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Abstract: Network biology and medicine provide unprecedented opportunities and challenges for 

deciphering disease mechanisms from integrative viewpoints. The disease genes and their products 

perform their dysfunctions via physical and biochemical interactions in the form of a molecular 

network. The topological parameters of these disease genes in the interactome are of prominent 

interest to the understanding of their functionality from a systematic perspective. In this work, we 

provide a systems biology analysis of the topological features of complex disease genes in an 

integrated biomolecular network. Firstly, we identify the characteristics of four network parameters 

in the ten most frequently studied disease genes and identify several specific patterns of their 

topologies. Then, we confirm our findings in the other disease genes of three complex disorders (i.e., 

Alzheimer’s disease, diabetes mellitus, and hepatocellular carcinoma). The results reveal that the 

disease genes tend to have a higher betweenness centrality, a smaller average shortest path length, 

and a smaller clustering coefficient when compared to normal genes, whereas they have no 

significant degree prominence. The features highlight the importance of gene location in the 

integrated functional linkages. 
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1. Introduction 

Complex diseases such as neurodegenerative disorder, metabolism syndrome and cancer are 

often hypothesized as the results of molecular perturbations and dysfunctions [1–3]. In systems 

biology and medicine, the onset of complex diseases is considered to be the consequence of abnormal 

interactions among multiple genes, gene products, and metabolic compounds [3,4]. The disease genes 

play a driving role, causing locally original dysfunctions, and then signaling pathways spread their 

affections and cause global misalignment, even leading to mortality [5]. The disease genes provide 

causal information of the dysfunctional occurrence and development. 

With the screening of high-throughput technologies, more and more putative disease genes have 

been identified [6]. For instance, the genome-wide association study (GWAS) provides a systematic 

investigation of genetic variants in case-control population individuals to see if any variant in the 

genome is associated with a particular trait [7]. As we all know, the papers about biomedicine and 

health have been documented in the national library of medicine [8]. There is summary statistics 

about the most popular genes studied in these papers. It is found that the most popular genes are all 

related to complex diseases in oncology and immunology [9]. 

A network provides a mathematical framework for deciphering the relationship between 

biomolecules [10–12]. In which, nodes refer to the biomolecules and edges refer to their relationships. 
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The genes and their products perform their normal or dysfunctional roles by interacting with each 

other exactly in the form of a network [4,13]. Due to recent rapid increase in biomolecular interaction 

data, the study on biomolecular networks has been booming [14,15]. For instance, the number of 

protein interactions deposited in the STRING database has grown up to 1380 million in thousands of 

organisms [16]. In a network, its topological parameters define the quantitative patterns and 

measures of the nodes and edges [14]. For instance, the degree of a node refers to the number of edges 

incident to the node. The topological properties, such as degree and its distribution, provide detailed 

descriptions of the network’s features. Thus, the network’s localization and organization are reflected 

in its topological parameters. 

The topological parameters also characterize the pattern of genes in a networked system [14]. There 

are some examples that the topological prominence implies biological essentiality in networks [17–19]. 

For instance, the hub genes often refer to the nodes with high degree in a network [20]. Interestingly, it 

has been proved that disease genes are often not hub genes for their functional importance in the network 

structure [21,22]. The non-conventional findings deepen our understanding about the network 

localization of disease genes. In a cell, an interactome often refers to the whole set of gene interactions [23]. 

The location of nodes in the interactome highly coordinate their specific dysfunctions during disease 

development and progression [24,25]. The interactome presents a map of functional layout among genes. 

The information flow transmitting from disease genes to normal genes are also determined by the local 

neighbors and environments [1,2]. Their location in the network is also the crucial determinant of 

dysfunctions from the systematic perspective. It is of paramount interest to explore these parameters of 

disease genes in the interactome. 

In this paper, we focus our analysis on the topological parameters underlying disease genes on 

an integrated gene–gene interaction network. For generality, we firstly investigate several network 

topological properties of the top-ten popular disease genes. Four widely-used network properties 

(i.e., node degree, betweenness, clustering coefficient, and shortest path length) are identified for 

representing the network localization of disease genes. For specificity, we validate the observed 

features underlying these network properties in three typical complex diseases (i.e., Alzheimer’s 

disease (neurodegeneration-related), diabetes mellitus (metabolism-related), and hepatocellular 

carcinoma (cancer-related)). We collect their disease-related genes and verify the identified 

topological patterns from the top-ten most popular genes in the three types of diseases, respectively. 

