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Abstract: Background: Although there are many studies of drugs and their side effects, the
underlying mechanisms of these side effects are not well understood. It is also difficult to
understand the specific pathways between drugs and side effects. Objective: The present study
seeks to construct putative paths between drugs and their side effects by applying text-mining
techniques to free text of biomedical studies, and to develop ranking metrics that could identify the
most-likely paths. Materials and Methods: We extracted three types of relationships—drug-protein,
protein-protein, and protein-side effect—from biomedical texts by using text mining and
predefined relation-extraction rules. Based on the extracted relationships, we constructed whole
drug-protein—side effect paths. For each path, we calculated its ranking score by a new ranking
function that combines corpus- and ontology-based semantic similarity as well as co-occurrence
frequency. Results: We extracted 13 plausible biomedical paths connecting drugs and their side effects
from cancer-related abstracts in the PubMed database. The top 20 paths were examined, and the
proposed ranking function outperformed the other methods tested, including co-occurrence, COALS,
and UMLS by P@5-P@20. In addition, we confirmed that the paths are novel hypotheses that are
worth investigating further. Discussion: The risk of side effects has been an important issue for the
US Food and Drug Administration (FDA). However, the causes and mechanisms of such side effects
have not been fully elucidated. This study extends previous research on understanding drug side
effects by using various techniques such as Named Entity Recognition (NER), Relation Extraction
(RE), and semantic similarity. Conclusion: It is not easy to reveal the biomedical mechanisms of side
effects due to a huge number of possible paths. However, we automatically generated predictable
paths using the proposed approach, which could provide meaningful information to biomedical
researchers to generate plausible hypotheses for the understanding of such mechanisms.

Keywords: Biomedical Text Mining; semantic relatedness; Inference of Drug-Protein-Side
Effect Relation

1. Introduction

Minimizing drug side effects is a key focus of medical treatment as well as future drug
development. The side effects of drugs are well described in many clinical trials; however, these studies
simply report on a given drug’s side effects and not attempt to explain the cause [1-3]. Because many
factors are likely to connect a drug and a particular side effect, time and effort is required to discover
the relationship between the two. Text mining approaches have been proposed as way to examine
this relationship.

While many text mining studies have extracted overall relationships between drugs and side
effects, they could not suggest the series of mechanistic steps from a drug to a particular side effect [4-8].
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Therefore, we attempted to use text mining to identify concrete paths from a given drug and side
effect. That is, if a drug and side effect are given as start and end points, respectively, the series of
mediators (i.e., proteins) are extracted automatically from the text and connected to form a proposed
drug-protein-side effect path.

Although there are public databases of pathways such as the KEGG (Kyoto Encyclopedia of
Genes and Genomes) database, these databases have limited information and are not specialized
for specific drug side effects. Using the Swanson ABC model as our foundation, we extracted the
relation between entities and connected them by using the text mining method to study the extracted
paths. There are several studies utilizing text mining to discover relationships between drugs and
their side effects. Sohn et al. [9] proposed the decision tree approach, a machine learning algorithm,
to extract sentences that contain drug and side effect pairs. To build feature sets, they employed
side effect keyword features and pattern matching rules. Zhang et al. [10] developed a similarity
driven matrix factorization method to predict the drug and side effect associations. The primary goal
of their approach was to estimate the drug-side effect association relationship by identifying latent
features for drugs and side effects to compute drug feature-based similarities and disease semantic
similarity. Pauwels et al. [11] proposed a sparse canonical correlation analysis (SCCA) to predict
potential side-effect profiles of candidate drugs based on their chemical structures. The primary goal
of their approach was to extract correlated sets of chemical substructures and side-effects. Previous
studies on the relationship between drugs and side effects primarily focused on the direct link between
these two types of entities. Unlike these studies, the proposed approach is based on the indirect link
between drugs and side effects via proteins.

In the present study, we used advanced text-mining techniques to extract relations between
entities related to cancer drug research and to form a network with which to identify the chain
reaction that occurs in the body when a drug is given [12-18]. We derive this network based from
the interactions of entities suggested in scientific papers [19-24]. It is an accumulated and integrated
network that connects fragmentary relations between drug-protein, protein-protein, and protein-side
effect, thereby connecting drugs to their side effects [25-28].

Based on this composed knowledge network, we analyzed paths between drugs and side effects
and ranked them using a new ranking function that combines semantic similarity scores and the
frequency of entity pair co-occurrence to suggest meaningful paths. We compared our proposed
ranking algorithm with other algorithms such as Correlated Occurrence Analogue to Lexical Semantics
(COALS), and ontology-based algorithm (UMLS; Unified Medical Language System), and showed
that the proposed algorithm outperforms the other three in terms of precision of K measurements.

