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Abstract: Population genetic data underpin many studies of behavioral, ecological, and 

evolutionary processes in wild populations and contribute to effective conservation management. 

However, collecting genetic samples can be challenging when working with endangered, invasive, 

or cryptic species. Environmental DNA (eDNA) offers a way to sample genetic material non-

invasively without requiring visual observation. While eDNA has been trialed extensively as a 

biodiversity and biosecurity monitoring tool with a strong taxonomic focus, it has yet to be fully 

explored as a means for obtaining population genetic information. Here, we review current research 

that employs eDNA approaches for the study of populations. We outline challenges facing eDNA-

based population genetic methodologies, and suggest avenues of research for future developments. 

We advocate that with further optimizations, this emergent field holds great potential as part of the 

population genetics toolkit. 
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1. Introduction 

The study of population genetics describes changes in the genetic diversity of populations 

through evolutionary mechanisms such as natural selection, genetic drift, mutation, and gene flow, 

the totality of which have evolutionary consequences and can lead to speciation (e.g., [1–6]). The 

direction, magnitude and mechanisms of population connectivity can be examined by quantifying 

gene flow (e.g., [4–6]). Furthermore, genetic data can be used to estimate inbreeding, which has 

potential fitness consequences (e.g., [7–9]). Understanding the genetics of populations can help us 

understand the past distributions [10], present status [11] and future prospects of species [12]. Genetic 

data are, therefore, useful for informing conservation management strategies. 

Population genetic research requires genetic sampling from organisms of interest. For example, 

blood and tissue samples have traditionally been sources of genetic material for large marine 

mammals, e.g., flipper clips from seal populations [13]. However, sampling tissue has negative effects 

on the target organism, such as: lethal sampling [14], causing harm or discomfort [15], disfigurement 

[16], or imposing stress [17]. Sampling can also be expensive, dangerous and time consuming for 

researchers [18–20]. For example, studying venomous reptiles may put researchers at risk of a bite 
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[21] and traditional sampling efforts to directly encounter the target species may be more costly than 

reagents required for eDNA analysis [22]. Furthermore, great sampling effort is required, especially 

if the target species is rare or difficult to find; in one instance taking >90 person-hours to find a single 

silver carp (Hypophthalmichthys molitrix) [19]. Many statistical models have been conceived to 

understand rare species ecology based on limited sample sizes [23–25]. More recently, non-invasive 

sampling techniques have been developed to reduce harm and expense [26]. In marine environments, 

for instance, fecal plumes, respiratory blow, parasites, and shed skin have proven to be useful DNA 

sources [27–31]. Such indirect samples have been used to amplify mitochondrial DNA (mtDNA) and 

nuclear DNA (nuDNA) markers, allowing measurement of allelic diversity, kinship, sex ratios, 

abundance and effective population size, density, evolutionary significant units, mating systems, and 

patterns of dispersal in species that might otherwise be difficult to sample [29,30,32–39]. The advent 

of promising new non-invasive technologies, such as environmental DNA (eDNA), creates further 

options for non-invasive population genetic sampling. 

Here we adopt the definition of eDNA from Taberlet et al. [40] defining it as a “complex mixture 

of genomic DNA from many different organisms found in an environmental sample.” However, we take a 

narrower view of environmental sample; defining eDNA as DNA taken from soil, water, or air, 

excluding samples from direct individual remains such as fecal matter, hair, or feeding traces 

[18,37,41]. Direct organismal traces may allow for assignment of genetic data to specific individuals 

[41–43]. From these non-invasive samples, DNA may be used to describe abundance [35–37], effective 

population size [44], density [38], diet [45], and sex of individuals [46,47]. Additionally, estimates of 

genetic diversity (e.g., inbreeding within a population) [48,49], gene flow [50,51], evolutionary 

significant units [39] and mating systems (e.g., multiple paternity) [32] have been obtained. However, 

eDNA samples from soil, water, or air are useful when individual traces cannot easily be identified 

and sampled. For example, eDNA can be used to target sites of suspected occupancy before intensive, 

invasive sampling effort is carried out in difficult-to-sample habitat [52]. With eDNA metabarcoding 

of environmental samples, the use of traditional methodology in tandem with eDNA methodology 

may reveal more biodiversity than either method alone [53]. 

