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Abstract: In discovering disease etiology and pathogenesis, the associations between MicroRNAs
(miRNAs) and diseases play a critical role. Given known miRNA-disease associations (MDAs),
how to uncover potential MDAs is an important problem. To solve this problem, most of the existing
methods regard known MDAs as positive samples and unknown ones as negative samples, and then
predict possible MDAs by iteratively revising the negative samples. However, simply viewing
unknown MDAs as negative samples introduces erroneous information, which may result in poor
predication performance. To avoid such defects, we present a novel method using only positive
samples to predict MDAs by latent features extraction (LFEMDA). We design a new approach to
construct the miRNAs similarity matrix. LFEMDA integrates the disease similarity matrix, the known
MDAs and the miRNAs similarity matrix to identify potential MDAs. By introducing miRNAs and
diseases knowledge as the auxiliary variables, the method can converge to give the optimal solution
in each iteration. We conduct experiments on high-association diseases and new diseases datasets,
in which our method shows better performance than that of other methods. We also carry out a
case study on breast neoplasms to further demonstrate the capacity of our method in uncovering
potential MDAs.

Keywords: microRNAs; disease; association prediction; latent feature extraction

1. Introduction

MicroRNAs (miRNAs), a class of small endogenous non-coding RNAs, regulate gene expression
at a post-transcriptional level through mRNA degradation or translational inhibition [1–3]. There is
growing evidence that miRNAs are essential in biological process including immunoreaction,
transcription, proliferation, differentiation, signal transduction, embryonic development and so
on [4–9]. miRNA mutation, biosynthesis and dysfunction with the miRNAs of its targets can lead to
various diseases [10–13]. Therefore, it is very important to identify the association between miRNAs
and diseases. Early studies determined the relationship between miRNAs and specific diseases via
biological experiments. However, biological experiment methods have long cycles and high costs.
Therefore, computational biological methods for analyzing and predicting the association between
miRNAs and diseases have been receiving great attention.

Currently, the association prediction of miRNAs and diseases has two main categories: one based
on network topology, and the other based on machine learning methods. Network topology methods
are based on the observation that diseases regulated by functional similar miRNAs are similar and vice
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versa [14,15]. A series of research works is predicated on this hypothesis [16–24]. In 2010, Jiang et al. [16]
first proposed a method to predict the association between miRNAs and diseases by constructing
functional-related miRNAs networks and human disease phenotype-miRNA networks, and then
ranking the human miRNAs according to their disease-related scores. This is a reasonable extension
of using network-based methods to predict protein coding genes related to diseases. To improve
their previous work, Jiang et al. [17] believed that more data sources should be introduced to increase
credibility, and they proposed a new method based on genomic data fusion. They use a naive
Bayesian model to fuse multiple data sources, and constructed a model to predict the functional
relevance between genes. The association between diseases and genes, and between miRNAs and
target genes, are represented by two vectors respectively. For a given disease, its similarity scores
with all miRNAs are calculated and ranked in descending order. The miRNA with the highest score
is the target associated with the disease. Chen et al. [18] provided another, more time-efficient idea
which applies the random walk algorithm (RWRMDA) to the miRNA-miRNA functional similarity
network. Starting from a given seed node, in order to mine the potential association in the network,
the size of the known associations is used as the transfer probability to simulate the process in which
the miRNA-disease relationship binding with the current node is propagated to its neighboring
nodes. In 2013, Chen et al. [19] expanded the application scope and strategy comparison of different
similarities on the basis of the previous article, and they proposed a similarity-based approach that
consists of three strategies: microRNA-based similarity inference (MBSI), phenotype-based similarity
inference (PBSI) and network-consistency-based inference (NetCBI). Shi et al. [20] proposed a new
method based on restart random walk with the restart (RWR) algorithm in 2013, which maps
disease genes and miRNA target genes to protein-protein interaction (PPI) networks and sets
different seeds to apply the RWR algorithm. This method introduces the protein data source as the
intermediary information, which improves the accuracy and credibility of the model. Since then,
different researchers have experimented with multiple data sources and similarity strategies to
predict miRNA and disease relationships. Later, Xuan et al. [21] proposed a method called
“HDMP” to predict disease-related miRNAs based on weighted, most similar k-nearest neighbors.
Xu et al. [22] predicted cancer-associated miRNAs by comparing the phenotypic association of multiple
diseases between miRNAs and mRNAs expression profiles. In 2013, Mork et al. [23] proposed a
protein-mediated prediction method that predicts the association between miRNAs and diseases
through the association between miRNAs and proteins and the association between proteins and
diseases. In 2016, Sun et al. [24] proposed a method based on the known topological similarity of
miRNA disease to discover more potential disease-related miRNAs. In this method, they used bipartite
projection to complete the correlation prediction. Up to now, the methods based on network topology
tend to use the known association to mine the potential association. Since it lacks miRNAs and diseases
with known relationship information, the results incline to be random.