The differences of the network characteristics are discovered between disease genes and other 

randomly-selected normal genes. The topological distinctiveness between disease genes and their 

neighbors also indicate the specificity of network location in the pathogenesis of disease. For checking 

the independence between the parameters, their pairwise correlations are identified. The analysis 

highlights the importance of location of disease genes in a network. 

2. Materials and Methods 

2.1. Disease Genes 

Firstly, we accessed the most popular genes from the list of “hot studies” in all human genomes 

[9]. The top-ten genes have been investigated in more than 40,000 papers. Table 1 lists their details. 

Apparently, these genes are all highly related to complex diseases [26]. Some of them are disease 

causal mutations (e.g., TP53 (related to cancers) and APOE (related to Alzheimer’s disease)). Some of 

them perform severe dysfunctions related to inflammation and abnormal phosphorylation in 

diseases (e.g., TNF and AKT1). For generality, we identified their topological parameters in our 

integrated biomolecular network. 
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Table 1. The top-ten most popular genes. 

Symbol Gene ID Function 

TP53 7157 Associated with the tumor suppressor protein p53. Mutation causes more than half 

of human cancers. 

TNF 7124 An immune molecule associated with tumor necrosis factor, as a major drug target 

in inflammatory diseases. 

EGFR 1956 Associated with the epidermal growth factor receptor, a membrane-bound receptor 

protein. Mutations may lead to drug-resistant cancer. 

VEGFA 7422 Associated with vascular endothelial growth factor A, helping promote the growth 

of blood vessels. 

APOE 348 Associated with cholesterol and lipoprotein metabolism, namely apolipoprotein E. 

IL6 3569 Associated with an immune molecule namely interleukin 6, helps to stimulate and 

suppress inflammation. 

TGFB1 7045 Associated with transforming growth factor β 1, used to regulate cell proliferation 

and differentiation. 

MTHFR 4524 Associated with process amino acids, an enzyme named methylene-

tetrahydrofolate reductase. 

ESR1 2099 Associated with a nuclear receptor protein, estrogen receptor 1, which plays an 

important role in breast, ovarian, and endometrial cancers. 

AKT1 207 Associated with a signaling protein namely kinase, helping activate other proteins 

by phosphorylation. 

For specificity and justification, we also verified the findings of the top-ten-popular genes in 

three other complex diseases (i.e., Alzheimer’s disease (AD), diabetes mellitus (DM), and 

hepatocellular carcinoma (HCC)). The disease genes of these complex diseases were composited from 

KEGG [27], GWASdb [6], and GWAS Catelog [8]. The number of disease genes for AD, DM, and HCC 

were 171, 46, and 168, respectively. They are available from Supplementary material S1. 

2.2. Integrated Biomolecular Network 

For building up an interactome, we downloaded the documented biomolecular networks from 

STRING [16], BIND [28], MINT [29], BioGrid [30], IntAct [31], DIP [32], and HPRD [33]. In these 

databases, multiple types of biomolecular interactions are included in the integrated network. For 

completeness, the interactions referring to gene–gene co-expression, gene co-occurrence, gene fusion, 

gene regulation, and annotated pathways were all contained in the interactome. In total, the 

biomolecular network contained 7018 nodes and 224,127 edges. Figure 1 illustrates the global view 

of a typical part of the integrated gene–gene functional linkage network. 
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Figure 1. A partial view of the integrated biomolecular network. The meanings of the colors of the 

nodes and edges are shown in the legend. The nodes size is in proportion to the number of its 

neighbors. 

2.3. Network Topological Parameters 

Some topological parameters have been defined to describe the properties of location in the 

network structure for quantifying their centrality or functionality [34]. For simplicity, we chose the 

four most robust measures of network topology to investigate the network properties [4]. 

2.3.1. Node Degree 

In a network, the degree of a node is defined as the sum of all edges connected to it [14]. If a 

node has a degree of n, it refers to n neighbor nodes connecting to it. Usually, the probability 

distribution of all node degrees is named as the degree distribution of the network. It is proved to be 

a power-law distribution in biomolecular complex networks [10,35,36]. 