Analyzing 20 identified paths, we were able to adjudge 65% of them as biologically plausible.
Although our research does not show perfect performance, it can help to identify the link between
drugs and side effects, and serve as a foundation for further research. Moreover, our method can be
applied to other types of paths, thereby revealing previously unknown links among biological entities
such as diseases and genes.

2. Materials and Methods

To investigate possible drug-protein—side effect paths, we propose a three-step framework:
(1) pre-processing, (2) named entity recognition (NER) and relation extraction, and (3) path analysis
(illustrated in Figure 1). Most cancer drugs target specific paths, which are composed of protein
interactions. We therefore established proteins as our middle node. The first component is
pre-processing, including parsing XML records that were downloaded manually from the PubMed
search engine. During the parsing of records, we extracted important metadata such as PMID,
title, and abstract. Once parsing was done, an abstract of the record was split into sentences by a
sentence boundary detection algorithm; we used the algorithm provided in Stanford CoreNLP [29].
The second component has something to with NER and relation extraction. For NER, we employed
a dictionary-based entity extraction. Since an entity is either a single word or a phrase, we needed
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to tokenize sentences by N-gram. N-gram denotes a contiguous sequence of n tokens. Once entity
extraction is done, extracted entities and a sentence are fed into the relation extraction module.
In relation extraction, Part-Of-Speech (POS) tagging was applied to the sentence to detect verbs.
Since not every verb is meaningful in the bio-medical domain, we adopted the list of biomedical
verbs provided in [10]. The third component was path analysis. With extracted entities and their
relations, built a graph and generated k-depth paths. Once paths were generated, we computed
semantic relatedness scores of any given pair of entities linked on the graph. To this end, we utilized
two different sources: UMLS and the collected dataset a.k.a. corpus. UMLS was used to compute
the similarity between two entities based on the concept hierarchical structure of UMLS. The corpus
was used to build a corpus-based semantic relatedness model so that we could compute the similarity
of two entities found in the model. To make it easy to examine the results reported by the proposed
approach and as a utility function for the present paper, we developed a simple JSP (Java Server
Page)-based web server that allowed us to navigate the top 350 paths. The web server is publicly
accessible at http:/ /informatics.yonsei.ac.kr:8080/drug_se/searchDrug.jsp. The web server provides
a function of search by drug. The matched search result displays paths starting with drug, along with
a PubMed ID that takes the reader to the PubMed record page. The results page also provides a link to
the PubChem site for a particular drug. In addition, each path is broken down into a set of pairs such
as drug and protein, protein and disease, etc. It is also displayed that a sentence of a PubMed record
contains the particular pair in the path.
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Figure 1. System overview.

2.1. Data Source and Pre-Processing

We first select a specific domain related to cancer and retrieve relevant data from PubMed database
(http:/ /www.ncbinlm.nih.gov/pubmed). By consulting with several domain experts on the query
terms, by researching cancer-related bio articles, and by referring to the cancer gene information in
the KEGG database, we selected 37 keywords related to cancer and extracted abstracts from PubMed
database only if they contained these keywords. In this way, we collected a total of 2,379,349 abstracts;
Figure 2 shows the search query terms used.

In the pre-processing stage, we extracted the PubMed ID, title, and abstract from the
PubMed records (which are in XML form) using SAX-based XML parsing module. We also
used the Stanford CoreNLP text-mining tool, which includes sentence segmentation, POS tagging,
and lemmatization [29].
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Telomere[Title/Abstract] OR Blastomaf Title/Abstract] OR Leukemia[Title/Abstract] OR Germ cell
tumor[Title/Abstract] OR Lymphoma [Title/Abstract] OR Carcinoma[Title/Abstract] OR Sarcomaor
Oncogene[Title/Abstract] OR Apoptosis|Title/Abstract] OR DNA damage [Title/Abstract] OR Carcinoma in situ
[Title/Abstract] OR Tumor[Title/Abstract] OR Cancer[Title/Abstract] OR Metastasis [Title/Abstract] OR
Angiogenesis [Title/Abstract] OR Phorbol-12-myristate-13-acetate-induced protein 1 [Title/dAbstract] OR Noxa
[Title/Abstract] OR PUMA[Title/Abstract] OR BBC3/[Title/Abstract] OR Bcl-2-binding component [Title/Abstract]
OR p53 upregulated modulator of apoptosis [Title/Abstract] OR bci2-like protein 4 [Title/Abstract] OR Apoptosis
regulator BAX [Title/Abstract] OR Gadd45[Title/Abstract] OR Telomerase(Title/Abstract] OR
Senescence[Title/Abstract] OR CIP1[Title/Abstract] OR Tumor suppressor gene [Title/Abstract] OR
TERT[Title/Abstract] OR p21[Title/Abstract] OR TERC[Title/Abstract] OR WAF1[Title/Absiract] OR Alternative
Lengthening of Telomere[Title/dbstract] OR Telomere shortening [Title/Abstract] OR Crisis point[Title/Abstract] OR
Telomere lengthening [Title/Abstract] OR hTERT[Title/Abstract] OR Transformation [Title/Abstract] OR Malignant
transformation [Title/Abstract] OR p53[Title/Abstract] OR TP53[Title/Abstract]

Figure 2. Search query.

