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Abstract: The QIl1 gene produces a component of the Mitochondrial Contact Site and Cristae
Organizing System that forms and stabilizes mitochondrial cristae junctions and is important
in cellular energy production. We previously reported a family of Rhodesian Ridgebacks with
cardiac arrhythmias and sudden cardiac death. Here, we performed whole genome sequencing
on a trio from the family. Variant calling was performed using a standardized bioinformatics
approach. Variants were filtered against variants from 247 dogs of 43 different breeds. High impact
variants were validated against additional affected and unaffected dogs. A single missense G/A
variant in the QIL1 gene was associated with the cardiac arrhythmia (p < 0.0001). The variant
was predicted to change the amino acid from conserved Glycine to Serine and to be deleterious.
Ultrastructural analysis of the biceps femoris muscle from an affected dog revealed hyperplastic
mitochondria, cristae rearrangement, electron dense inclusions and lipid bodies. We identified
a variant in the Q1l1 gene resulting in a mitochondrial cardiomyopathy characterized by cristae
abnormalities and cardiac arrhythmias in a canine model. This natural animal model of mitochondrial
cardiomyopathy provides a large animal model with which to study the development and progression
of disease as well as genotypic phenotypic relationships.
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1. Introduction

The QIl1 gene produces a protein component of the Mitochondrial Contact Site and Cristae
Organizing System (MICOS), a complex made up of seven core subunits that form and stabilize
mitochondrial cristae junctions and determine the placement, distribution and copy number of
the cristae in the mitochondria [1,2]. The mitochondrial cristae contain the respiratory chain complexes
needed for oxidative phosphorylation and the production of a significant amount of cellular ATP [3].
Loss of QIL1 has been associated with the loss of cristae junctions, cristae rearrangement into
stacks of concentric membranes, and reduced cellular respiration [4]. The important role of QIL1 in
cellular energy production would suggest that a dysfunctional protein would have a likely impact
on organs with the highest energy needs, including the liver, brain, skeletal muscle and heart [5].
DNA variants in the QIL1 gene have previously been identified in infants with hepatocellular
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dysfunction, mitochondrial encephalopathy, and in one patient, hypertrophic cardiomyopathy [1,6,7].
Cardiac arrhythmias in the absence of structural cardiac changes have not yet been reported.

Here, we report the association of a novel variant in the QIL1 gene with familial cardiac
arrhythmias in the Rhodesian Ridgeback dog. We have previously reported this canine model of
familial arrhythmias and sudden death [8]. Affected dogs had cardiac arrhythmias but had no
evidence of cardiac hypertrophy, myocardial dysfunction or abnormal cardiac histologic findings.
Skeletal muscle was found to be consistent with the previously identified mitochondrial abnormalities
in human patients with QIl1 variants [6]. We report here the first example of a QIL1 variant associated
with a mitochondrial arrhythmic cardiomyopathy.

2. Materials and Methods

This study was conducted in accordance with the guidelines of the North Carolina State University
Institutional Animal Care and Use Committee (IACUC, 17-168-0).

We previously reported an extended family of Rhodesian Ridgebacks with juvenile cardiac
arrhythmias that occasionally resulted in sudden cardiac death [8]. Affected dogs were noted to
have ventricular arrhythmias (Figure 1) most commonly between seven and twelve months of age.
Atrial premature beats and second-degree atrioventricular block were noted as well, although much
less commonly.
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(A) Second degree atrioventricular block. (B) Sinus rhythm with supraventricular tachycardia.
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A trio that included an apparently unaffected 70-month-old sire, an apparently unaffected
58-month-old dam and an affected 13-month-old female offspring was selected from the family
for whole genome sequencing. The affected phenotype was determined by cardiac evaluation
including a 24 h ambulatory electrocardiogram (Holter monitor) with at least 50 ventricular premature
complexes/24 h and echocardiogram by a board-certified veterinary cardiologist that indicated no
structural reason for the arrhythmia [9,10]. The sire and dam were considered to be unaffected
based on ambulatory electrocardiograms with one, and zero ventricular premature beats, respectively,
per 24 h at the time of evaluation. The sire and dam did not have a history of ventricular ectopy or
previous evidence of cardiac disease; however, a previous mating had produced a female offspring
who developed ventricular arrhythmias at 10 months of age. Three male offspring without evidence of
ventricular ectopy were also produced.

