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Abstract: Essential proteins are critical to the development and survival of cells. Identifying and
analyzing essential proteins is vital to understand the molecular mechanisms of living cells and design
new drugs. With the development of high-throughput technologies, many protein–protein interaction
(PPI) data are available, which facilitates the studies of essential proteins at the network level. Up
to now, although various computational methods have been proposed, the prediction precision still
needs to be improved. In this paper, we propose a novel method by applying Hyperlink-Induced
Topic Search (HITS) on weighted PPI networks to detect essential proteins, named HSEP. First, an
original undirected PPI network is transformed into a bidirectional PPI network. Then, both biological
information and network topological characteristics are taken into account to weighted PPI networks.
Pieces of biological information include gene expression data, Gene Ontology (GO) annotation
and subcellular localization. The edge clustering coefficient is represented as network topological
characteristics to measure the closeness of two connected nodes. We conducted experiments on two
species, namely Saccharomyces cerevisiae and Drosophila melanogaster, and the experimental results
show that HSEP outperformed some state-of-the-art essential proteins detection techniques.

Keywords: essential proteins; HSEP; HITS algorithm; weighted PPI networks

1. Introduction

It is well known that proteins are important for living organisms and are the main components of
cellular physiological metabolic pathways. Proteins are involved in various biological processes and
carry out almost all cellular functions by interacting with other proteins or DNA. With the development
of proteomics in the post-genomic era, several protein-related topics have become the major subject
of many studies, including the discovery of protein structures and functions, the identification of
essential proteins or protein complexes and functional modules. Notably, removing only one of these
essential proteins will cause fatal defects on the organism [1]. In addition, recent studies have shown
that essential proteins are related to human disease genes and play significant roles in predicting drug
targets [2,3]. Therefore, it is important to identify essential proteins, which will help us to understand
the minimum requirements of cell life and find new ways to treat diseases.

To date, much work has been done for predicting essential proteins by biological experiment-based
methods and network-based essential proteins discovery methods. Although the tradition experimental
methods, such as gene knockouts [4], RNA interference [5] and conditional knockouts [6], can provide an
accurate prediction of essential proteins, they are time-consuming and expensive. With the development
of high-throughput technologies, such as yeast two-hybrid system [7], mass spectrometry analysis [8],
snf tandem affinity purification [9] various protein–protein interaction (PPI) data are available. To break
through these experimental constraints, some researchers have proposed various computational approaches
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based on available PPI data. Some studies show that highly-connected proteins in PPI networks tend
to be essential ones, which is called the centrality–lethality rule [10]. The absence of highly connected
protein nodes in the PPI networks may lead to the collapse of the entire network structure and have a fatal
effect on the organism itself. Various network centrality metrics have emerged, such as Degree Centrality
(DC) [10], Betweenness Centrality (BC) [11], Closeness Centrality (CC) [12], Subgraph Centrality (SC) [13],
Eigenvector Centrality (EC) [14], Information Centrality (IC) [15], Neighborhood Centrality (NC) [16] and
Local Average Connectivity (LAC) [17]. Inspired by these studies results, some centrality metrics are used
to identify essential proteins; to some extent, they have certain deficiencies due to a high proportion of
false positive and false negative in PPI data. Therefore, many methods have been proposed for identifying
essential proteins.

Taking into account the shortcomings of the PPI networks, some researchers began to weigh
PPI networks by integrating other biological data, including gene expression data, protein complex
information, subcellular localization information, orthologous protein information and so on. Li et al.
and Peng et al. proposed two methods for identifying essential proteins by combining PPI networks
and gene expression data, named PeC [18] and WDC [19], respectively. Some studies indicate that
essential proteins are more likely to gather in protein complexes [20]. Based on this point of view,
two methods named UC and modified UC-P that integrate protein complex information were proposed
by Li et al. [21] to identify essential proteins. Moreover, recently, many studies find that the subcellular
localization of proteins may play an important role in identifying essential proteins. Tang et al.
proposed a method named CNC that integrates subcellular localization information to improve
the precision of detecting essential proteins [22]. Because most essential proteins are conservative,
some methods that combine proteins orthology information are proposed, such as SON presented by Li
et al. [23]. Meanwhile, some researchers detected essential proteins based on weighted PPI networks.
Xu et al. proposed a method named essentiality ranking that integrates multiple data sources to
weighted PPI networks [24]. Recently, Peng et al. proposed a new prediction method, named UDoNC,
by combining the domain features of proteins with their topological properties in PPI networks [25].

