discovered that mending the loss of specific bacteria strains (e.g., 

Akkermansia muciniphila) caused by a hyperlipidic diet contrasted the enhanced permeability of the 

gastrointestinal tract to endotoxins and reduced vessel inflammation, fat dysmetabolism, and 

atherosclerosis both in normal and obese specimens [229–231]. Taking into consideration the 

immunomodulatory function of APOE, not only against bacteria, but also toward oxidized LDL found in 

sclerotic vessels, these observations highlight how both local and systemic responses can shape the overall 

arrangement of the intestinal biome [228]. 

Trade-off mechanisms may explain, in certain cases, issues regarding the replication of 

association signals for the same allele in different human populations and that several studies deem 

it more likely that a proportion of genetic influence on longevity (and of complex traits in general) 
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may be explained through polygenic effects [232–234]. Furthermore, the studies performed until now 

did not fully address the role of rare mutations [235] nor the interaction between rare variants and 

APOE that seems to have a relevant impact on the phenotypic outcome, as supported by a recent 

study on the Hong Kong Chinese population [236]. Lastly, in this review, we did not address a 

potential limitation of trade-off mechanisms: the fact that they may be time-dependent and may be 

influenced by specific environmental (internal and external) conditions. 

The contrast between APOE4 and APOE3 frequency distributions in current populations, with 

the former being prevalent in foraging communities and the latter being predominant in regions with 

relevant agricultural economy, led to the theory that the ε4 variant is a relic of a hunter-gatherer 

genetic background that has not adapted to the modern, energy-rich, and exercise-poor lifestyle [237]. 

To assess the possibility of observing the temporal scale of this transition, in the context of the present 

review, we built a panel of 1149 publicly available ancient genomes and selected 97 of them, with 

both rs7412 and rs429358 already directly genotyped (the original works including the selected 

samples can be found at References [238–258]). This has been done in order to avoid the introduction 

of bias in the dataset by imputing variants from highly deteriorated DNA, which usually presents 

extended regions of missing data. The samples, mapped in Figure 3 and listed in Supplementary 

Table S5 with details on the place of discovery and cultural context, cover the Euro-Mediterranean 

area and range from 1500 to 42,000 years ago. The ε3/ε3 genotype was found to be the most frequent 

(83%), followed by the ε4/ε4 genotype (13%), and the ε2/ε2 genotype (3%). The only heterozygote 

ε3/ε4 was represented by the Ust’Ishim sample, a 42,000-year old specimen of early hunter-gatherer 

human found in Siberia. In more detail, the ε2/ε2 individuals are Northern European samples from 

the Bronze Age. Despite carrying the ancestral genotype, all ε4/ε4 individuals are less than 8000 years 

old, with most of them being even more recent than 5000 years, while a conspicuous number of ε3/ε3 

samples are much older than this, especially in the areas of Caucasus, between the Black Sea, the 

Caspian Sea, and the Middle East. This temporal and spatial distribution may be coherent with 

Palaeolithic alleles, like APOE4, having been reintroduced in Europe at higher frequency with the 

Yamnaya migration from the Steppe during the Bronze age and APOE3 being present at higher 

frequencies in the Fertile Crescent prior to the Neolithic Revolution, even though both alleles were 

already present in the European populations as well, as highlighted by the older local specimens 

[238,243,245]. However, the limited number of samples available across such an extended geographic 

area and the chance of genotyping errors due to the highly deteriorated ancient DNA hinder the 

possibility of a thorough factual discussion of the results. In order to draw more elaborate 

conclusions, it would be useful to recover more complete and evenly distributed ancient data, both 

in space and in time. 
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Figure 3. Distribution and approximate age of the analyzed ancient samples. Those coming from the 

same location and belonging to the same culture have been clustered together and share the same 

label. The number of grouped individuals is given in brackets. 

7. Conclusions 

This review reports and summarizes relevant considerations regarding APOE and its pivotal 

role in the genetics of human longevity. Both candidate-gene studies and genome-wide analysis 

reveal its involvement in the attainment of an extreme lifespan by exerting a pleiotropic effect in a 

polygenic context. In this review, some new data (on the geographic distribution of APOE isoforms 

ε2, ε3 and ε4 in centenarians and in healthy individuals from the Italian population and on public 

available dataset on ancient genomes) have also been considered and evaluated in the light of the 

most recent findings on this gene, with particular attention to the variability across human 

populations. In fact, the study of the variability across different human groups is crucial to 

understand the differences that can be observed in the association between this gene and longevity 

and age-related diseases. The patterns can be justified by considering the multitude of biological 

pathways this gene belongs to and the different environmental conditions human populations must 

deal with especially with regard to pathogen exposure and dietary changes. An evolutionary 

perspective is also crucial to understand the conservation and current worldwide distribution of 

APOE isoforms ε2, ε3, and ε4. New data regarding DNA methylation variability in different tissues 

will also help more clearly define the role of this gene. Moreover, the relation between population 

specific cultural/ecological traits and APOE variability (as well as other genes) are needed to 

disentangle the devious way from genotype to phenotype. Given the high amount of data available 

on this gene, we think that an evolutionary approach, such as the one proposed by evolutionary 

medicine [259–263], will help interpret and clarify the link between even distant (or apparently not 

connected) results for this gene in different populations. 

Supplementary Materials: The following is available at www.mdpi.com/s1. Table S1: Summary of the studies 

published in the last eight years investigating the association between APOE variants and human longevity. 

Table S2: APOE allele frequencies in different human populations. Data used for Figure 2. Table S3: number of 

APOE alleles and haplotypes in geographically divided groups of 484 Italian centenarians and controls. Table 

S4: frequency of APOE alleles and haplotypes in geographically divided groups of 484 Italian centenarians and 

controls. Table S5: Summary of APOE haplotypes in ancient genomes. Data used for Figure 3. 
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