2.3.2. Average Shortest Path Length 

In an unweighted network, the shortest path between two nodes i and j refers to the path 

between them with the smallest number of edges. The distance dij between the two nodes refers to 

the shortest path between them. The average shortest path (network distance or network diameter) 

of an entire network is the average path length of all possible pairs of nodes [14,35], namely, 



Genes 2019, 10, 143 5 of 17 

 

  , ,

2
,

1
ij

i j i j G

L d
N N  




  (1)

where N represents the number of nodes in the network G(V,E), node i and node j are in the network 

G. Here, the distance from a node to itself is defined to be zero. 

2.3.3. Clustering Coefficient 

Clustering coefficient (CC) reflects the aggregation property underlying the nodes in a network 

[14], which refers to the tendency of gathering together of these nodes. In the network, CC depicts 

the average value of the ratio of the actual edge of a node in the complex network to all the possible 

edges, in essence, 
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where n is the number of edges connected to the node and its first-order neighbors, and 
2

k 
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 is the 

number of its adjacent neighbors. The key of calculating CC is to obtain this value. We employed the 

node neighbor subgraph algorithm to achieve it from the adjacency matrix of the network. We found 

all neighbors of a location element in the adjacency matrix and got the number of edges. In an 

undirected graph, because of the symmetry of its adjacency matrix, the number of neighbors is two 

times of the number of edges. Therefore, the actual value should be divided by 2 [14]. 

2.3.4. Betweenness Centrality 

Based on shortest paths, betweenness centrality (BC) is a measure of centrality for assessing the 

importance of individual nodes in a network [14]. The BC value of a node is the ratio of all the shortest 

paths between the other nodes to the total number of these shortest paths that pass through the node, 

in essence, 
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ij  is the number of the shortest paths from node i to node j. ( )ij v  refers to the shortest paths from 

node i to node j, through node v. 

2.4. Comparison Statistics 

We compared the topological parameters of disease genes and the randomly-sampled same-size 

genes (no overlap between them). In accessing the statistical significance of their difference, we used 

the Mann–Whitney U test to obtain a p-value between the parameters in the two gene sets. 

To assess the relationship between two topological parameters, we used the Spearman rank 

correlation coefficient to measure their association. Spearman rank correlation is a nonparametric 

measure of statistical dependence between two variables [37]. 

3. Results 

3.1. The Values of Network Topological Parameters 

In the integrated biomolecular network, we identified the values of network property 

parameters for the top-ten popular disease genes respectively. Table 2 lists the values of their 

topological properties. For illustrating the specificities of parameters in these disease genes, we 
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randomly chose ten other genes and calculated their topological parameters correspondingly. We 

repeated the random processes ten times. Figure 2 demonstrates the comparisons of the four 

parameters in the popular-studied genes with those in the same number of randomly-selected genes. 

In each subfigure, the genes were sorted based on the values of the parameters. 

Table 2. The values of network topology parameters in the top-ten popular genes. 

Gene 
Topology Parameter 

Degree Average Shortest Path Length Clustering Coefficient Betweenness Centrality 

TP53 178 2.57 0.39 1.17E-01 

TNF 137 2.12 0.47 1.64E-02 

EGFR 228 2.38 0.42 3.06E-02 

VEGFA 85 2.23 0.45 8.05E-03 

APOE 68 2.50 0.40 1.03E-02 

IL6 100 2.18 0.46 1.45E-02 

TGFB1 96 2.46 0.41 3.59E-02 

MTHFR 102 2.45 0.41 6.63E-02 

ESR1 122 2.55 0.39 6.41E-02 

AKT1 141 1.99 0.50 1.23E-01 

 

Figure 2. The comparisons of four topology parameters between disease genes and randomly-selected 

normal genes: (A) degree, (B) average shortest path length, (C) clustering coefficient, and (D) 

betweenness centrality. The x-axis is for ten genes, the left y-axis is for “mean” and the right y-axis is 

for “standard deviation”. 

As shown in Figure 2, we found that the degree and BC of disease genes were, on average, higher 

than those of random genes. Whereas the average shortest path length and CC of disease genes were, 

on average, lower than those of random genes. In fact, degree is also a kind of centrality measure 

referring to the centrality of node in a network. The higher centrality of degree and betweenness 

indicated the crucial roles of genes in the network. Moreover, the lower average shortest path length 

also proved the importance of disease genes. Interestingly, the CC of random genes was generally 

higher than those of disease genes. This means that disease genes did not tend to be the central genes 

in network modules. The results provide evidence that the disease genes were located in critical 

positions in the network. Their locations reflect their functional importance in the interactome. 
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We also certified the comparison results in larger number of random samplings. We randomly 

selected ten groups of genes with ten genes per group, respectively. Then, the four topological 

parameters were calculated. The results are shown in Figure 3. The comparisons illustrated that the 

disease genes tended to have a higher degree and betweenness centrality, but they also tended to 

have smaller average shortest path length and clustering coefficient. These are consistent with those 

shown in Figure 2. 