2.2. Named Entity Recognition

Next we identify drug, protein, and side effect entities that mentioned in the text and exist in the
databases using dictionary-based Named Entity Extraction [30].

There are several open source NER tools such as MetaMap, Banner, ABNER, and LingPipe.
Although machine-learning approaches including Banner, ABNER, and LingPipe are prevalent due to
their efficiency, they often suffer from poor performance when applied to real world scenarios. Thus,
in our study, because performance accuracy is far more important than efficiency, we constructed an
entity dictionary to exactly match entities with sentences from the full text.

2.2.1. Building the Entity Name Dictionary

We constructed the entity name dictionary using consolidated entity names from three publically
available databases: Drugbank Version 4.1 (http:/ /www.drugbank.ca/) for drug type entities, Uniprot
(http:/ /www.uniprot.org/) for human protein type entities, and SIDER (http:/ /sideeffects.embl.de/)
for side effect entities. Finally, we formulated the expanded dictionary to include synonyms of each
entry name derived from these databases.

In the case of proteins, multiple synonyms exist for a singular protein, making synonym processing
essential. In our research, we used the synonyms that are provided by the UniProt database to construct
our synonym dictionary for proteins as well as their synonymous gene names.

2.2.2. Recognition of Entity Name

We used N-gram matching to recognize the entities in sentences we extracted. Sentences are first
split and then N-gram tokenized by Apache Lucence (http:/ /lucene.apache.org). N-gram has been
performed by 1-, 2-, 3-gram, and these split tokens (token n-gram) are identified within the name entity
through three different entity dictionaries. NER for each n-gram is conducted by exact matching.

2.3. Relation Extraction

Before merging the three multi-type entity paths, we first focused on the relationship between two
entities. If a verb is located between two entities in a sentence and corresponds to the rules that we have
made (see below), then we extracted the two entities assuming that they were related, along with the
verb. This relation-extraction module is executed to construct three different relations—drug-protein,
protein-protein, and protein—side effect—which are then merged to create the entire paths of drug-
protein-side effect.
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To extract the drug-protein, protein-protein, and protein—side effect relations from sentences that
include annotated entities, we prepared and applied these rules to the extraction module with Stanford
CoreNLP toolkit.

1.  Basic rule: When the sentence structure is presented as entity—verb—entity, we assume that
the two entities have a relationship. To identify the main verb in a sentence, we used
part-of-speech tagging.

2. Negation detection: When a sentence includes negation dependency relation “neg” in the
dependency parse tree or when a token matches with the negative word such as “hardly” or
“scarcely,” we classified them as negative. We classified all other sentences as non-negative.

3.  Relation keyword: After implementing part-of-speech tagging, we filtered whether the verb is
included in the list of 389 verbs that are commonly used in the biomedical domain, as defined
by previous work [31]. We also manually classified the verb lists into two categories: increase
(accelerate, enhance, stimulate, activate, etc.) or decrease (inhibit, reduce, abolish, silence, etc.)
based on the bio-verb list.

4. Distance between entities: The distance, or number of words, between entities linked by a
bio-verb (relation keyword) is an important factor in deciding whether the two entities are
truly related. We chose a window size of six words, and we extracted two entities and relation
keywords only if they are included within the window size.

5. Direction: Direction can be determined by the tense (active or passive) using Stanford CoreNLP
part-of-speech parsing and dependency parsing results. When “auxpass” dependency relation
appears in a given sentence or when the sentence corresponds to the rules such as auxiliary verb
+ past participle and be verb + past participle, we considered them passive voice; the rest we
considered active. If a relation keyword is passive, the direction of verb is reversed: “entity A is
activated by entity B” means “entity B activates entity A.”

2.4. Path Detection on Drug-Protein—Side Effect

For path analysis, we combined the three different entity relationships generated in the
aforementioned stages (Figure 3). Proteins that appear in both pairs of drug-protein and protein—side
effect work as a bridge that connects drug and side-effect.

- Drug
- Protein
- Side effect

Figure 3. Conceptual model of drug-protein—side effect path. D—drug, P—protein, S—side effect.