Approximately three milliliters of whole blood was collected in an EDTA tube from each
animal. Genomic DNA was extracted using the QIAmp DNA Blood Kit standard protocol
(Qiagen, Germantown, MD, USA). Three micrograms of DNA from each dog was submitted for library
preparation and whole genome sequencing, using a 150 base pair (bp) paired-end read configuration on
an Illumina HiSeq 4000 high-throughput sequencing system (Genewiz LLC, South Plainfield, NJ, USA).

Variant calling from next-generation sequencing data was performed using a standardized
bioinformatics pipeline for all samples, as described previously [11]. Sequence reads were trimmed
using Trimmomatic 0.32 to a minimum phred-scaled base quality score of 30 at the start and end
of each read, with a minimum read length of 70 bp, and aligned to the canFam3 reference
sequence using BWA 0.7.13 [12,13]. Aligned reads were prepared for analysis using Picard Tools 2.8
(http://broadinstitute.github.io/picard) and GATK 3.7 following best practices for base quality score
recalibration and indel realignment (Broad Institute, Cambridge, MA, USA) [14–16]. Variant calls
were made using GATK’s HaplotypeCaller walker, and variant quality score recalibration (VQSR)
was performed using sites from dbSNP 146 and the Illumina 174K CanineHD BeadChip as training
resources. A VQSR tranche sensitivity cutoff of 99.9% to SNPs and 99% to indels was used for
downstream analyses; genotype calls with a phred-scaled quality score < 20 were flagged but not
removed from the variant callset.

Variants in the trio of dogs were filtered for polymorphisms consistent with both an autosomal
dominant and recessive inheritance pattern. The resulting variants were then filtered against
a previously established database of variants from 247 non-Rhodesian Ridgeback dogs of 43 different
dog breeds. Any variants with a minor allele frequency greater than 1% in the non-Rhodesian
Ridgebacks were removed. The remaining variants were categorized by Variant Effect Predictor 91
(https://useast.ensembl.org/info/docs/tools/vep/index.html) and prioritized by their functional
impact (e.g., stop codon, frameshift, change in amino acid, etc.) [17]. They were manually curated
for potential cardiac involvement of the gene (cardiac expression, encoding for cardiac channel proteins,
sarcomeric proteins, cytoskeletal or mitochondrial proteins, previous association with cardiomyopathy
or arrhythmic disease). Missense variants were evaluated for genomic functional significance with
Polyphen (http://genetics.bwh.harvard.edu/pph2/), SIFT (http://sift.jcvi.org/) and Provean (http:
//provean.jcvi.org/index.php).

High impact variants (missense, stop/start gained or lost, inframe deletion, frameshift)
with potential cardiac involvement were evaluated for previous identification in the canine population
in the DogSD (http://bigd.big.ac.cn/dogsdv2/) SNP database. DNA SNPs that were not previously
reported were pursued with Sanger Sequencing in five affected and five apparently unaffected dogs,
and assessed for statistical association to the arrhythmia with a Fisher’s exact test. Variants that
were significantly associated with disease (p-value of <0.05) were evaluated by Sanger Sequencing of
eight additional family members of the trio used for whole genome association, 106 affected Rhodesian
Ridgebacks and 120 unaffected dogs of 47 different dog breeds maintained in an archive at the North
Carolina State University College of Veterinary Medicine. The variants were tested for allelic association
with the arrhythmia using a Fisher’s exact test. A p-value of <0.05 was considered significant.

http://broadinstitute.github.io/picard
https://useast.ensembl.org/info/docs/tools/vep/index.html
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://provean.jcvi.org/index.php
http://provean.jcvi.org/index.php
http://bigd.big.ac.cn/dogsdv2/
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To determine the impact of the mutation at the skeletal muscular level, a biopsy of the biceps
femoris muscle was performed under general inhalational anesthesia on a 15-month-old affected
female Rhodesian Ridgeback dog homozygous for a QIL1 variant. Following collection, the samples
were immersion-fixed in Karnovsky’s fixative. Samples were evaluated with electron microscopy.
For comparison, archived control muscle from a large mixed breed dog were similarly processed.