 

Figure 3. The boxplots of the topological parameters in disease genes and groups of random genes: 

(A) degree, (B) average shortest path length, (C) clustering coefficient, and (D) betweenness centrality. 

The p-value in each subfigure refers to the statistical significance of difference via Mann-Whitney U-

test. 

3.2. The Parameters in the First-Order Neighbour Genes 

The former parameters indicated the importance of network localization in the ten most popular 

genes. It is of interest to identify the four parameters of their first-order neighbor genes for their 

closeness with disease genes. Figure 4 demonstrates the ten genes and their first-order neighbors in 

the interactome. The boxplots of their topological parameters are shown in Figure 5. For comparison, 

we also plotted the corresponding parameters of the ten genes. As shown in Figure 5, we found that 

the network parameters of the first-order genes were distinct with those of the ten disease genes. 

Compared with Figure 3, we found that the parameter patterns in the first-order neighbor genes were 

similar to those in the random genes. This proves the disease genes had different topological 

parameters to their first-order neighbor genes. The result indicates that the disease genes were located 
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in special positions in the interactome and the network localization was a major determinant factor 

for their malfunctional roles. 

 

Figure 4. The network of ten popular disease genes and their first-order neighbor genes. (A) The top-

ten popular genes and their nearest neighbors. (B) TP53 and its neighbor genes. 

 

Figure 5. The comparison of the four network parameters in the top-ten popular genes and those in 

their first-order neighbor genes. 
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3.3. The Parameters in the Other Disease Genes 

We identified the specific network topological patterns underlying disease genes from the most 

popular genes. For justifying these findings in particular diseases, we further studied the topological 

parameters of the other disease-related genes in three major types of complex diseases (i.e., AD, DM, 

and HCC). For the different numbers of disease genes, we divided these genes into 10 groups with 

equal sizes in the three diseases. Similar to the ten most-popular genes, we calculated the statistics 

for the ten-gene groups in the three diseases individually. The results of AD, DM, and HCC are 

shown in Figure 6, Figure 7, and Figure 8, respectively. 

The results in the three figures are presented in parallel manners. As shown in Figure 6, the 

subfigures plot the node degree, average shortest path length, clustering coefficient, and betweenness 

centrality of AD genes, respectively. The topological parameters in the same size of randomly selected 

gene sets are also shown. The results in Figures 7and 8 are very similarly presented. 

From the comparison studies, we found that the results in the three complex diseases were 

consistent with those identified in the top-ten popular genes, except the parameter pattern about 

degree. The degree of the top-ten popular genes was significantly higher than that of the random 

genes, whereas it was marginally higher in the three diseases than in the random genes. Even, the 

degree median in the three diseases was slightly lower when compared to normal genes. The 

independent validations from the other diseases mutually justify our findings that the disease genes 

in the biomolecular network often locate in important positions with special topology parameters. 

The location in an interactome plays an important role in determining the dysfunction of a gene in 

complex diseases. 
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Figure 6. The comparison of topological parameters between AD (Alzheimer’s disease) genes and 

randomly-selected genes. (A) The means (left y-axis) and standard deviations (right y-axis) of the four 

parameters in the ten AD gene groups and those corresponding in the randomly-selected ten gene 

groups. (B) Boxplots of these parameters. 
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Figure 7. The comparison of topological parameters between DM (diabetes mellitus) genes and 

randomly-selected genes. (A) The means (left y-axis) and standard deviations (right y-axis) of the four 

parameters in the ten AD (Alzheimer’s disease) gene groups and those corresponding in the 

randomly-selected ten gene groups. (B) Boxplots of these parameters. 
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Figure 8. The comparison of topological parameters between HCC (hepatocellular carcinoma) genes 

and randomly-selected genes. (A) The means (left y-axis) and standard deviations (right y-axis) of the 

four parameters in the ten AD (Alzheimer’s disease) gene groups and those corresponding in the 

randomly-selected ten gene groups. (B) Boxplots of these parameters. 
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3.4. Correlation between Parameters 

The four topological parameters are often employed to describe network properties [4]. To 

investigate their interrelations, it is of interest to check their correlation coefficients. In the same 

philosophy, we implemented the calculations of parameter correlations for the ten genes and justified 

the findings in the disease genes of AD, DM, and HCC. The results are shown in the following figures. 