2.4.1. Pair Generation of Drug-Protein

When we merged the heterogeneous path of the three entities, we first selected 50 drug entities
related to cancer that appear in the DrugBank database (listed in Table 1). We then detected the
drug-protein pairs related to these 50 cancer drugs.
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Table 1. List of selected drugs.
Drug Name Drug Name Drug Name Drug Name Drug Name
amifostine Cetrorelix erlotinib Letrozole sorafenib
aminoglutethimide chlorambucil exemestane Leucovorin tamoxifen
amsacrine cisplatin fludarabine Lomustine temozolomide
anagrelide cladribine flutamide methotrexate temsirolimus
anastrozole clofarabine gefitinib Mitotane thiotepa
bexarotene dacarbazine gemcitabine Nilotinib topotecan
bicalutamide daunorubicin idarubicin nilutamide toremifene
busulfan degarelix ifosfamide ondansetron vincristine
capecitabine docetaxel irinotecan paclitaxel vinorelbine
carboplatin doxorubicin ixabepilone procarbazine bortezomib

2.4.2. K-Protein Depth Path

The path can differ depending on the number of protein entities, as they are bridges connecting
drug and side effect. The number of protein entities (k) can be presented as the depth of path (k-protein).
Altering k from 1 to 3, we investigated not only the direct paths of drug-protein—side effect, but also
the chain reaction of path between proteins. For example, depth 1 is drug-proteinl-side effect and
depth 3 is drug-proteinl-protein2-protein3-side effect.

2.4.3. Path Ranking Algorithm

To rank the integrated paths of drug-protein-side effect, we combined three metrics: i) the lexical
co-occurrence-based semantic similarity score COALS [25,26]; ii) the frequency score of the pair’s
co-occurrence; iii) the knowledge-based semantic similarity score derived from UMLS [27,28].

First, COALS was used to estimate the similarity between two words with a given text corpus.
Basically, it was calculated by the correlation of two co-occurrence vectors both for normalization and
for measuring vector similarity. Second, the frequency-weighted score was calculated as the number of
occurrences of a pair on k-depth path. From the score of maximum frequency, we calculated the local
frequency, based on the specific side effect. Third, we used knowledge-based semantic similarity score
determined from a manually developed knowledgebase like UMLS, which gives the general biological
relationship between two given entities.

As a linear combination of the three metrics, we ranked the path (« = 0.3, 3 = 0.4,y = 0.3).

LocalFreq(v;,0;,SE )
Wll’*reqSEk

Entity Pair Weight (v;, v;) = «-COALS(v;,v;) + B- + 9-UMLS_Semantic(v;, vj)

n—1
Path ranking score = Z
i=0

Entity Pair Weight(v;, viy1)
n—1

where v;: Certain entity in given path (drug-protein-side effect sequence); COALS,, ,;: COALS
semantic similarity between v; and vj, where v; and v; are extracted entities; LocalFreq (vl-, v, SEk):
Frequency between v; and v; among all path of specific side effect; MaxLocalFreqg, : Maximum
frequency score of specific side effect among LocalFreq; UMLS_Semantic(v;, v;): Knowledge-based
semantic similarity between v; and v;.

3. Results

After extracting the relationship between entities from free text using the proposed
relation-extraction method, we constructed integrated networks consisting of drug-protein,
protein-protein, and protein-side effect pairs. We then identified a series of paths from drug to
side effect. Paths were ranked in descending order by the proposed weight function.
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3.1. Construction of Drug-SE (Side Effect) Path

3.1.1. Extraction of Relation Pairs from Text

The numbers of entity relation pairs extracted from our dataset are in Table 2. There are 1430 kinds
of cancer drugs that appeared from the drug-protein pairs extracted from the text, and 2156 types of
cancer drug side effects from the protein-side effect pairs. This is 18.47% of all drugs registered in the
DrugBank and 33.78% of all the side effects in the dictionary we built based on SIDER.

Table 2. Number of pairs, source, and target depend on each entity relation.

Coverage Entity Relation # of Pairs # of Unique Source  # of Unique Target
drug-protein 32,307 1430 2709
All drugs protein-protein 146,912 6125 5904
protein-side effect 170,112 6222 2156
drug-protein 2622 50 1055

50 cancer drugs protein—side effect 41,415 5313 9%

When limiting our list of target drugs to the previously selected 50 cancer-related drugs and to
the relevant side effects, all 50 drugs were listed in drug-protein pairs, while only some of the side
effects were extracted from protein—side effect pairs. Related to the selected 50 drugs, all 1988 side
effects appeared in SIDER, but only 996 cases were extracted from the text. In other words, we did not
extract all the side effects of cancer-related drugs listed in SIDER for the following two reasons: First,
350 side effects were not mentioned in the collected dataset; Second, 543 side effects were not extracted
by the dictionary-based side effect extraction, suggesting that our analysis does not cover all cases.

3.1.2. Detection of Drug-Protein-Side Effect Path

To understand the path from drug to side effect, we created paths made of three types of entities by
combining drug-protein pairs with protein—side effect pairs. Then, we categorized the paths by k, the
number of protein existing between drug and side effect (denoted as k-protein depth). The suggested
prioritizing algorithm ranks each path according to the proposed weight function, and we looked into
the top 250 paths with k values of 1, 2, and 3. The number of unique drugs, proteins, and side effects
are shown in Table 3.

Table 3. Number of drug, protein, and SE in top 250 paths.