Environmental DNA is already being used to improve biodiversity estimates (e.g., species-level 

taxa), when a complete snapshot of biodiversity is difficult to obtain via traditional methods (e.g., 

transects, video, trawl nets, trapping) [54–57]. The sensitivity of eDNA methods makes them ideal 

for detecting the presence of endangered, low-density invasive, transient, and cryptic species [58–63], 

especially when sampling efforts to detect low density species would be unmanageable [19]. 

Environmental DNA methods are not without challenges, but because eDNA offers sampling 

advantages such as sensitivity, simplicity and reduced harm, it is already being employed across a 

variety of biomes as a biodiversity monitoring tool, frequently in tandem with traditional 

methodologies [64–67]. In addition to biodiversity monitoring, eDNA could potentially be used for 

population genetic studies, mitigating some of the issues around invasive sampling. Population 

genetic eDNA is a newly emerging field that offers exciting prospects, but at present comes with 

challenges, discussed below [42,68–72]. 

Why Use eDNA over Direct Sampling for Population Genetics? 

Some of the species in eDNA population genetic studies are of conservation and management 

interest and can be difficult to sample [68,69,71]. Sampling protected species (e.g., endangered or 

threatened species) and species of cultural significance requires permitting processes that cost time 

and effort [73–75]. Data deficient species may not have a good sampling framework in place [76]. 

Species such as cetaceans may travel widely, while stranded individuals (often a major source of 

tissue samples) may not correspond to a population’s usual distribution [69]. Although studies using 

eDNA methods for population genetics to date have been heavily focused on the marine biome, 

eDNA could also be useful for other difficult-to-sample species in various habitats. For example, 

eDNA has been used to detect the presence of endangered species such as the great crested newt 

(Triturus cristatus) in freshwater habitat [58,77,78]. Terrestrial endangered species, such as the 

Bornean orangutan (Pongo pygmaeus) and Sunda pangolin (Manis javanica), may leave eDNA traces 
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in locations such as salt licks [79]. Given the elusiveness of some imperiled organisms, eDNA may be 

one of the best options for describing genetic variation in specific cases. Understanding the 

population dynamics of these species is important for effective conservation management, especially 

if they fall under a protected status [80]. 

Not only can eDNA be useful for managing imperiled species, but invasive species may also be 

suitable targets. For instance, freshwater invasive species such as bullfrogs (Lithobates catsebeianus) 

and Asian carp (Hypophthalmichthys sp.), among many others, have already been successfully 

detected with eDNA methods [19,81–83]. In addition to presence, population genetic eDNA methods 

may be useful for identifying source populations and pathways of invasion spread, as previous 

population genetic studies have done [19,84]. We anticipate that developing a widely usable 

population genetic eDNA toolkit could facilitate monitoring for these invasive species in the future. 

By sensitively detecting an invasion front and source population, managers may further be able to 

prevent damage and associated economic costs [85,86]. However, significant sequencing, 

bioinformatic, and statistical challenges will need to be overcome to go beyond proof-of-concept 

studies to answer questions about gene flow, genetic drift, mutation, and natural selection. These 

challenges, discussed below, include but are not limited to: distinguishing individuals, allelic 

dropout and false alleles related to amplification error, difficulty in relating eDNA to biologically 

relevant abundances, and expanding to nuclear markers. 

2. Environmental DNA for Population Genetics 

The use of eDNA in population genetics is in its infancy, but a handful of notable studies 

demonstrate the potential of eDNA to obtain within-species population genetic data. A recent 

landmark study used eDNA from seawater to examine the mtDNA haplotype variation of whale 

sharks (Rhincodon typus), to assess shark population structure, and their trophic interactions [68]. This 

work demonstrated that eDNA sampling in areas of known whale shark presence could detect some 

haplotypes that were also known from directly sampled tissues. Data from eDNA suggested a 

recently identified Qatar population of whale sharks was more closely related to the Indo-Pacific 

whale shark aggregation compared to the Atlantic aggregation [68]. In addition to haplotypic 

variation, this study reported a positive eDNA copy number correlation between quantities of whale 

shark eDNA and quantities of eDNA from their mackerel tuna prey (Euthynnus affinis) over two 

years, likely reflective of food web interactions [68]. This research suggests avenues for further eDNA 

mtDNA haplotype studies, especially that of examining population-specific haplotypic variation. 