Figure 9 illustrates the all-against-all correlations (
2
4 6C  ) in the four parameters for the top-

ten popular genes. We found that the association between average shortest path length and clustering 

coefficient achieved an outlier coefficient of −0.994. The high correlation value indicated the 

consistency between the rankings of two topologies in the ten genes. There were no high correlations 

between the other pairs of four parameters. Figure 10 shows the correlations in the AD genes. The 

correlation between degree and betweenness centrality was as high as 0.844. The other pairs could 

not obtain higher correlations. In the cases of high correlation values of 0.844 and −0.715, the 

betweenness centrality only achieved low values. As shown in Figure 11 for DM genes, the 

correlation between average shortest path length and betweenness centrality achieved the highest 

value of −0.660. The relationship between degree and betweenness centrality was rather high at 0.590. 

In HCC genes shown in Figure 12, the correlation between average shortest path length and 

betweenness centrality achieved the highest value of 0.812. The outlier points in each subfigure also 

had no special corresponding rules between any two parameters. The results provide evidence that 

these parameters were relatively independent, except in a few isolated cases. Thus, they can be 

employed to represent the location properties in the interactome. They have specific meanings and 

references in describing network topologies. An interesting research direction is to investigate the 

differences between these network topologies and check their abilities in representing network 

localization. We employed all the four parameters to describe the network topology. 

 

Figure 9. The Spearman rank correlations between the four parameters in the top-ten popular genes. 
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Figure 10. The Spearman rank correlations between the four parameters in the AD (Alzheimer’s 

disease) genes. 

 

Figure 11. The Spearman rank correlations between the four parameters in the DM (diabetes 

mellitus) genes. 
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Figure 12. The Spearman rank correlations between the four parameters in the HCC (hepatocellular 

carcinoma) genes. 

4. Conclusions 

The outcome of complex diseases is contributed to from the dysfunctional interactions of 

multiple genes, molecules, and the environment. The complex mechanisms of disorder often bring 

tremendous difficulties in the prevention, diagnosis, and treatment of complex diseases. The network 

techniques provide powerful tools of organizing the functional relationship and structure via 

comprehensive interactome. In this philosophy, the network topological parameters are important to 

describe the network. In this work, we provide a study of investigating the network properties of 

disease genes in an interactome by integrating functional linkages among genes. The findings 

highlight the importance of location in the network for complex disease genes. 

We firstly investigated the network parameters in the top-ten most popular disease genes. We 

found that the parameters of them are often different from those of the normal genes. This indicates 

the location of network is related to the dysfunctions of the complex diseases. We then confirm our 

findings in the disease gene sets of three major complex diseases (i.e., AD, DM, and HCC). Similar 

topological patterns in these disease genes were observed with those of the top-ten popular genes. 

We justified our results of topological importance of the disease genes in the current uncomplete 

interactome. The parameters were relatively quantified via the same background of interactome. 

When more gene interactions and context-specific networks become available, the renewed 

parameters will demonstrate the changing dynamics of network topology. 

To further check the importance of network localization for disease genes, we studied the 

topological features in their nearest neighbors. Their network topological patterns were also different 

from those of disease genes. In order to further confirm the meaningfulness of network parameters, 

we identified pairs of correlations between parameters. The analyses demonstrated most of them had 

no significant correlation to each other. Thus, the characteristics of independent network property 

can be used to partially describe the network topology. 

Our results and findings imply the locations of disease genes in interactome play crucial roles in 

disease onset and progression. The network topology indicates the pathogenesis of complex diseases. 

From the network perspective, it is possible to deepen our understanding of the functionality 
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transmission between genes and decipher novel mechanisms of complex diseases. Our analysis 

reveals the importance of investigating the topological structures of disease genes from the network 

perspective in systems biomedicine. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Supplementary 

material S1: Disease gene lists for Alzheimer's disease, diabetes mellitus, and hepatocellular carcinoma. 
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