Path Type # of Paths  #of Drugs  # of Proteins  # of Side Effects
drug-protein-side effect (depth-1) 250 28 131 17
drug-proteinl-protein2-side effect (depth-2) 250 34 126 32
drug-proteinl-protein2-protein3—side effect (depth-3) 250 39 222 78

The extracted paths are shown in the form of drug-protein-side effect. However, these include
the paths of the drugs that elicited a treatment response, and so include both intended effect and
side effect. For example, there were relatively many tumor or cancer cases in side effect section,
when a protein and “tumor” were connected by verbs such as “reduce.” As k increases, the number of
drugs and side effects increase as well. In drug-protein-side effect paths, 17 cases of side effects were
shown redundantly, 32 redundant cases of side effects in drug-proteinl-protein2-side effect paths,
78 redundant cases of side effects in drug-proteinl-protein2-protein3-side effect paths. The number
of drugs also increased by 28 in drug-protein-side effect paths, by 34 in drug-proteinl-protein2—side
effect paths, and by 39 in drug-proteinl-protein2-protein3-side effect paths.
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3.1.3. Selection of Significant SE Path

The actual side effects and their paths were difficult to track because the prior top 250 paths
included both the intended effects of the drugs and their side effects. Therefore, we classified the paths
into effects and side effects by considering paths ending with the nodes such as tumor or cancer as
effects and excluded it from our extracted paths.

Among the remaining side effect-specific paths, we then selected only significant paths by
inspecting extracted verbs. A path was considered significant only if the verbs represent a change to
other bio entities. Table 4 shows the final top 20 significant paths ranked according to our ranking
function described in Section 2.4.3. We evaluate the top 20 ranked paths. Our work provides a
hypothesis as a starting point for new biological research with relatively little time and effort.

Table 4. List of top 20 paths.

No Drug Verb1 Protein Verb2 Protein Verb3 Protein Verb4 Side Effect
1 anastrozole observe ar decrease mucbac use polymerase suggest acute hepatitis
2 anastrozole differ age associate mucbac use polymerase suggest acute hepatitis
-, o o inhibit, . . .
3 irinotecan inhibit p38 inhibit gl7 neutralize gastrin associate dyspepsia
4 tamoxifen  abolish, delet 38 inhibit 17 inhibit, trin fat dyspepsi
amoxifer abolish, delete p g neutralive gas| associate yspepsia
5 doxorubicin  ind tivat 38 inhibit 17 inhibit, trin iate d it
oxorubic uce, activate p g neutralive gas| associate yspepsia
e reduce, L inhibit, . . .
6 nilotinib increase p38 inhibit gl7 neutralize gastrin associate dyspepsia
7 rafenib inhibit, block 38 inhibit 17 inhibit, astrin associat d ia
sorafe , bloc p g neutralive gas! ssociate yspeps:
. inhibit, s inhibit, . . .
8 bortezomib decrease p38 inhibit gl7 neutralize gastrin associate dyspepsia
. . protein
9 bortezomib induce Kinase phosphorylate p150 occur cd5 present glomerulonephropathy
10 cetrorelix reduce, egf decrease pl5 increase smad4 interact septal defect
decrease
11 cetrorelix inhibit pcna conserve pl5 increase smad4 interact septal defect
. induce, . .
12 bortezomib stimulate p53 inactivate p150 occur cd5 present glomerulonephropathy
o . . . identify, . .
13 gemcitabine increase il-2 stimulate gls serve glutaminase catalyze nervous system disorders
14 doxorubicin decrease, il-6 interact clec-2 serve podoplanin  accelerate leukoplakia
enhance
15 nilotinib .reduce, p38 ephénse, mao-a increase $sao predict intracranial hemorrhage
increase inhibit
. . induce, increase, . .
16 cisplatin increase tnf- decrease spo use lipase occur hypophosphatemia
s result, ..
17 methotrexate inhibit Ip result nrl rod lead nocardiosis
become
18 chlorambucil induce, p53 promote 13mbtl1 enhance, erythropoietin  exert ureteral obstruction
up-regulate decrease
19  methotrexate upi-:\igigiltate/ ts encode kinesin-2 reduce rod lead nocardiosis
20  methotrexate separate, cr increase cofilin-1 correlate rod lead nocardiosis
observe

3.2. Verification of Path

To measure the performance of the proposed method, we examined the top 20 paths to determine
whether they were conceptually plausible or not. Because the results covered a variety of biological
entities, we also retrieved the sentences deriving entity pair of the path from PubMed in order to
prevent the misunderstanding of such a path.

We analyzed the paths and classified them into three types. Type 1 paths involve entities that are
related and verbs that are also correctly connected. Type 2 paths involve entities that are related but
verbs that are uncertain. And type 3 involves entities of uncertain relation as well as uncertain verbs.