More recently, seawater eDNA work on Northeast Pacific killer whales (Orcinus orca) explored 

whether eDNA-obtained haplotypes could be assigned to known haplotypic variation, and how long 

genetic material can be detected after known target animal presence [71]. Using droplet digital PCR 

(ddPCR), a sensitive PCR technique for the absolute quantification of DNA copy number in a sample, 

killer whale eDNA was detected up to two hours after individuals were observed in the sampled area 

[71]. Sequencing of these eDNA samples also identified a haplotype belonging to the southern 

resident killer whale ecotype, a genetically and usually geographically distinct variation of this 

species [71], showing that eDNA can be used to detect the genetic diversity of a vagile species like 

killer whales even after they have passed through an area. It may therefore be possible to detect 

ecotype movements and interactions through eDNA, genetically confirming visual identification. 

Beyond assignment to known haplotypes, eDNA has been used to uncover previously unknown 

intraspecific genetic diversity. For example, previously unknown harbor porpoise (Phocoena phocoena) 

mtDNA control region haplotypes have been detected via seawater eDNA [69]. These haplotypes 

differed from established haplotypes by one base pair, a small difference, and added additional 

support to the overall population structure previously described among the different sampling 

locations for this species [69]. The population structure as resolved with the assistance of eDNA 

derived haplotypes, supports managing the southeast Alaskan harbor porpoise as two separate 

populations [69]. Importantly, this study featured positive controls (four known harbor porpoise 

Sanger-sequenced samples) that helped lay the groundwork for strict quality filtering of the sequence 
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data [69]. The inclusion of these sequences allowed for baseline PCR and sequencing error rates to be 

detected. This strict quality filtering has been emphasized in other studies [63,68–70,72]. 

In addition to single-species targets, eDNA metabarcoding primer sets have been used to 

identify multiple haplotypes across multiple species simultaneously [70]. For instance, multiple 

arthropod mtDNA haplotype ratios have been identified using eDNA from freshwater streams [70]. 

After strict data filtering and only considering haplotypes found in multiple replicates, between 177 

to 200 operational taxonomic units (OTUs), were recovered with the average number of detected 

haplotypes for each OTU ranging between 2.40 and 3.30 [70]. 

Separately, 16S rDNA eDNA metabarcoding primers described multiple intraspecific 

haplotypes from the Lethrinus (snapper) genus from seawater samples, also using strict sequence read 

filtering [72]. Both studies required primers that gave enough resolution to discern intraspecific 

haplotypes while also being broad enough to capture multiple species [70,72]. These studies help 

build a framework for determining multi-taxa haplotypic diversity with eDNA metabarcoding 

technology, but more investigation is needed for other environments and taxa [70,72]. Importantly, 

the error profiles around each amplicon need to be carefully considered to differentiate rare 

haplotypes from sequencing error [87]. 

3. Challenges Facing Environmental DNA Population Genetics 

Despite recent success and future potential, eDNA population genetic methods require fine 

tuning before they can be widely applied. Perhaps one of the biggest obstacles in transitioning from 

species detection to population genetics using eDNA is assigning sequences to individuals. Previous 

non-invasive genetic techniques for terrestrial organisms have been able to assume different 

individuals from separate scats [37,48] or feeding sites [42,43,88]. Additionally, DNA extracted from 

invertebrate stomachs (iDNA) has also been used to obtain host DNA [31,89–91]. Indeed, whale shark 

population structure was confirmed using iDNA from a whale shark copepod (Pandarus 

rhincodonicus) parasite [31]. However, capture of whole, discrete fecal matter beyond initial 

deposition, feeding traces, or parasites may be challenging in environmental sampling scenarios. 