3. Results

Affected dogs demonstrated ventricular and/or supraventricular tachycardia and occasional
atrioventricular block that developed between 7–12 months of age (Figure 1). Analysis of the whole
genome sequences identified 271,877 variants consistent with an autosomal recessive pattern.
Variants were the filtered to identify those that were in the affected Rhodesian Ridgeback, sire and dam,
and not in >1% of the alleles in the non-Rhodesian Ridgeback dog database. This reduced the number
of variants to 32,599 that would be consistent with an autosomal recessive pattern. Similarly, analysis
identified 1,080,041 variants consistent with an autosomal dominant pattern, and 239,780 remained
after filtering.

The majority of the variants were predicted to be of low or moderate impact (synonymous, 3′ or 5′

untranslated regions, upstream or downstream of a gene, intronic), and were not pursued for additional
evaluation. One hundred and seven of the variants were predicted to be of higher impact, including
five variants predicted to create a frameshift, 10 predicted to create either an inframe deletion or insertion,
twenty splice site variants and seventy-two missense mutations. Thirteen of these higher impact variants
were predicted to have cardiac involvement, including variants identified in the ADCY3, AGRN, BSCL2,
FASTKD3, FAT1, HCN4, LAMA4, MYO9B, PIEZO2, PRDM8, QIL1, SMTNL1 and SORBS2 genes. Each of
these variants was evaluated by Sanger Sequencing of ten (five affected, five unaffected) additional dogs,
and a Fisher’s Exact test was performed to test for association of the variant to the arrhythmia.

Only one variant, a single missense variant ENSCAFG00000018796 g.54343438 G>A in exon four of
the C19orf70 (QIL1) gene, had a statistical association with the arrhythmia (p = 0.04) (Table 1) (Figure 2).

Table 1. Variants evaluated by Sanger sequencing. Gene, variant location, effect and statistical
association by Fisher’s exact test are provided.

Gene Variant Effect p Value

ADCY3
ENSCAFG00000004090 Missense/Splice site NPg.19164291 G>A

AGRN
ENSCAFG00000019342

Missense 0.25g.56260122 C>A

BSCL2
ENSCAFG00000023629 Initiator codon

variant
0.62g.53960802 A>G

FASTKD3
ENSCAFG00000010129

Missense 0.63g.6105469 C>T

FAT1
ENSCAFG00000007273

Missense 0.16g.44199325 G>T

HCN4
ENSCAFG00000031809

Frameshift NPg.36680881_36680885del

LAMA4
ENSCAFG00000004043

In frame deletion NPg.68553193_68553195del

MYO9B
ENSCAFG00000015532

Missense 0.35g.45524791 C>T
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Table 1. Cont.

Gene Variant Effect p Value

PIEZO2
ENSCAFG00000018761

Frameshift NPg.76508892_76508892insG

PRDM8
ENSCAFG00000008881

Inframe insertion NPg.4450426_4450427insG

C19orf70
ENSCAFG00000018796

Missense 0.04g.54343438 G>A

SMTNL1
ENSCAFG00000007843

Missense >0.99g.38627683 C>T

SORBS2
ENSCAFG00000007475

Missense 0.035g.45035993 G>A

Additionally, the variant was significantly associated with the arrhythmia in the Rhodesian
Ridgeback family (p = 0.001) and was identified as homozygous in the affected offspring
and heterozygous in both of the parents. The variant was strongly associated with the arrhythmic
disease (Fisher’s exact p < 0.0001) in the population of 106 affected Rhodesian Ridgebacks
compared to the control population of non-Ridgeback dogs. The SNP was not identified in DogSD
(http://bigd.big.ac.cn/dogsdv2/) as a known canine SNP.