3.2.1. Type Description

We were capable of interpreting type 1 and type 2 paths as shown in Table 5. Although the verbs
that connect the entities are not certain in case of type 2, we were able to connect the entities through a
literature analysis showing that the entities are highly related. Through our literature analysis, we were
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able to verify 65% of the 20 paths as plausible. The verified 65% supports our suggested path between
drug and side effect. The result of each path is given in Table 5.

Table 5. Biological analysis result (top 20 path).

Path No. Drug Side-Effect Typel Type2 Type3

1. anastrozole acute hepatitis @]

2. anastrozole acute hepatitis @)
3. irinotecan dyspepsia @)

4. tamoxifen dyspepsia o

5. doxorubicin dyspepsia (@]

6. nilotinib dyspepsia (@)

7. sorafenib dyspepsia o

8. bortezomib dyspepsia o

9. bortezomib glomerulonephropathy @)
10. cetrorelix septal defect @)

11. cetrorelix septal defect o

12. bortezomib glomerulonephropathy (@]
13. gemcitabine nervous system disorders (@]
14. doxorubicin leukoplakia (0]

15. nilotinib intracranial hemorrhage (@]

16. cisplatin hypophosphatemia o

17. methotrexate nocardiosis O
18. chlorambucil ureteral obstruction (@)

19. methotrexate nocardiosis (@]
20. methotrexate nocardiosis (@]

There are some cases in which same pair of drug and side effect appear twice, but are connected
by different proteins. For example, the top two ranked paths both link the cancer drug anastrozole to
the side effect of acute hepatitis.

e Type 1: When the entities are related and the verbs that describe the relations are also
correctly connected.

e  Type 2: When the entities are related but the verbs that describe the relation are not certain.

e  Type 3: When the relation of entities are not certain and the verbs that describe the relation are
also not certain.

3.2.2. Comparison Ranking Functions

For the selected 20 paths, we compared the performance of the proposed method and existing
measures: (1) the average betweenness degree using the co-occurrence frequency of two entities, (2) the
semantic similarity obtained by utilizing the COALS algorithm, (3) the semantic similarity for the
biomedical domain within the framework of UMLS. We judged that the information corresponding
to type 1 is a correct path, and that corresponding to type 3 is an incorrect path. We calculated top
n-ranked paths and determined how many correct paths exist. We compared the results between the
ranking function we proposed and the other functions. We employed precision at k (P@k), a common
measurement in the field of information retrieval, for comparison, where P@10 measures the correct
answers in top 10 cases. In our analysis, we measured P@5, P@10, P@15, and P@20; the results are
shown in Tables 6 and 7. Table 6 shows the comparison results among the ranking functions in the
case that type 1 is the true case and type 2 and 3 are false case whereas in Table 7, type 1 and 2 are the
true case and type 3 is the false case. The ranking of extracted 20 paths by P@K shows whether type
1 paths (or type 1 and 2) are ranked high, which implies the ranking algorithm properly predicts the
interesting, meaningful paths.
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Table 6. Comparison of precision at n (where type 1 = true and both type 2 and 3 = false).

Table 7. Comparison of precision at n (wWhere both type 1 and 2 = true and type 3 = false).

Path Type Co-Occurrence  COALS UMLS  Proposed
P@5 0.20 0.40 0.00 0.60
P@10 0.30 0.50 0.20 0.60
pP@15 0.40 0.40 0.33 0.40
P@20 0.30 0.30 0.30 0.30

COALS: please define; UMLS: Unified Medical Language System

PATHTYPE Co-Occurrence COALS UMLS  Proposed
P@5 0.80 0.60 0.40 0.80
P@10 0.70 0.90 0.50 0.80
P@15 0.73 0.67 0.67 0.73
P@20 0.65 0.65 0.65 0.65
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When type 1 is the only true case, the proposed method outperforms the other three methods by
18.75% to 128.92% for P@5-P@20. The second best performance was achieved by COALS, while UMLS
performed the worst. The proposed algorithm was particularly outstanding at top 5, and this result is
encouraging in cases where researchers want to investigate only a handful of the resulting hypotheses.

When both type 1 and 2 are assumed to be true, the proposed method again outperforms the
other three methods, this time by 3.47% to 34.23%. The second best performance was achieved by the
co-occurrence method, while UMLS again did the worst.

3.3. Example of Literature Analysis

One example for a type 1 path in which the entities are related and the verbs are correctly
connected is path 7. Path 7 shows the connection between the drug sorafenib and the side effect
dyspepsia. Figure 4 is conceptual model of path 7 that notes the evidence for each entity pair and verb.