The second category of methods is found on machine learning. In 2012, Xu et al. [25] first used
machine learning methods to predict the relationship between miRNAs and diseases. This approach
aims to identify positive associations from large-scale negative associations. The core of this method is
to extract features from the miRNA-disease network and train an SVM classifier. In 2013, Jiang et al. [26]
constructed the different feature sets including miRNA and a disease phenotype information set, and it
achieved a similar result compared with the method of Xu. In 2014, Chen et al. [27] considered a
semi-supervised global approach (regularized least squares for miRNA-disease association, RLSMDA)
to predict the miRNAs-diseases associations without negative samples. This method is also applicable
to diseases with unknown related miRNAs. Machine learning-based approaches can attain similar or
better results than network-based topology approaches, and some approaches even handle diseases
with unknown miRNAs, such as RLSMDA. Chen et al. [28] proposed an approach to combine
miRNAs/diseases’ statistical feature profile and graph theoretical feature profile for MDA prediction.
The idea is to project them onto the same subspace, during which Laplacian regularization is used
to preserve the data’s local structures and important miRNA/disease features are selected with
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L-1 norm constraint. This model is promising in the way that feature selection helps dramatically
reduce the dimensionality, and thus enables easy extension to higher dimensional datasets. However,
these methods are mainly limited to the feature representation of miRNAs and diseases. You et al. [29]
proposed a novel path-based method for MDA prediction (PBMDA). In addition to conventional two
similarity and one association, a Gaussian interaction profile kernel is further introduced to measure
the similarity between miRNAs and diseases. With all four statistics, a heterogeneous graph consisting
of three interlinked sub-graphs is constructed, and then the depth-first search algorithm is applied
on it to infer potential MDAs. The algorithm based on matrix factorization solves the problem of
feature representation by using high-dimensional space vectors. It constructs the representation of
miRNAs and diseases in high-dimensional space at the same time, and then obtains their association.
The probability of the final miRNAs-diseases association is solved by the least square method. Such an
idea is derived from the widely-adopted method of matrix factorization in recommendation systems.
It has been proved that the method is very effective to solve association prediction problems in
recent years. Shen [30] first proposed a matrix factorization based method (CMFMDA) to predict
miRNAs-diseases associations in 2017. This approach achieved better performance than Chen [27].
However, due to the impact of its loss function, the least squares method cannot be used in the process
of iteration. To a large extent, the result depends on the initial value. In many cases, it is difficult to
guarantee the stability of the algorithm because it may not converge. Besides, the approaches based
on matrix factorization regard the unlabeled association as the negative samples. Thus, they extract
the wrong information, which leads to result deviation. A recent study by Chen et al. [31] presents
the first decision tree learning-based model for MDA prediction (EGBMMDA). Obeying the routine
of integrating the miRNA functional similarity, the disease semantic similarity, and known MDAs,
the model uses statistical measures, graph theoretical measures, and each miRNA-disease pair’s matrix
factorization result to form an informative feature vector. With calculated feature vectors and known
associated pairs, a regression tree is trained under the gradient boosting framework, which is further
used for predicting potential MDAs.