Currently, environmental samples cannot parse apart individuals. The same haplotype from a 

sample could indicate one individual or multiple individuals with the same haplotype. However 

obtained, confidence in individually-sorted genetic data is important for downstream analysis (e.g., 

adegenet for R, or Bayesian Analysis of Population Structure (BAPS) [92,93]) as population genetic 

theory concerns the existence and change of genetic variation within individuals between and among 

populations. 

Even when sequences are obtained in sufficient quantities and can be assigned to individuals, 

many non-invasive genetic sampling techniques, including eDNA, suffer from amplification 

challenges. Allelic dropout (the loss of allelic variation during sequencing), and false alleles (the 

apparent presence of non-existent alleles in samples), are notable examples [41,49,94]. Polymerase 

errors may inflate marker variation, leading to false alleles [95]. As in any population genetic study, 

regardless of DNA source, missing or false alleles will bias genetic diversity estimates with 

implications for further analyses [96]. Degraded DNA samples yielding low quality and/or template 

can contribute to these challenges, requiring increased replicates, increased PCR cycles, or increased 

sequencing depth [97–99]. Recent eDNA sampling has shown that allelic variation can be missed in 

multiple markers depending on extraction and capture methodologies [43]. Therefore, testing 

methodologies and using multiple markers will be important for reliable, reproducible eDNA 

capture and amplification in eDNA population genetic studies. 

Some techniques for mitigating quantity challenges for eDNA samples, such as PCR, are not 

without biases which may impact allelic abundance [98,100,101]. For example, PCR may 

exponentially amplify common DNA, decreasing the signals of rare genetic variation [102]. When 

using next-generation sequencing (NGS), there is a fine line between NGS error rates and low-

quantity alleles when filtering and analyzing data [70]. The inclusion of positive controls and 

stringent sequence read filtering could act as a guideline to determine real genetic variation [69,103]. 

Multiple sampling replicates could be used to further verify the legitimacy of low-abundance genetic 
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variation [69,72]. The same sequencing errors likely will not occur over multiple sampling replicates, 

and these reads could be considered, even if present at low copy number. Additionally, read depth 

or eDNA copy number may not to correlate with known biomass [98,104,105]. However, a more 

recent study indicates strong evidence that flow-corrected eDNA abundance reflects salmon count 

abundance in two species across two years and life stages [106]. Relating allelic abundance to eDNA 

genetic variation is necessary to understand allelic frequency differences between and within 

populations. Correlation correction factors may help, but for multicellular species obtained from 

environmental sampling, variation in individual rates of DNA shedding may obscure true haplotype 

ratios [107–109]. 

Furthermore, the number of reads from eDNA-obtained genetic data for target species must be 

sufficient enough to be distinguishable from background noise to ensure confidence that true genetic 

variation has been obtained. If initial DNA copy numbers are insufficient (e.g., <200 copies/L, 

[61,110]), PCR may be too stochastic to amplify genetic variation reliably, or may not amplify it at all. 

This issue of low copy number (LCN) has been addressed previously in the forensic and ancient DNA 

(aDNA) fields with technological advancements and modified protocols (e.g., qPCR, [111]; increased 

reagents, [112]) and awareness of LCN difficulties [113]. Sufficient sampling may increase chances of 

capturing target eDNA, and limits of detection have been explored for eDNA at the species level 

[114–116]. Ensuring confidence in genetic assignments with sufficient copy number is necessary to 

have confidence in data. 

Increasing the length of sequences and diversity of marker types that can be obtained from 

eDNA would also be advantageous for answering population genetic questions. Thus far, eDNA 

research has focused primarily on short (100–400 bp) mtDNA fragments. Additionally, commonly 

barcoded regions (e.g., cytochrome oxidase I) in mtDNA are widely available in public databases for 

many metazoans [117,118]. One reason for choosing mtDNA is its high copy number availability in 

environmental samples [119–121]. Further, as eDNA degrades over time and space, short (100–400 

bp) mtDNA sequences are more likely to be available in environmental samples [122–125], although 

larger (>16 kb) mtDNA fragments have recently been obtained from eDNA [126]. However, it would 

be useful to expand into other, longer molecular markers as the exclusive use of short, maternally-

inherited mtDNA fails to incorporate non-maternal genetic variation for most organisms [127,128]. 