3.3.1. Drug-Protein Connection: Sorafenib (Inhibit, Block) p38

Sorafenib is a kinase inhibitor drug that is used to treat primary kidney cancer and advanced
primary liver cancer [32,33]. Uncontrolled growth in many cancers is due to a defect in the
Ras-Raf-MEK-ERK path, also known as the MAP/ERK path [34]. Sorafenib acts as an inhibitor
for several tyrosine protein kinases, such as VEGFR, PDGEFR, and Raf family kinases, resulting in
the suppression of tumor growth [35]. Researchers have also shown that sorafenib can inhibit the
activation of the MAP kinase p38 by a marked decrease in p38 phosphorylation, without affecting total
protein levels [36,37]. These findings support the connection between sorafenib and p38, which are
linked by the verbs “inhibit” and “block.”

3.3.2. Protein-Protein Connection: p38 (Inhibit) g17

P38 mitogen-activated protein kinases are one of the main subgroups of the MAP kinases that play
a vital role in signal transduction, cell differentiation, apoptosis, and senescence [38—41]. Gastrin-17
(G-17), also known as little gastrin 1, is a form of the protein hormone gastrin that is secreted by
the intestine [42]. Gastrin is produced in the G cells of the duodenum and in the pyloric antrum of
the stomach, and is released in response to certain stimuli such as hypercalcemia (elevated levels of
calcium in the blood) [43,44]. Gastrin stimulates hydrochloric acid/gastric acid secretion by inducing
histamine release from ECL cells, functioning as a central regulator for gastric acid secretion [45].
In our study, we combined gastrin-17 with gastrin, which also exists as gastrin-34 and gastrin-14, into a
single entity, as all three form of gastrin are produced in the G cells and functions similarly.
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Figure 4. Extracted drug-protein-side effect paths for sorafenib and dyspepsia.

3.3.3. Protein-Protein Connection: p38 (Inhibit) Gastrin
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gastrin and found NF-«kB. NF-«B is a protein complex that regulates transcription, cytokine production,
and cell survival and is involved in multiple cellular responses [46,47]. Its transcriptional activation was
found to be regulated by the p38 MAP kinase activity [48-50], which upregulates NF-«B expression
through RelA phosphorylation during stretch-induced myogenesis [50]. NF-«B activity was also
induced in C2C12 cells by the activation of p38 [51]. IL1B-activated NF-«B downregulated gastrin,
and this downregulation occurred both in the presence and absence of IL1B [52,53]. The ectopic
expression of the p65 subunit of NF-«kB in AGS cells resulted in about nine fold reduction in gastrin
levels, suggesting that gastrin is negatively regulated by NF-«B [53]. These findings suggest a
connection between p38 and gastrin by way of NF-«B, in which activation of p38 MAP kinase
upregulates NF-«B, which represses the transcription of gastrin.

Another factor that can connect p38 to gastrin is calcium. Osteoclasts are a type of bone cell
that breaks down bone tissue, a process critical for bone maintenance, repair, and remodeling [54].
Previous research has found that p38 MAP kinase signaling plays a crucial role in PTHrP-induced
osteoclastic bone resorption, in which osteoclasts break down bone and result in the transfer of calcium
from bone fluid to the blood [55,56]. FR167653, an inhibitor of p38 MAP kinase, was found to inhibit
PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo [56]. Studies
also show that bone resorption induced by IL-1 and TNF is mediated by p38 MAP kinase and that
P38 activity enhances osteoclast maturation and bone resorption in myeloma [57,58]. These findings
suggest that p38 MAP kinase activity plays a crucial role in osteoclast maturation and bone resorption,
and thereby can regulate calcium levels in the blood. As mentioned, gastrin is released in response
to hypercalcemia (an elevated calcium level in the blood), suggesting that p38 can regulate gastrin
through calcium. However, more study is needed to understand exactly how p38 regulates calcium.

Through NF-«B, we can support the connection of p38 to gastrin by the verb inhibit; p38 MAP
kinase up regulates NF-«B resulting in the inhibition of gastrin. Through calcium, we can support
the connection between p38 and gastrin, but cannot support the verb inhibit. However, through
our literature research, we have found a high correlation between p38 and gastrin through calcium,
suggesting that calcium is likely to be another mediator connecting p38 and gastrin.

3.3.4. Protein-Side Effect Connection: Gastrin (Associate) Dyspepsia

Dyspepsia, also known as indigestion, is a condition in which digestion is impaired. Dyspepsia
is highly related to gastrin, as gastrin is a key regulator for the secretion of gastric acid, a digestive
fluid formed in the stomach [45]. Dyspepsia can be caused by gastroesophageal reflux disease (GERD),
a condition in which stomach acid comes up from the stomach into the esophagus and causes mucosal
damage. These findings support the connection between gastrin and dyspepsia by the verb associate.

In short, we suggest dyspepsia as a side effect for sorafenib: sorafenib inhibits p38, thereby
inducinggastrin, which results in dyspepsia. Through our method, we suggest a mechanism for how
sorafenib can cause dyspepsia. For other analyses of type 2 and 3 paths, refer to the Supplementary
Data (Figures S1 and S2, Table S1 and Data S1).