This paper proposes a novel approach called miRNA-disease association prediction using latent
feature extraction with positive samples (LFEMDA). First, we design a new miRNAs functional
similarity construction method to solve the problem that miRNAs functional similarity is used to
predict miRNAs-Disease associations, while sometimes the former is dependent on the latter, which is
not desirable in common inference models. Second, LFEMDA introduced miRNAs and disease
knowledge as the auxiliary variables so that the optimal solution can be obtained in each iteration of
the optimization process. Third, LFEMDA uses only positive samples for feature extraction, and it
could reduce the deviation. Finally, LFEMDA achieves great results on both the high-association
diseases data and the new diseases data.

2. Materials and Methods

2.1. Disease Semantic Similarity Network

The disease semantic similarity is calculated by the method of Wang [32], which depends on their
common semantic annotations and shared disease symptoms. Every disease can be represented by a
directed acyclic graph (DAG), and a disease D is denoted as DAG(D) = (TD, ED), where TD is a set that
includes all the ancestor nodes of D and D itself, and ED is a set of direct linking edges of D. The node
t (t ∈ TD) is defined as follows:

CD(t) =

{
1, i f t = D
max{∆× Cd(t′)|t′ ∈ children o f t}, i f t 6= D,

(1)
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where ∆ is an semantic contribution factor. We set it to 0.5, as suggested in literature [24]. The semantic
value of D, DV(D) is defined as:

DV(D) = ∑
t∈TD

CD(t) (2)

The more terms in DAG are shared between two diseases, the more similar they are. So the
semantic similarity between disease d1 and disease d2 is defined as follows:

SD(d1, d2) =
∑t∈T(d1)∩T(d2) (Cd1(t) + Cd2(t))

∑t∈T(d1) Cd1(t) + ∑t∈T(d2) Cd2(t)
(3)

2.2. miRNAs-Disease Association Network

We get the miRNA-disease association information from a HMDD database [33]. The data
contains 10,381 experimentally-confirmed associations among 378 diseases and 571 miRNAs. Matrix R
represents the associations between miRNAs and diseases. For example, if miRNA mi and disease dj
are related, the value R(mi, dj) is 1, and 0 otherwise.

2.3. miRNAs Functional Similarity Network

Based on the assumption that miRNAs with similarity functions are involved in similar diseases,
Wang et al. [32] gave a method to get functional similarity between two miRNAs by calculating
the similarity between two groups of diseases that are associated with them respectively. Cui et al.
developed a tool called MISIM based on Wang’s method [32] to measure the pairwise functional
similarity of the given miRNAs. MISIM can be downloaded from http://www.cuilab.cn/files/
images/cuilab/misim.zip. Usually, the two disease groups are obtained from miRNAs-Disease
associations. However, it leads to a problem that the miRNAs functional similarity used to predict
miRNAs-Disease Associations can be actually implied by the prediction target themselves. That is
to say, the miRNAs functional similarity is inferred from miRNAs-disease association and disease
semantic similarity, but such inferred results may be, in reverse, incorporated in the process of
predicting miRNAs-disease association.

To deal with this issue, we designed a new algorithm to obtain the functional similarity of miRNAs
from their sequence data. The sequence of miRNA determines its uniqueness and function, so our
method can reserve the biological characteristics to the greatest extent.

We defined the functional similarity of two miRNAs as SM (m1, m2).

SM(m1, m2) = 1− Levenshtein′(m1, m2)

len(m1) + len(m2)
(4)

Levenshtein′(m1, m2) refers to the editing distance of two miRNA sequences. So, we have,

0 ≤ Levenshtein′(m1, m2) ≤ len(m1) + len(m2) (5)

The miRNAs functional similarity matrix can be obtained by calculating the functional
similarity between miRNAs. Suppose, for example, we have two miRNA sequences. One is
hsa-mir-21(CAACACCAGUCGAUGGGCUGU), the other is hsa-mir-155(CUCCUACAUAUUAGC
AUUAACA). Their Levenshtein distance is 19, and the functional similar score is 1 − 19/(21 + 22)
= 0.5581.

2.4. Data Fusion

The final miRNAs similarity matrix (MS) and disease similarity matrix (DS) are obtained by
integrating the miRNAs functional similarity network, the diseases semantic similarity network,
and the experimentally-confirmed miRNA-disease association network (R). After fusing the above

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
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three datasets, there are 446 miRNAs, 322 diseases and 5,512 confirmed miRNA-disease associations
in reserve.