For a deeper understanding of population structure, nuDNA data should be considered [129,130]. 

Phylogenetically, nuDNA may show different patterns of divergence within populations compared 

to mtDNA data [127,130,131]. For instance, nuclear variation may show evidence of introgression 

when mtDNA does not, which could be important to understanding how species and populations 

are interacting [132]. Additionally, nuclear copies of mitochondrial DNA (numts) occur in eukaryotes 

and can influence population genetic inferences [133,134]. Numts are difficult to recognize and have 

been shown to inflate diversity estimates when used with barcoding techniques [135–137]. Obtaining 

more markers is easier with nuDNA (e.g., 10′s of microsatellites or 10,000′s of SNPs) and can also help 

provide the ability to distinguish individuals with similar genetic signatures [43,138–140]. Multi-

allelic microsatellites could be used, and they have the added advantage of establishing a minimum 

number of individuals present in an eDNA sample. For example, in diploid species, if three alleles 

are found in a mixture, at least two individuals must exist in that environment [141,142]. 

Furthermore, markers that identify sex in genetically sex-determined species could give insight into 

the presence of sexes present in non-sexually dimorphic species. 

While much research is focused on obtaining, interpreting, and quantifying these data in an 

environmental context, there is a clear need for a robust statistical framework for answering 

population genetic questions from environmentally obtained samples [61,143,144]. Most population 

genetic theory, and thus, statistical software and tools, is founded upon the expectations and 

observations of individual diversity [92,93]. The inability to readily distinguish between individuals 

using eDNA is a current limitation [145]. To complicate the matter, environmental samples may have 

different, unknown amounts of allelic variation from multiple individuals from different species, 

which are unlikely to be in equimolar concentrations [107,145]. Unequal concentrations of allelic 

diversity would be difficult to correct for, given environmental stochasticity and our current 
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understanding of the physicality of eDNA (which is that environments vary and eDNA 

accumulation, transport, and degradation vary along with them) [146]. It is unlikely that individual 

heterozygosity will be able to be obtained with eDNA, as eDNA often contains fragmented DNA that 

cannot be assigned to a specific cell. If individual cells cannot be obtained, population genetic 

questions using environmental samples will be limited to primarily comparing allelic variation at 

between different populations [69,145]. 

Due to the aforementioned challenges, and the emergent nature of the eDNA field, population 

genetic-oriented eDNA sampling methodologies currently lag behind those of contemporary 

population genetic methods. Population genetic studies now regularly use thousands of single 

nucleotide polymorphisms (SNPs) for multiple individuals, not only for comparison of populations 

across space and year-to-year variation, but also to infer evolutionary histories with coalescence 

models [147]. Additionally, whole genome sequencing (WGS) is increasingly used to examine 

population-level genetic variation because it offers very high genomic resolution for detecting 

selection and the genetic basis of phenotypes (Figure 1) [148]. Already, population-level data 

collected via RADseq and other reduced-representation sequencing approaches can compare exomes 

or SNP-based genotypes to answer population-level questions (Figure 1) [149–152]. It is likely that 

eDNA population genetics will continue to lag behind traditional population genetics while the 

aforementioned challenges are being addressed. However, exciting technological developments 

suggest that at least some of these challenges can be overcome. 

 

Figure 1. Possible avenues of analyzing environmental DNA (eDNA) for population information. 

After eDNA is shed into the water column by target organisms of interest, collected, and extracted, 

multiple analyses can be used to obtain population data. These analyses have diverse applications, 

highlighted in the top yellow row, but each technique also presents its own challenges, highlighted 

in the bottom yellow row. 