Hypertext induced topic search (HITS) is a famous algorithm in web structure mining, and it
was proposed by Kleinberg in 1998 [26]. Kleinberg divided network pages into authority pages and
hub pages and then joined them together in the link structure. The former provides best information
related to search topics; the more it is cited by network pages, the higher is its authority value. The
latter provides important hyperlinks; the more it cites authoritative pages, the higher is its hub value.
HITS algorithm is widely applied to web searches, and successfully solves some practical problems,
such as web community [27].

In this paper, we present a new computational method with HITS algorithm on weighted PPI
networks to identify essential proteins, named HSEP. First, we turn the original undirected PPI network
into a directed network. Then, we combine biological information and network topological features to
weighted PPI networks and analyze three aspects: false positive and false negative, protein functions
and protein positions. Biological data used in this method include gene expression data, Gene Ontology
(GO) annotation and subcellular localization data. As a representative of the topological characteristics
of the PPI networks, we use the Edge Clustering Coefficient (ECC) to measure the reliability of two
connected proteins. Next, we apply the HITS algorithm to the weighted PPI network. Following
that, we rank the proteins according to the authority and hub values obtained by the HITS algorithm.
Furthermore, we propose an ensemble method to adjust the parameter in HSEP. To validate the
proposed method HSEP, we compared HSEP with various existing methods, including DC, EC, IC, SC,
NC, LAC , WDC, PeC and UDoNC. All experiments were conducted on the Saccharomyces cerevisiae
PPI data and Drosophila melanogaster data. Experimental results show that our method outperformed
the other existing methods.
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2. Methods

2.1. Hypertext Induced Topic Search Algorithm

Hypertext Induced Topic Search (HITS) algorithm was originally proposed to analyze the
importance of web pages and is an iterative algorithm. HITS is a search query dependent algorithm
that ranks the web page by processing its entire in-links and out-links. In the HITS algorithm, each
page is given two attributes: the hub and the authority. The definition is as follows:

Definition 1. Authority. A high quality authority page will be pointed to by many high quality hub pages.
The value of the page hub is equal to the sum of the authority values of all the pages it points to.

Definition 2. Hub. A high quality hub page points to many high quality authority pages. The page authority
value is the sum of all the hub values that point to it.

An example of calculating the value of the hub and authority is shown in Figure 1.
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Figure 1. A simple example of calculating hub and authority values.

Let a(p) and h(p) represent the authority and hub scores of page p, respectively. B(p) and F(p)
denote the set of referrer and reference pages of page p, respectively. HITS algorithm can be divided
into several steps:

(1) Compute a(p) and h(p) in a mutually reinforcing way as follows:

a(p) = ∑
q∈B(p)

h(q) (1)

h(p) = ∑
q∈F(p)

a(q) (2)

(2) Divide the authority of all web pages by the highest authority to normalize it:

a(p) =
a(p)

max(a(p))
(3)

Divide the hub of all web pages by the highest hub to normalize it:

h(p) =
h(p)

max(h(p))
(4)
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(3) Repeat Step 2 until the difference between the weight in the previous iteration and the weight
in the current iteration is less than the set thresholdl the system has entered a stable state and a(u)
and h(v) convergence.