2.5. Loss Function

In this paper, the idea of matrix decomposition is used to solve the problem of miRNA-disease
association prediction. Let MS represent the miRNAs functional similarity network, DS represent the
diseases semantic similarity network, and RS represent the miRNA-disease association network.

Firstly, for each miRNA and disease, we give the initial projection vector in a fixed k dimension
space, and use their inner product to represent the association between them, which can be denoted
as follows:

R′ = MT D (6)

where M is a m× k matrix, and m is the number of miRNAs. Similarly, D is a k× d matrix, and d is the
number of diseases. The goal is to minimize the distance between R′ and the real relationship R by
solving the appropriate M and D, which can be expressed as:

min‖R′ − R‖2
F (7)

Only the positive samples are credible, so the Formula (5) can be described as:

min ∑
Ri,j=1

(
R′ i,j − Ri,j

)2 (8)

In addition, the constrained M and D are hoped to match the priori MS and DS in the model,
so the loss function can be written as:

minλ1‖MMT −MS‖2
F + λ2‖DDT − DS‖2

F (9)

Considering the terms Mi ×MT and Dj ×DT , the quadratic form may exist in the loss function.
This prevents us from getting a simplified equation about the interested variables during the
optimization, which will make it impossible to get the optimal solution in the iteration process.
So, matrix X and Y are introduced as the auxiliary variables to help the optimization. The Formula (9)
is transformed as:

minλ1‖MXT −MS‖2
F + λ2‖DYT − DS‖2

F + µ1‖M− X‖2
F + µ2‖D−Y‖2

F (10)

Empirically, two-norm constraints are added on M and D to prevent the model falling into
overfitting. The final loss function is as follows:

L = ∑
Ri,j=1

((
MiDj

T − Ri,j
)2
)

+ λ0

(
‖M‖2

F + ‖D‖
2
F

)
+ λ1‖MXT −MS‖2

F

+λ2‖DYT − DS‖2
F + µ1‖M− X‖2

F + µ2‖D−Y‖2
F

(11)

2.6. Optimization

For Formula (11), there are four variables in the loss function, so there is no method to solve the
optimal M and D directly. Thus, we use an iterative least squares approach to get its optimal solution.
At the same time, since only positive samples participate in the optimal process, it is hard to optimize
the function by matrix calculation. To settle this problem, it will solve the hidden variable of each
miRNA and disease. The specific steps are as follows:
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Firstly, using current D, X, Y to update M. Take the derivative of Mi:

∂L
∂Mi

= 2 · ∑
Ri,j=1

((
MiDj

T − Ri,j
)
· Dj

)
+ λ0 ·Mi + λ1 ·

(
MiXT −MSi

)
· X + µ1(Mi − Xi)

= 2 · ∑
Ri,j=1

(
MiDj

T Dj − Ri,jDj
)
+ λ0 ·Mi + λ1 ·MiXTX− λ1 ·MSiX + µ1Mi − µ1Xi

(12)

Let ∂L
∂Mi

= 0, and then we can get:

Mi =

(
∑

Ri,j=1
Ri,jDj + λ1 ·MSi · X + µ1 · Xi

)(
∑

Ri,j=1
Dj

T Dj + (λ0 + µ1) · Ik + λ1 · XTX

)−1

=

(
∑

Ri,j=1
Dj + λ1 ·MSi · X + µ1 · Xi

)(
∑

Ri,j=1
Dj

T Dj + (λ0 + µ1) · Ik + λ1 · XTX

)−1 (13)

Similarly, fixing other parameters and solving D, X, and Y respectively:

Dj =

 ∑
Ri,j=1

Mi + λ2 · DSi ·Y + µ2 ·Yi

 ∑
Ri,j=1

Mi
T Mi + (λ0 + µ2) · Ik + λ2 ·YTY

−1

(14)

X =
(

λ1 ·MST ·M + µ1 ·M
)(

λ1 ·MT M + µ1 Ik

)−1
(15)

Y =
(

λ2 · DST · D + µ2 · D
)(

λ2 · DT D + µ2 Ik

)−1
(16)

Thus, the optimal solution of M, D, X and Y is obtained. This process will be iterated until
it converges.