4. Further Developments and Future Technologies 

For all eDNA population genetic studies, a robust sampling design will help minimize LCN 

DNA profiles. Choosing the correct substrate for sampling a target organism based on ecological 

knowledge, such as the position in the water column with the highest concentration of DNA of the 

target organism, will maximize potential copy number [153]. On this front, collecting eDNA may 

become easier with automated sampling systems for standardized, long-term sampling. After this, 

carefully considering the extraction methodology, assay, sequencing, and bioinformatic approaches 
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best for the biological question asked is key, as method choice influences genotypes obtained [98,154]. 

We suggest avenues of further research to move the field forward in Table 1. 

Several technologies that could help address the difficulty of assigning genetic information from 

eDNA samples to individuals, are already available or in development. One way forward might 

include single-cell sequencing (Table 1). As eDNA contains sloughed cells, collecting and sequencing 

whole, individual cells could facilitate extraction of individual-level genetic variation [146]. Cells 

could be collected using flow cytometry and microfluidic technology [155]. From there, extracted 

DNA from these cells can be sequenced using a variety of sequencing tools (e.g., Illumina, Nanopore) 

[156]. Advances in droplet microfluidics could potentially facilitate the capture and sequencing of 

DNA from single cells in parallel [157,158]. For instance, microbial single cell sequencing has already 

been used to characterize the genomes of marine bacterioplankton after an oil spill [159]. In general, 

single-cell sequencing technology remains very much the domain of medical and model research 

systems and there are still issues with biases [160,161]. Small quantities of DNA can result in allelic 

dropout and low sequencing coverage [160,162]. However, bioinformatics tools to address single-cell 

sequencing challenges are growing and could be developed for eDNA techniques to facilitate the use 

of single-cell sequencing for obtaining individual variation from eDNA samples. 

Good sampling design, in tandem with technological developments, could also help mitigate 

issues around obtaining allelic ratios and abundance [154,163]. Increasing sequencing depth also 

helps to guard against allelic dropout [164]. Previous work has also shown increased PCR replicates 

and increased sequencing depth increases the number of species detected in samples (Table 1) [99]. 

However, increasing sequencing may also increase noise and incongruency between PCR replicates 

[98]. Additionally, the inclusion of positive controls during sequencing or PCRs can assist data 

processing, serving as a benchmark for separating true haplotypic diversity from sequencing noise 

where NGS is used [69]. This will aid in determining appropriate filter parameters to ensure strict 

filtering for high quality data without being too restrictive or ignoring real biological signals. Droplet 

digital PCR (ddPCR) could also be used to address allelic and copy number abundance in a sensitive 

way (Table 1) [165,166]. This technology is already being explored for abundance estimations of 

species using eDNA techniques and could potentially quantify allelic diversity [61,71,165,166]. Other 

ways to get at quantification of allelic copy number include a correction factor depending on cell 

type, size, life-history stage and species, which could be integrated into single-cell methodology [107]. 

Lastly, the more that is understood about the ecology of eDNA in a field setting, the better we can 

understand and model eDNA abundance [106,146]. 

Another challenge for population genetic eDNA methods will be to fully develop nuDNA 

markers for the species of interest using eDNA sampling techniques. Capture methodology, where 

bait molecules bind to target DNA of interest, is currently being explored for eDNA with some 

success [42,167]. This methodology can target specific SNPs in nuDNA and may “fish out” 

extracellular, degraded eDNA (Table 1) [167]. Beyond current technologies, future sequencing 

developments may also enable longer reads to be obtained without sacrificing quality. Longer reads 

at greater depth may help to string haplotypes together, increasing genomic coverage (Table 1). Long-

range PCR has been used to help achieve this and other technologies, such as nanopore sequencing, 

might also facilitate long-read sequencing projects for eDNA [126,168]. 