3.4. Direct Link between Drug and Side Effect

The list of the direct links between drug and side effect was extracted from the collected data,
and we provided it along with total frequency of drugs and side effects co-occurred in the same
abstract in Table 8.

In Table 8, each drug and side effect is accompanied with Concept Unique Identifier (CUI)
provided in the UMLS. We extracted total 827 unique links provided in Appendix A. The most
frequently co-occurred pairs are Anti-inflammatories and Cachexia and Antioxidants and Cachexia
whose the total number of co-occurrences is 17,653.
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Table 8. The top 20 direct links between drug and side effect.

Drug| CUI Side Effect| CUI Frequency
ANTI-INFLAMMATORIES | C0003209 CACHEXIA | C0006625 17,653
ANTIOXIDANTS | C0003402 CACHEXIA | C0006625 17,653
NSAIDS | C0003211 LBP | C0024031 7600
PCT 1C0032452 LBP 1C0024031 7296
SR59230A | C0386264 CACHEXIA | C0006625 3336
PD | C0030230 FATIGUE | C0015672 3234
IRON | C0302583 FATIGUE | C0015672 3234
IBUPROFEN | C0020740 CACHEXIA | C0006625 3197
TG 1C0039902 CACHEXIA | C0006625 2919
DIET | C0012155 CACHEXIA | C0006625 2780
ANTIGEN [ C0003320 CACHEXIA | C0006625 2502
GEFITINIB | C1122962 FATIGUE | C0015672 2464
TCC1C0077072 FATIGUE | C0015672 2310
SER [ C0036720 CACHEXIA | C0006625 2224
ERLOTINIB | C1135135 FATIGUE | C0015672 2156
DTC 1 C0012194 FATIGUE | C0015672 2002
CNI-1493 1 C0384938 FATIGUE | C0015672 1848
PROTONS | C0033727 FATIGUE | C0015672 1848
HYDROGEN | C0020275 FATIGUE | C0015672 1848

4. Discussion

Advantage and Significance

Although the side effects of drugs are reported in clinical trials, there are few studies that attempt
to explain why. However, there are many studies on the target paths of cancer drugs. Therefore in our
research we used text mining to identify the pathways between drugs and side effects. For example,
dyspepsia is a known side effect for Sorafenib. However, the entities connecting Sorafenib and
dyspepsia were not well known. Through our research, we suggest p38 and gastrin as entities that
can connect Sorafenib to its known side effect, dyspepsia. In situations where biological lab research
has its limitations, such methods can provide a path between drug and side effect with little time
and resources.

In addition, we can suggest a meaningful hypothesis for further research into a drug and its side
effects by using our suggested ranking system. Although there could be many paths by which the side
effect may occur, our system provides an opportunity to preferentially overview plausible paths.

Lastly, we think that our methodology could provide a more effective prescription of drug.
Currently when prescribing drugs, side effects are considered, and the prescription of drugs with
harsh side effect is often avoided. By extracting the path between drug and side effect with verbs,
our system can help doctors interpret the underlying path. For example, as shown above, p38 and
gastrin are related entities that connect Sorafenib to dyspepsia. Through our research, we suggest
that Sorafenib may cause dyspepsia by inhibiting p38, thereby inducing gastrin, which may result in
dyspepsia. With this information, doctors can assess a patient’s risk of suffering a given side effect,
and therefore, more effectively prescribe the drug in question.
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5. Conclusions

We used text mining to identify possible paths between drugs and side effects by analyzing
2,379,349 research paper abstracts. By extracting the relation between entities from the abstracts’ free
text, we suggest detailed mechanisms connecting drugs and side effects.

To make the results suggested by the proposed approach more reliable, we need to apply methods
that can increase the accuracy of suggested specific processes such as NER, RE, and path analysis,
including a new path ranking algorithm, and also a develop a process for analyzing error cases.
Moreover, a method that can consider conditions and situations that affects the relation will be needed
in our future work. In addition, since we used a limited number of oncogenes as search queries,
it would be desirable to include more comprehensive oncogenes to search queries.

Our proposed framework is not limited to drug-side effect relations, however, and could be
applied in various circumstances. For this, it requires first defining a detailed conceptual model;
for example, what entity types could be contained in the path. Then, a detailed process such as NER,
RE, and path analysis are executed to extract potential entities. Through these pipelines, our suggested
method may give meaningful results for biomedical researchers in various situations such as
protein-protein interaction (PPI). For PPI, we are able to integrate widely used PPI databases such as
Mammalian Protein-Protein Interaction Database (http://mips.helmholtz-muenchen.de/proj/ppi/)
and BioGRID (http://thebiogrid.org/) for PPI extraction.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2073-4425/10/2/159/s1,
Figure S1: Pathl (Type 2) and Path 2 (Type 3), Figure S2: Path 15 (Type 2), Table S1: Ranking function result,
File S1: Further literature analysis.
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