The QIL1 variant was predicted to change the amino acid produced at this location from a highly
conserved Glycine to Serine, and was predicted to be a deleterious change by all three variant prediction
algorithms. Polyphen predicted the variant to be likely damaging (score of 1; scores of 0.85–1 predicted
to be deleterious); SIFT predicted it to be deleterious (score of 0; scores of 0–0.05 predicted to be
deleterious) and Provean predicted it to be a deleterious change (score of −3.5; scored of −2.5 or less
predicted to be deleterious).

Ultrastructural analysis of the biceps femoris muscle from an affected homozygous Ridgeback
revealed hyperplastic mitochondria, cristae rearrangement including irregular membranous swirls,
and electron dense inclusions and lipid bodies (Figure 3A,B and Figure 4) consistent with pathologic
changes described in the similar human disorder [6] and mouse model [4]. Large mitochondria
spanned over 3 sarcomeres (Figure 3B). In contrast, mitochondria from control muscle were variable in
size, and the largest spanned up to 1 sarcomere.

http://bigd.big.ac.cn/dogsdv2/
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4. Discussion

In the study presented here, we report a mitochondrial arrhythmic cardiomyopathy associated
with a DNA variant in the QIL1 gene in a spontaneous canine model. We have previously reported
that this cardiomyopathy was characterized by familial ventricular arrhythmias and sudden cardiac
death in a population of young Rhodesian Ridgeback dogs [8]. Here we report the association
of this cardiomyopathy and characteristic mitochondrial abnormalities in skeletal muscle with
the QIL1 variant.

Mitochondrial cardiomyopathies can be associated with either nuclear or mitochondrial
variants [18]. QIL1 is a nuclear protein that is imported into the mitochondria and is important
for proper assembly of the MICOS, which stabilizes mitochondrial cristae junctions and determines
the placement and distribution of mitochondrial cristae [1,2]. QILI depletion has been associated with
enlarged mitochondria, increased lipid droplets, cristae morphologic defects including a curvilinear
pattern and concentric stacking of the inner mitochondrial membrane, and reduced mitochondrial
respiration [1,2,4,7]. Since mitochondrial respiration is critical for the generation of ATP via electron
transport and oxidative phosphorylation systems, organ systems that have particularly high energy
demands, including the brain, liver, skeletal muscle and the heart, are most likely to be impacted by
mitochondrial dysfunction [5]. QILI variants have been previously associated with the development of
infantile encephalopathy, liver dysfunction and in one patient, hypertrophic cardiomyopathy [1,6,7].
Since the heart is one of the most energy demanding organs, mitochondrial diseases often
preferentially impact the heart [18], and it has been estimated that cardiac involvement including
structural and/or arrhythmic abnormalities can occur in 20–40% of children with mitochondrial
disease [5,19,20]. We report here on young Rhodesian Ridgeback dogs with familial arrhythmias
including supraventricular and ventricular tachycardia and atrioventricular block. We have previously
reported the absence of structural myocardial involvement in this model [8]. These arrhythmic findings
are consistent with those previously reported in mitochondrial cardiomyopathies [18]. It has been
hypothesized that the development of these arrhythmias in mitochondrial cardiomyopathies may be
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associated with dysfunctional mitochondrial respiration and decreased ATP synthesis and its impact
on cardiovascular action potential development, myocardial conduction [21] and electrical stability.

5. Conclusions

In conclusion, we identify here a variant in the Q1l1 gene resulting in a mitochondrial
cardiomyopathy characterized by cristae abnormalities and cardiac arrhythmias in a canine model.
This natural animal model of mitochondrial cardiomyopathy provides a large animal model with
which to study the development and progression of this disease as well as our understanding of
genotypic phenotypic relationships. Additionally, it serves as model with which to study the impact of
medical management on mitochondrial dysfunction.
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