Once environmental nuDNA has been captured, statistical programs can be developed 

specifically to analyze environmental genetic data. It may be possible to use rarefaction methods to 

estimate how well genetic diversity has been sampled in a location, as has been used in eDNA 

metabarcoding studies to estimate taxa obtained [169]. Additionally, eDNA may be able to borrow 

and modify techniques from pool-seq methods. Pool-seq can provide cost-effective, accurate allele 

frequency estimations when given large population sizes (>20 individuals) with sufficient (>20×) 

coverage [150,170,171]. Reliable estimates of FST, based on an analysis-of-variance framework, have 

been made using this technique to infer population structure using nuclear markers [171]. However, 

pool-seq may require statistical modelling to obtain allele frequencies [171], and because many 

individuals are often needed, may not work as well for low-density endangered species [150]. This 

technique cannot identify individuals and has not yet been fully developed for detecting intraspecific 
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genetic diversity from multi-species mixtures and does not necessarily do well with mixtures that are 

not in equimolar concentrations [145,150,170,172]. Despite multi-species gaps and potential eDNA 

stochasticity, pool-seq techniques may be a way forward for statistically quantifying allelic variation 

between populations in environmental samples. Once eDNA samples have been sequenced, 

regardless of method, alleles that little depth, such as nuclear eDNA, may be haplodized for analysis 

[173,174]. Originally used in the ancient DNA (aDNA) field, haplodizing randomly or statistically 

selects a single allele from each locus for analysis purposes [173,174]. This provides a way forward 

for eDNA to be used with already established population genetic statistics [173]. Potentially, 

statistical models can be built for total variation detection at a specific locus [114]. This has already 

been done for taxon biodiversity [114,175,176]. Additionally, estimates of relatedness between 

populations could be based on genetic similarities [42,68,69]. If nuDNA eDNA techniques are 

developed for eDNA samples, it would broaden the range of biological questions that eDNA could 

be used to answer. 

These exciting technological advances paired with environmental genetics techniques offer 

promising new ways to address broad evolutionary genetics questions without direct sampling. 

Amazing progress is occurring all the time in the use of environmentally derived genetic material. 

For example, despite the much more rapid degradation of RNA in the environment, even 

environmental RNA (eRNA) samples are now being used to provide a snapshot of the biological 

diversity and processes present at the community level (Table 1) [177–179]. Additionally, eRNA has 

identified foraminiferal taxa not found with eDNA techniques [180]. It is feasible to compare these 

eDNA and eRNA snapshots between populations to understand differential expression of genes in 

macrofauna at different sites [179]. Studying community-level genetics may also be a promising 

research avenue [181]. Universal primers can already target haplotypes of multiple species [70,72]. 

Once these technologies are further refined, eDNA and eRNA may become tools for examining 

selection at the community level [181]. By examining targeted gene expression with eRNA, 

documenting community responses to common pressures, such as anthropogenic climate shifts, may 

be possible. Furthermore, combining eDNA with aDNA techniques may give researchers a lens into 

past communities [182]. With new technology and human ingenuity driving unprecedented datasets, 

we can answer questions about the patterns and processes of how populations are changing in new 

ways that may be less harmful. 
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Table 1. Potential challenges facing environmental DNA population genetic research with suggestions for tools to help mitigate some of the challenges. While previous 

research has applied a number of these tools to these challenges (as cited), research still remains to be done to fully address how each tool can help mitigate each challenge, 

and to identify advantages and drawbacks of each. Note that not all tools and techniques apply to all challenges. 

Challenges 

  Abundance Allelic Drop-Out Bioinformatic Challenges Identifying Individuals Long-Term Datasets 
Obtaining Nuclear 

Markers 

T
o

o
ls

 a
n

d
 T

ec
h

n
iq

u
es

 

Automated sampling 

Reduce spatial and temporal variance, especially 

for difficult-to-sample areas. Standardized 

deployment may help detect abundance changes 

in regular intervals [183,184]. 

  

Document individual 

presence repeated through 

time [185]. 

Precise, standardized 

capture across time and 

space [186,187]. 

 

Baited capture 

methodology 

Baited capture may reduce PCR amplification 

needed, reflecting true abundance ratios better. 

[188]. 

Targeted capture of specific allelic 

variation [189]. 

Identification of specific SNPs in a 

population. 
 

Capture of specific allelic 

variation across time. 

Target of nuDNA, 

especially SNP markers 

[189]. 