2.7. Prediction

We use the inner product of calculated M and D to obtain a new correlation matrix R′ = MT D,
and R′(i, j) is the predicted association of the ith miRNA and the jth disease. In fact, the value of R′(i, j)
makes sense only when compared with other values in the matrix R′. The larger the value, the higher
possibility that associations exist. But it is not equal with the probability of existential association.
The specific steps of the LFEMDA algorithm are shown in Algorithm 1. The code and data of LFEMDA
is freely available at https://raw.githubusercontent.com/kavinche/fantastic-telegram/master/data_
and_code_of_LFEMDA.rar.

3. Results and Discussion

3.1. Performance Evaluation

We adopted Leave-One-Out Cross-Validation (LOOCV) to evaluate the performance of our
approach and other miRNA-disease association prediction methods. For each known miRNA-disease
association, it is left out in turn as the test data. All the other known associations are treated as training
data. The unknown associations are regarded as candidates. After the association prediction, each pair
of disease and miRNA will get a score; the larger the score, the greater the probability of association.

With a predefined threshold, if the score of associated miRNA is larger than the threshold, it
is considered as a correctly identified positive sample. Otherwise, it is regarded as a true identified
negative sample. Then, the TPR, FPR and Receiver Operating Characteristics (ROC) can be calculated.
Finally, the area under the ROC curve (AUC) is selected to measure the performance of the
prediction method.

https://raw.githubusercontent.com/kavinche/fantastic-telegram/master/data_and_code_of_LFEMDA.rar
https://raw.githubusercontent.com/kavinche/fantastic-telegram/master/data_and_code_of_LFEMDA.rar
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Algorithm 1: LFEMDA, predicting miRNA-disease association by latent feature extraction with positive
samples

Input: MS: m*m miRNAs functional similarity matrix
DS: d*d disease semantic similarity matrix
R: the experimentally confirmed miRNAs-disease association matrix
Paramter: k: hidden space dimension
λ0: second normal form regularization coefficient
λ1: the distance coefficient between expression matrix inner product of miRNAs on the hidden space and MS
λ2: the distance coefficient between expression matrix inner product of diseases on the hidden space and DS
µ1: the distance coefficient between expression matrix of miRNAs on the hidden space and auxiliary matrix X
µ2: the distance coefficient between expression matrix of diseases on the hidden space and auxiliary matrix Y
Output: R′: the predicted miRNAs-disease association matrix
Initialize the vector matrices M, D, and the auxiliary vectors X, Y of miRNAs and diseases
∆← ∞ , loss← ∞
while ∆>ε:
update M, given current D, X and Y, using Formula (11)
update D, given current M, X and Y, using Formula (12)
calculate current X based on the new M
calculate current Y based on the new D
calculate loss_new using Formula (9)
∆← loss_new− loss
loss← loss_new
End while
R′ = MT D

To illustrate the performance of LFEMDA, we compared it with the existing state-of-the-art
methods: RWRMDA, CMFMDA, RLSMDA, PBMDA and EGBMMDA. Figure 1 is the comparison
result. The hyperparameters in experiment are set as follows: λ0= 6.0, λ1= 0.1, λ2= 0.1, µ1= 3.0,
µ2= 3.0. As is demonstrated in the result, LFEMDA has the highest prediction performance among the
compared methods.
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Figure 1. Performance comparison between LFEMDA and the other three models (RWRMDA, CMFMDA,
RLSMDA, PBMDA and EGBMMDA) in terms of ROC curve and AUC based on LOOCV, respectively.

3.2. Case Study

In Data Fusion section, there are 21 diseases which have more than 60 known associated miRNAs.
Here, we can regard them as high association diseases. LFEMDA was compared with RWRMDA,
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CMFMDA, RLSMDA, PBMDA and EGBMMDA by LOOCV. The AUC results are showed in Table 1.
The average AUCs of LFEMDA, RWRMDA, CMFMDA, RLSMDA, PBMMDA and EGBMMDA are
85.22%, 60.40%, 80.08% 63.75%, 76.33% and 82.38% respectively. LFEMDA shows the best performance
on 14 high association diseases compared with other methods, and it gets better results on other 7 high
association diseases.