2.2. Constructing Weighted Protein-Protein Interaction Network

A protein-protein interaction network usually can be expressed as an undirected graph G = (V, E),
where the set of vertices V represents proteins, and E represents all of interactions between pairs of
proteins. To break up the traditional ideas, we assume that the protein interactions are interacting
and convert undirected PPI network G = (V, E) into bidirectional network G′ = (V, E′) that is
equivalent to it. It is worth noting that the transformation from undirected graph to directed graph is a
mathematical process, which is not applicable to all biological networks, such as the kinase networks.
As there are many false positives and false negatives in high-throughput PPI networks, the prediction
accuracy will be affected. To solve this situation, we use the biological information and network
topological features to weigh edges separately. According to the HITS algorithm, we assume that
nodes with high-quality biological information will be pointed by high-quality topological nodes, and
high-quality topological nodes will point to high-quality biological information nodes. In Figure 2, an
example is shown to explain the weighted PPI network construction.
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Figure 2. An illustration of weighted PPI network construction.

Network topology weighted edge. In general, Edge Clustering Coefficient (ECC) is usually used
to evaluate the tightness of two connected proteins. ECC(u, v) can be defined as follows [28]:

ECC(u, v) =
|Nu ∩ Nv|+ 1
min{du, dv}

(5)

where Nu and Nv denote the set of all neighbors of proteins u and v, respectively; and du and dv denote
the degree of proteins u and v, respectively. The weight from node u to node v is the topological
feature ECC.

Biological information weighted edge. Gene expression is the process by which information
from a gene is used in the synthesis of a functional gene product. Here, we utilize Pearson
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Correlation Coefficient (PCC), derived from gene expression data, to calculate the importance of
related proteins. For gene expression profiles g(u, i) = {g(u, 1), g(u, 2), . . . , g(u, T)} of protein u and
g(v, i) = {g(v, 1), g(v, 2), . . . , g(v, T)} of protein v, the PCC is defined as follows:

PCC(u, v) =
T

∑
i=1

g(u, i)− g(u)√
(g(u, i)− g(u))2

· g(v, i)− g(v)√
(g(v, i)− g(v))2

(6)

where g(u) and g(v) represent the average gene expression value of profiles u and v, respectively. Next,
from the perspective of protein functional similarity, whether there are some common GO annotations
between two interacting proteins, the two proteins have the same function and the interaction between
proteins becomes strong are analyzed. GO [29] is widely used to represent genes and gene products
that span different species. To evaluate the semantic similarity between the GO terms to protein
annotations in a PPI network, we adopt the method introduced by Wang et al. [30]: the higher is the
value, the stronger is the interaction between proteins:

GO_sim(u, v) =
∑t∈Tu

⋂
Tv(Su(t) + Sv(t))

∑t∈Tu Su(t) + ∑t∈Tv Sv(t)
(7)

where Tu and Tv are the annotations of proteins u and v, respectively; Su(t) is the S-value of
GO term t related to term u; and Sv(t) is the S-value of GO term t related to term v. For most
eukaryotes, subcellular compartments produce specific environments that regulate protein biological
processes within cells. Subcellular location is divided into 11 different compartments: cytoskeleton,
Golgi apparatus, cytosol, endosome, mitochondrion, plasma membrane, nucleus, extracellular space,
vacuole, endoplasmic reticulum, and peroxisome. Some studies have shown that, if proteins with
two interacting edges are in the same position, the interaction between proteins becomes more
reliable [31]. Therefore, we define SL(u, v) as follows to evaluate the connected proteins by subcellular
location information:

SL(u, v) =
C

Cmax
(8)

where C denotes the times of edge (u, v) appears in subcellular location, and Cmax denotes the
max times of edge (u, v) appears in subcellular location. The weight from node v to node u is
the combination of biological information including PCC, GO_sim(u, v) and SL, which is defined as
follows:

wvu = PCC(v, u) + GO_sim(v, u) + SL(v, u) (9)

2.3. Identifying Essential Proteins Based on HSEP Algorithm

Our proposed new algorithm HSEP adopts HITS algorithm based on weighted PPI networks
that are constructed in Section 2.2. According to the iteration of the HITS algorithm on the weighted
networks, we can obtain the authority value to represent biological information and the hub value to
represent topological feature of each protein. To comprehensively evaluate the importance of each
protein, we combine the authority value and the hub value to acquire the final score, which can be
defined as follows:

HSEP(v) = α× a(v) + (1− α)× h(v) (10)

where α ∈ [0, 1] is used to adjust the proportion of these two scores. If the value of α is equal to 0, the
sorting score only depends on the topological information. If the value of α is between 0 and 1, the
sorting score is computed based on the biological information and topological feature. According to the
definition of HSEP(v), we expect its performance to be affected by different parameters α. To facilitate
the application of HSEP to different organisms to identify the essential proteins and minimize the
selection pressure of the parameter α, we adopt an ensemble method introduced by Zhang et al. [32].
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For each α ∈ [0, 1] (i = 1,2, . . ., k), we can get an HSEPi(v) for each protein v and its corresponding
rank. According to the score of HSEP, we can obtain k ranks of each protein with different k values of
α. Based on each ranking HSEPi(v), we select the top n ranked proteins, denoted as Xi, and combine
them as the total candidates set X. Then, we use ensemble method and majority voting strategy to
further predict essential proteins from X. Let EM denote the number of times of protein v appears in

the X. If the EM of protein v is greater than the threshold T(
⌊

k
2

⌋
), then the protein v is considered to

be an essential protein. The EM is defined as follows:

EM(v) =
k

∑
i=1

z(v, i) (11)

{
z(v, i) = 1, (i ∈ Xi)

z(v, i) = 0, (i /∈ Xi)
(12)

Pseudocode of HSEP
The pseudocode of HSEP algorithm is divided into two steps, as shown in Algorithm 1. The first

step weighs PPI networks with gene expression data, GO annotation, subcellular localization data,
and topological feature with edge clustering coefficient. The second step applies HITS algorithm on
weighted PPI networks.
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Algorithm 1 HSEP essential proteins identification.

Require: A PPI network G = (V, E),Gene expression data, Subcellular location data Gene Ontology

GO.
Ensure: Essential protein set.

Step 1
1: Convert G to Bidirectional Digraph G′(V, E′)
2: for each interacting protein pair (a, b) in PPI do
3: Calculate ECC /*The closeness of the two nodes*/
4: Calculate PCC /*the importance of two nodes based on Gene expression */
5: Calculate GO_sim /*The functional similarity of the two nodes based on GO annotation*/
6: Calculate SL /*the reliable of two nodes based on subcellular localization */
7: end for
8: for each interacting protein pair (a,b) in G′ do
9: edge(a, b)=ECC(a, b)

10: edge(b, a)=PCC(b, a)+GO_sim(b, a)+SL(b, a)
11: end for

Step 2
12: for m in [1, maxiter] do
13: for each node v in V do
14: am(v) = ∑(u,v)∈E hm−1(u)
15: hm(v) = ∑(u,v)∈E am−1(u)
16: am = am

max(am)
17: am = hm

max(hm)
18: m = m + 1
19: until|am − am−1|+ |hm − hm−1| < γ

20: return (am, hm)
21: end for
22: end for
23: calculate ensemble score EM
24: a essential proteins set=EM > T

3. Results and Discussion

To verify whether our proposed method HSEP is effective for identifying essential proteins,
we performed experiments based on Saccharomyces cerevisiae data and Drosophila melanogaster data,
and analyzed the influence of parameter on the experiment results. To demonstrate the performance
of HSEP, we compared HSEP with a number of existing methods, including DC, EC, IC, SC, NC, LAC,
WDC, PeC and UDoNC. Meanwhile, to further evaluate the performance of HSEP, we used some
statistical strategies to compare with other methods. In addition, precision–recall curves were used to
analyze the influence of different parameter α on the experimental results. Finally, we analyzed the
identified essential proteins to further estimate our proposed method HSEP.