Droplet digital PCR 
Absolute quantification of target molecules 

[61,165,190]. 

Sensitively amplify different allelic 

variation, could reduce drop-out 

[191]. 

Provides absolute quantification of 

specific molecule abundance 

[192,193]. 

Perhaps amplify and quantify 

single-cell eDNA. 

Sensitively quantify 

changes in target molecules 

over time. 

Amplify and quantify 

nuclear marker loci. 

eRNA Increase temporal resolution [177]. 
Increase temporal resolution of 

expressed alleles. 

Identify allele-specific expression at 

the population level [194]. 

Detection of live individuals 

[195]. 

Examine expressed gene 

changes within a 

population or community 

[178,180]. 

Increased temporal 

resolution of nuclear 

genetic variation 

[194,195]. 

Increased sequencing 

depth 
 

Could increase detection chance of 

low copy number alleles [196]. Pool-

seq may aid in elucidating allelic 

variation of large samples. 

Could increase chance of detecting 

genetic diversity in replicates, 

perhaps allows for stricter filtering. 

Could increase confidence in 

detection of individuals, 

especially if using single-cell 

techniques. 

More robust datasets may 

show change throughout 

time at a finer scale. 

Increased probability of 

detecting rare alleles. 

Increased sequencing 

read length (nanopore, 

long-range mtDNA) 

 

Capture of long reads or mtDNA 

genomes, see which alleles are linked 

[126] 

Longer reads may help compile 

individuals’ mtGenomes [126]. 

Links SNPs to form genomic 

or mtDNA haplotypes. 

May see recombination 

patterns through time. 

Increased genomic 

coverage [126]. 

Single-cell sequencing 
Approximation of unique individuals per sample 

assuming different genomes. 

May have some allelic dropout if 

depth of sequencing is low [162]. 

Identification of individuals allows 

for information to be analyzed with 

traditional population-genetics 

methodology. 

Identify individuals based on 

cell genome [156]. 

Identify changes in 

individual presence. 

Target of nuDNA, 

perhaps even able to aid 

in sequencing of whole 

genome [155]. 

“Universal” primers 

specific enough for 

intraspecific variation 

 

Alleles of multiple species identified 

in the same sample with same primer 

[72]. 

 

Possibility to identify 

multiple individuals of 

multiple species if 

individuals can be sorted. 

Multiple species targeted 

for community composition 

snapshots [70]. 

Possibility to target 

nuclear markers in 

multiple species in the 

same sample. 
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5. Conclusions 

The need for non-invasive sampling, especially for low-density and cryptic populations, will 

continue to drive technological development. Environmental DNA population genetic methods have 

the potential to fill this need if developed and tested rigorously. Limited conservation funding and a 

need to minimize stress to wild animals, coupled with increasing molecular expertise, declining 

taxonomic expertise, and declining sequencing cost make eDNA an attractive genetic sampling tool 

[197–199]. We envision the next step in eDNA for population genetics as describing allelic variation 

between populations, using previously sequenced traditional samples as a reference. Sampling with 

eDNA will likely never completely replace invasive sampling because organism capture allows for 

the collection of additional and important non-genetic data, such as size, age, maturity, isotopic 

measurements, enzymatic activity, and hormone activity [200–203]. Population genetic eDNA 

methods can be a useful complement to traditional, direct-sampling studies; eDNA is another tool in 

the population genetic toolbox. While there are challenges facing eDNA population genetic methods, 

the field can profit from—and build upon—the framework of extensive technological development 

already associated with the fields of aDNA and forensics. Technological advances have facilitated 

studies of disease, migration, and population dynamics of past organisms with aDNA techniques 

that were not feasible even 20 years ago [204–206]. Environmental DNA research faces similar 

technological challenges to aDNA associated with the recovery and sequencing of degraded, low 

copy number target DNA. Improving conservation management tools is of critical importance in light 

of global environmental change [207,208]. We predict that eDNA technology will have a key role to 

play in providing rapid and broad scale insights into the population genetics of imperiled and 

difficult-to-sample species around the globe. 
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