At the same time, to evaluate LFEMDA performance on new diseases, we compared it with
RWRMDA, CMFMDA, RLSMDA, PBMDA and EGBMMDA on 20 diseases having only one known
experimentally related miRNA. The experimental result is showed in Table 2. LFEMDA obtained
the satisfactory results. Overall, it can be seen that LFEMDA shows excellent results not only on
high association diseases, but also on new disease. EGBMMDA and PBMDA get the best results in
two situations. The experimental results of CMFMDA are not unsatisfactory in six new diseases, i.e.,
Moyamoya Disease, Hypoxia-Ischemia Brain, Liver Diseases Alcoholic, Amyotrophic Lateral Sclerosis,
Pemphigus Benign Familial and Neuroma Acoustic. For RLSMDA, it performs well on new diseases
but poorly on high association diseases.

To further prove the performance of LFEMDA, a case study on breast neoplasms was
carried out to demonstrate the prediction ability. Here, we used LFEMDA to identify potential
miRNAs related to breast neoplasms. In addition, the prediction results were validated by three
miRNA-disease association databases: HDMM, dbDEMC2 [34] and miR2Disease [35]. The top 50
breast-neoplasms-related miRNAs are listed in Table 3. The HDMM and the dbDEMC2 databases have
confirmed that all the 50 predicted miRNAs are associated with the disease. The database miR2Disease
have identified 47 predicated miRNAs.
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Table 1. The AUC results of high-association diseases under different algorithms.

Name Associations LFEMDA RLSMDA CMFMDA RWRMDA PBMDA EGBMMDA

Carcinoma, Hepatocellular 209 0.777074623 0.562371401 0.726182159 0.718837107 0.726162356 0.751014475
Breast Neoplasms 188 0.825615501 0.575863451 0.779712619 0.785302831 0.744000495 0.83387968

Stomach Neoplasms 166 0.781357444 0.596336681 0.730033905 0.415019763 0.742491394 0.783024957
Colorectal Neoplasms 143 0.815816439 0.577177998 0.771634237 0.726338286 0.764776478 0.806896074

Melanoma 133 0.837661607 0.627245105 0.775708519 0.809683177 0.758005237 0.820990175
Lung Neoplasms 125 0.907236486 0.593028386 0.860728224 0.636684303 0.79835514 0.880834891

Heart Failure 118 0.807582407 0.570803132 0.718811527 0.5 0.747054568 0.820457834
Neoplasms 116 0.919919468 0.641564425 0.873431701 0.691700345 0.82531348 0.82318139

Ovarian Neoplasms 113 0.891470921 0.626313211 0.843754711 0.839827262 0.768077812 0.798872832
Prostatic Neoplasms 111 0.856723686 0.628673046 0.810308089 0.795159194 0.741024607 0.914524556

Carcinoma, Renal Cell 100 0.843903179 0.605379769 0.786606069 0.5 0.735028902 0.904940339
Glioblastoma 99 0.816009776 0.587858911 0.785139551 0.485119944 0.791925014 0.799697261

Pancreatic Neoplasms 98 0.907911933 0.626861054 0.866743742 0.733275142 0.799173118 0.924964814
Carcinoma, Non-Small-Cell Lung 92 0.869584575 0.596822501 0.83466099 0.843493976 0.768944977 0.860077377

Urinary Bladder Neoplasms 89 0.855515442 0.624616265 0.796487867 0.607213439 0.735907846 0.795801467
Colonic Neoplasms 82 0.873166319 0.630208504 0.801865631 0.5 0.764004288 0.855367194

Carcinoma, Squamous Cell 78 0.878461503 0.579512281 0.832002776 0.5 0.761775362 0.815635452
Glioma 73 0.91383381 0.630672274 0.816208746 0.5 0.786771457 0.787616145

Esophageal Neoplasms 68 0.780247066 0.558603262 0.761111226 0.5 0.704365079 0.790071584
Leukemia, Myeloid, Acute 67 0.860503335 0.604397968 0.827720767 0.5 0.818965857 0.816735049
Head and Neck Neoplasms 63 0.876705038 0.63878347 0.817123175 0.800857458 0.746404741 0.715606114
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Table 2. The AUC results for new diseases under different algorithms.