3.1. Experimental Data

To demonstrate the effectiveness of our proposed method, we performed experiments based
on two species: Saccharomyces cerevisiae and Drosophila melanogaster. The Saccharomyces cerevisiae
data are widely used for studying essential proteins currently. We applied two sets of Saccharomyces
cerevisiae PPI network including DIP database [33] and Gavin database [34]. The PPI network of
Drosophila melanogaster was constructed using the HINT database [35], which is a curated compilation
of high-quality PPIs from eight interatomic resources (BioGRID, MINT, iRefWeb, DIP, IntAct, HPRD,
MIPS and the PDB). After the repeated interactions and the self-connecting interactions, the detailed
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information is listed in Table 1. The subcellular localization information of proteins were retrieved
from knowledge channel of COMPARTMENTS database [36]. There are 5974 proteins and 238,620
subcellular locations, which could be classified into 11 localizations. The gene expression data
of Saccharomyces cerevisiae and Drosophila melanogaster were downloaded from GEO database with
accession numbers GSE3431 [37] and GSE7763 [38], respectively. GO database is one of the most
comprehensive ontology databases in bioinformatics. The GO annotation data of Saccharomyces
cerevisiae obtained from GO Consortium [39] and the Drosophila melanogaster GO annotation data were
extracted from the COMPARTMENTS database [36]. The list of known essential proteins covers 1285
and 408 essential proteins of Saccharomyces cerevisiae and Drosophila melanogaster, respectively, that were
collected from MIPS [40], SGD [41], DEG [42], and SGDP [1].

Table 1. The detail information of the experimental data.

Database Proteins Interactions Density GO Annotation Gene Expression Essential Proteins

DIP 5093 24,743 0.0019 5061 4981 1167
Gavin 1430 6531 0.0064 1430 1418 617
HINT 7285 24,436 0.0009 4878 6999 216

3.2. Comparison with Other Identification Measures

To evaluate the performance of HSEP, we compared HSEP with other competing methods: DC, EC,
IC, SC, NC, LAC, WDC, PeC and UDoNC, and selected the top 1%, 5%, 10%, 15%, 20% and 25%
proteins as the candidate set. We set α = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), and T = 5. First, to
further demonstrate that the HITS algorithm was effective for identifying essential proteins, in terms of
biological information, we only used gene expression data to weigh the protein network, named HSP.
Then, the comparison of the prediction results with known essential proteins was expressed in terms of
histogram, as shown in Figures 3–5, where we can see that the experimental results of HSP are superior
to PeC. It indicates that HITS algorithm was effective in identifying essential proteins, since these
methods both use gene expression information and ECC to weigh the PPI network. At the same time,
HSEP performed better than HSP, which manifests GO annotation and subcellular localization has
significant role in identifying essential proteins.

For the DIP dataset shown in Figure 3, our proposed method HSEP clearly performed better than
other methods, which indicates that HSEP was effective to identify essential proteins. Especially at the
top 1%, 20% and 25%, HSEP method had a more obvious advantage. Taking top 1% (51) as an example,
50 essential proteins were correctly identified by the HSEP while IC, SC and EC correctly predicted 24.
At the top 25%, HSEP correctly identified 597 essential proteins, 130 more than SC and EC.

For the Gavin dataset shown in Figure 4, HSEP was slightly better than other eight methods
from top 1% to top 25% of ranked proteins. At top 1% (14) level, our proposed method HSEP, LAC
and PeC could correctly identify all 14 true essential proteins. The results predicted by HSEP were
similar to those obtained using LAC at the top 1%, 10%, 20% and 25% levels. Overall, as shown in
Figures 3 and 4, HSEP had more obvious advantages on DIP datasets. Table 1 shows that the density
of the Gavin dataset is 3.4 times higher than DIP dataset. We can draw the conclusion that HSEP
algorithm was more suitable for dense protein networks on Saccharomyces cerevisiae.

For the HINT dataset shown in Figure 5, HSEP exhibited superior performance compared with
the other methods from top 1% to 25% of ranked proteins, and it increased the prediction precision by
more than 100%, 26%, 31%, 39%, 26%, and 20% at six levels compared with IC. Comparing Figure 5
with Figures 3 and 4, we can see that Figure 5 presents more obvious advantage, demonstrating our
proposed method had better performance on Drosophila melanogaster.
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Figure 3. Comparison of HSEP with other essential protein discovery methods: (a) Top 1% (Top 51);
(b) Top 5% (Top 255); (c) Top 10% (Top 510); (d) Top 15% (Top 764); (e) Top 20% (Top 1019); and
(f) Top 25% (Top 1274).

Figure 4. Comparison of HSEP with other essential protein discovery methods on Gavin data.
(a) TOP 1% (14); (b) TOP 5% (72); (c) TOP 10% (143); (d) TOP 15% (215); (e) TOP 20% (286); and
(f) TOP 25% (358).
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Figure 5. Comparison of HSEP with other essential protein discovery methods on HINT data.
(a) TOP 1% (73); (b) TOP 5% (364); (c) TOP 10% (729); (d) TOP 15% (1093); (e) TOP 20% (1457);
and (f) TOP 25% (1821).

3.3. Validation Using Six Statistical Measures

To further evaluate the performance of our proposed HSEP, we adopted several statistical
measures, namely sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive
value (NPV), F-measure (F), and accuracy (ACC), to determine how effectively the essential proteins
Were identified by different methods. These statistical measures are defined as follows:

SN =
TP

TP + FN
(13)

SP =
TN

TN + FP
(14)

PPV =
TP

TP + FP
(15)

NPV =
TN

TN + FN
(16)

F−measure =
2× SN × PPV

SN + PPV
(17)

ACC =
TP + TN

TP + TN + FP + FN
, (18)

where TP is the number of essential proteins correctly identified as essential proteins, FP is the number
of nonessential proteins mistakenly identified as essential proteins, TN is the number of nonessential
proteins correctly identified as nonessential proteins, and FN is the number of essential proteins
mistakenly identified as nonessential proteins. The comparisons of SN, SP, PPV, NPV, F−measure
and ACC of HSEP and other methods are shown in Table 2. As shown in Table 2, the HSEP had a
better quality than other methods, and we could get similar conclusions with those shown in Figures
3–5.



Genes 2019, 10, 177 11 of 15

Table 2. Comparative analysis of HSEP and the other methods in terms of SN, SP, PPV, NPV,
F−measure, and ACC on the PPI networks.

Database Method SN SP PPV NPV F-Measure ACC

DC 0.4302 0.8033 0.3940 0.8258 0.4113 0.7178
IC 0.4319 0.8038 0.3956 0.8263 0.4129 0.7186
SC 0.4002 0.7944 0.3666 0.8167 0.3826 0.7040
EC 0.4002 0.7944 0.3666 0.8167 0.3826 0.7040
NC 0.4670 0.8143 0.4278 0.8371 0.4465 0.7347

DIP LAC 0.4730 0.8161 0.4333 0.8389 0.4523 0.7374
WDC 0.4567 0.8112 0.4184 0.8339 0.4367 0.7300
PeC 0.4225 0.8010 0.3870 0.8235 0.4039 0.7143
HSP 0.4567 0.8112 0.4184 0.8339 0.4367 0.7300

UDoNC 0.4910 0.8214 0.4498 0.8444 0.4695 0.7457
HSEP 0.5116 l0.8275 0.4686 0.8507 0.4891 0.7551

DC 0.3582 0.8313 0.6173 0.6303 0.4533 0.6270
IC 0.3501 0.8251 0.6034 0.6256 0.4431 0.6200
SC 0.3047 0.7906 0.5251 0.5994 0.3856 0.5808
EC 0.2026 0.7131 0.3492 0.5406 0.2564 0.4927

Gavin NC 0.4084 0.8695 0.7039 0.6592 0.5169 0.6704
LAC 0.4117 0.8719 0.7095 0.6611 0.5210 0.6732
WDC 0.3809 0.8485 0.6564 0.6433 0.4821 0.6466
PeC 0.3744 0.8103 0.6000 0.6303 0.4611 0.6211
HSP 0.3890 0.8547 0.674 0.6480 0.4923 0.6536