Name Associations LFEMDA RLSMDA CMFMDA RWRMDA PBMDA EGBMMDA

Distal Myopathies 1 1 0.993258427 0.988764045 0.5 0.943820225 0.957303371
Moyamoya Disease 1 0.993258427 0.995505618 0.08988764 0.5 0.995505618 0.982022472

Hypoxia-Ischemia, Brain 1 0.991011236 0.988764045 0.096629213 0.5 0.901123596 0.982022472
Hypopharyngeal Neoplasms 1 0.991011236 1 0.838202247 0.5 1 0.982022472

Hepatitis C, Chronic 1 1 1 1 0.5 0.991011236 0.959550562
Lipid Metabolism Disorders 1 0.993258427 0.979775281 0.914606742 0.5 0.991011236 0.959550562

Liver Diseases, Alcoholic 1 0.930337079 0.739325843 0.051685393 0.5 0.824719101 0.817977528
Adenoma 1 1 1 0.930337079 0.5 1 0.982022472

Amyotrophic Lateral Sclerosis 1 0.95505618 0.948314607 0.11011236 0.5 0.943820225 0.957303371
Keratoconus 1 1 0.993258427 0.986516854 0.5 0.912359551 0.959550562

Aortic Aneurysm, Abdominal 1 1 1 0.964044944 0.5 1 0.982022472
Carcinoma, Embryonal 1 0.865168539 0.838202247 0.856179775 0.5 0.694382022 0.817977528

Oligodendroglioma 1 0.907865169 0.817977528 0.905617978 0.5 0.84494382 0.817977528
Carcinoma, Ductal, Breast 1 1 1 0.914606742 0.5 1 0.982022472

Fanconi Anemia 1 0.824719101 0.730337079 0.820224719 0.5 0.471910112 0.438202247
Colitis 1 1 0.997752809 0.898876404 0.5 0.997752809 0.982022472

Eye Abnormalities 1 0.993258427 0.82247191 0.779775281 0.5 0.912359551 0.959550562
Pemphigus, Benign Familial 1 0.991011236 0.993258427 0.103370787 0.5 0.970786517 0.982022472

Neuroma, Acoustic 1 0.995505618 1 0.173033708 0.5 1 0.982022472
Creutzfeldt-Jakob Syndrome 1 1 0.997752809 0.44494382 0.5 0.995505618 0.982022472
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Table 3. The top 50 breast neoplasms-related miRNAs.

Rank Name Evidence Rank Name Evidence

1 hsa-mir-21 HDMM, dbDEMC2, miR2Disease 26 hsa-mir-148a HDMM, dbDEMC2, miR2Disease
2 hsa-mir-126 HDMM, dbDEMC2, miR2Disease 27 hsa-let-7c HDMM, dbDEMC2, miR2Disease
3 hsa-mir-17 HDMM, dbDEMC2, miR2Disease 28 hsa-mir-34b HDMM, dbDEMC2, miR2Disease
4 hsa-mir-34a HDMM, dbDEMC2, miR2Disease 29 hsa-mir-182 HDMM, dbDEMC2, miR2Disease
5 hsa-mir-155 HDMM, dbDEMC2, miR2Disease 30 hsa-mir-125b-2 HDMM, dbDEMC2, miR2Disease
6 hsa-mir-20a HDMM, dbDEMC2, miR2Disease 31 hsa-mir-30a HDMM, dbDEMC2, miR2Disease
7 hsa-mir-146a HDMM, dbDEMC2, miR2Disease 32 hsa-mir-19a HDMM, dbDEMC2, miR2Disease
8 hsa-mir-34c HDMM, dbDEMC2, miR2Disease 33 hsa-let-7d HDMM, dbDEMC2, miR2Disease
9 hsa-mir-29a HDMM, dbDEMC2, miR2Disease 34 hsa-mir-92a-1 HDMM, dbDEMC2