HSEP 0.4182 0.8768 0.7207 0.6648 0.5292 0.6788

DC 0.4306 0.7555 0.0511 0.9775 0.0913 0.7459
IC 0.4213 0.7552 0.0500 0.9771 0.0893 0.7453
SC 0.3796 0.7540 0.0450 0.9755 0.0805 0.7429
EC 0.3796 0.7540 0.0450 0.9755 0.0805 0.7429

HINT NC 0.3565 0.7533 0.0423 0.9746 0.0756 0.7415
LAC 0.3148 0.7520 0.0373 0.9729 0.0668 0.7390
WDC 0.2361 0.7496 0.0280 0.9698 0.0501 0.7343
PeC 0.2315 0.7494 0.0275 0.9696 0.0491 0.7341
HSP 0.3519 0.7531 0.0417 0.9744 0.0746 0.7412

HSEP 0.5046 0.7578 0.0599 0.9804 0.1070 0.7503

3.4. Influence of Parameter α on HSEP Based on Precision–Recall Curves

To investigate the influence of parameter α on HSEP, precision–recall curves were used to
assess the generality of our method. The precision and recall of the top n ranked proteins are
defined as follows:

Precision(n) =
TP(n)

TP(n) + FP(n)
(19)

Recall(n) =
TP(n)

P
(20)

where TP(n) is the number of true essential proteins identified correctly, FP(n) is the number of
true essential proteins identified incorrectly among the top n proteins, and P is the number of true
essential proteins in total. Figure 6 shows the PR curves of HSEP with different parameter α on the DIP
database. The higher is the curve, the better is the corresponding metric that distinguishes between the
essential protein and the non-essential proteins. As shown in Figure 6, the results were the best when
α = 0.7 and α = 0.8. When α = 0, namely only biological information was used, the result was worst.
Comprehensively, biological information played a more important role than topological properties in
identifying essential proteins.
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Figure 6. Precision–recall curves of HSEP with different α.

3.5. The Analysis of Essential Proteins

We analyzed the identified essential proteins on DIP database to further substantiate the
performance of our proposed HSEP. Figure 7 shows the overall results in terms of the distribution
of known essential proteins in PPI network (Figure 7a), the identified 1% essential proteins by DC
(Figure 7b) and the identified 1% essential proteins by HSEP (Figure 7c). In Figure 7, we can see that
the number of essential proteins correctly identified by DC was 22, shown as yellow circles. Here, we
mainly analyzed the 1% identified essential proteins by HSEP. In Figure 7c, we can see that all top
1% essential proteins are connected to form one subnetwork, which shows good topological features
and manifests essential proteins perform biological functions as a module that is of significance for
identifying protein complexes. In addition, the protein “YHR066W” has a large degree, but is the only
one that wasmistakenly identified as an essential protein, indicating that degree cannot fully reflect the
essentiality of proteins.
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Figure 7. The distribution of essential proteins: (a) the identified top 1% essential proteins by DC; (b)
the identified top 1% essential proteins by DC, where yellow circles are the essential proteins that DC
predicted as essential, while aqua circles are the non-essential proteins that DC predicted as essential
ones; and (c) the identified top 1% essential proteins of HSEP, where the larger is the degree of the
protein, the bigger is the size of the protein.The color key indicates that the degree of protein gradually
increases from top to bottom.

4. Conclusions

Identifying essential proteins is of great importance for understanding the molecular mechanisms
of cellular life. In this study, we have presented a new computational method with HITS algorithm on
weighted PPI networks to predict essential proteins. Both biological information and network topology
are used to weighted PPI networks, which plays an important role in identifying essential proteins.
Meanwhile, we apply an ensemble method to avoid the influence of parameter. To investigate the
performance of our proposed algorithm, we carried out a group of simulation experiments on the two
species of PPI data: Saccharomyces cerevisiae and Drosophila melanogaster. The experimental results show
that HSEP achieved better performance than other methods: DC, EC, IC, SC, NC, LAC, WDC, PeC and
UDoNC . To further measure our method, we used six statistical measures to compare with others. In
addition, we analyzed the identified essential proteins and they have good topological properties. As
future work, our proposed HSEP may be helpful to other studies, such as gene and disease prediction.
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