10 hsa-mir-145 HDMM, dbDEMC2, miR2Disease 35 hsa-mir-200a HDMM, dbDEMC2, miR2Disease
11 hsa-mir-218-1 HDMM, dbDEMC2 36 hsa-mir-222 HDMM, dbDEMC2, miR2Disease
12 hsa-mir-16-2 HDMM, dbDEMC2 37 hsa-mir-143 HDMM, dbDEMC2, miR2Disease
13 hsa-mir-221 HDMM, dbDEMC2, miR2Disease 38 hsa-mir-210 HDMM, dbDEMC2, miR2Disease
14 hsa-let-7b HDMM, dbDEMC2, miR2Disease 39 hsa-mir-31 HDMM, dbDEMC2, miR2Disease
15 hsa-mir-16-1 HDMM, dbDEMC2, miR2Disease 40 hsa-mir-375 HDMM, dbDEMC2, miR2Disease
16 hsa-mir-125b-1 HDMM, dbDEMC2, miR2Disease 41 hsa-let-7f-2 HDMM, dbDEMC2, miR2Disease
17 hsa-mir-146b HDMM, dbDEMC2, miR2Disease 42 hsa-mir-29b-1 HDMM, dbDEMC2, miR2Disease
18 hsa-let-7a-2 HDMM, dbDEMC2, miR2Disease 43 hsa-let-7f-1 HDMM, dbDEMC2, miR2Disease
19 hsa-mir-10b HDMM, dbDEMC2, miR2Disease 44 hsa-let-7e HDMM, dbDEMC2, miR2Disease
20 hsa-mir-200b HDMM, dbDEMC2, miR2Disease 45 hsa-let-7g HDMM, dbDEMC2, miR2Disease
21 hsa-mir-200c HDMM, dbDEMC2, miR2Disease 46 hsa-mir-27a HDMM, dbDEMC2, miR2Disease
22 hsa-mir-218-2 HDMM, dbDEMC2, miR2Disease 47 hsa-mir-181a-2 HDMM, dbDEMC2, miR2Disease
23 hsa-mir-22 HDMM, dbDEMC2, miR2Disease 48 hsa-mir-30c-2 HDMM, dbDEMC2, miR2Disease
24 hsa-mir-18a HDMM, dbDEMC2, miR2Disease 49 hsa-mir-25 HDMM, dbDEMC2, miR2Disease
25 hsa-mir-133b HDMM, dbDEMC2, miR2Disease 50 hsa-mir-486 HDMM, dbDEMC2, miR2Disease
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3.3. Control Experiment with Different miRNA Functional Similarity

In Section 2.3, we describe the reason that we designed a new miRNAs functional similarity
computing method in detail. The method to calculate the miRNAs functional similarity scores is
usually dependent on the miRNAs-Disease associations, and then the scores and disease semantic
similarity are used to predict the associations. To avoid the scores hidden from the association
information, we put forward a method to calculate the miRNAs functional similarity by miRNAs
sequences. We compare the approaches with different miRNAs functional similarities. One similarity
is achieved by our method, the other from MISIM. The result is displayed in Figure 2. The AUC of
LFEMDA with our similarity is 92.43%, and that with similarity from MISIM is 88.04%. This illustrates
the effectiveness of our method.
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4. Conclusions

In this paper, we present a miRNA-disease association prediction method using latent feature
extraction with positive samples (LFEMDA). Leave-One-Out Cross-Validation (LOOCV) is used to
evaluate the performance of LFEMDA and other methods. The experiment results reveal that our
method is better than others, not only on the high-association diseases data, but also on the new
diseases data. The case study on breast neoplasms further demonstrates the extraordinary ability of
our method to predict the potential associations. In addition, the control experiment proves that our
calculation of miRNA functional similarity is effective. Regarding these contributions, we believe that
LFEMDA is helpful in providing the potential candidates for subsequent research in the etiology and
pathogenesis of complex diseases.
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