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Abstract: Effective prediction of protein tertiary structure from sequence is an important and 

challenging problem in computational structural biology. Ab initio protein structure prediction is 

based on amino acid sequence alone, thus, it has a wide application area. With the ab initio method, 

a large number of candidate protein structures called decoy set can be predicted, however, it is a 

difficult problem to select a good near-native structure from the predicted decoy set. In this work 

we propose a new method for selecting the near-native structure from the decoy set based on both 

contact map overlap (CMO) and graphlets. By generalizing graphlets to ordered graphs, and using 

a dynamic programming to select the optimal alignment with an introduced gap penalty, a 

GR_score is defined for calculating the similarity between the three-dimensional (3D) decoy 

structures. The proposed method was applied to all 54 single-domain targets in CASP11 and all 43 

targets in CASP10, and ensemble clustering was used to cluster the protein decoy structures based 

on the computed CR_scores. The most popular centroid structure was selected as the near-native 

structure. The experiments showed that compared to the SPICKER method, which is used in 

I-TASSER, the proposed method can usually select better near-native structures in terms of the 

similarity between the selected structure and the true native structure. 

Keywords: GR_score; dynamic programming; gap penalty; near-native protein; protein structure 

prediction 

 

1. Introduction 

The human genome project was first proposed by American scientists in 1985 and officially 

launched in 1990 [1]. Its purpose is to determine the nucleotide sequence consisting of three billion 

base pairs contained in a human chromosome, thereby mapping the human genome and identifying 

the genes and their sequences to decipher humans. With the completion of the program, the gene 

sequence can be obtained by measuring the obtained map, and the sequence of the corresponding 

protein can also be inferred using the genetic central dogma [2]. Since the function of genes can be 

studied via the study of the corresponding proteins produced through gene expression, the use of 

bioinformatics to discover the function of a protein product of a gene becomes more and more 

significant. In fact, determining protein functions from genomic sequences is a central goal of 

bioinformatics [3]. Since the function of proteins is determined by its tertiary structure, the 

prediction of tertiary structure based on protein sequences is a very important problem. 

It is known that the number of known protein structures increases exponentially. By the end of 

the decade, the PDB [4] database size will be more than 150,000 structures at the current rate. 

However, the newly published UniProtKB/TrEMBL [5] protein database in Jan, 2019 contains 

139,694,261 sequence entries. Hence, only a very small part of them have experimentally solved 
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structures. Therefore, protein tertiary structure prediction becomes an important and challenging 

problem in computational structural biology. 

Although many protein tertiary structure prediction methods have been proposed, there is no 

consensus on which one is the best [6,7]. There are usually three kind of structure prediction 

methods: homology modeling, threading or fold recognition, and ab initio modeling [8]. Both 

homology modeling and threading require known protein structures as templates, thus, they are 

difficult to be successfully applied in the absence of template structures. In contrast, ab initio 

modeling does not require a known structure: it directly predicts its spatial structure from the 

protein sequence. Different from these methods, which directly predict the tertiary structures, there 

are also methods to predict contact maps of the proteins from sequence information [9,10]. Contact 

maps can be predicted by finding correlated pairs of amino acids in multiple sequence alignments, 

or using neural network approaches. The predicted contact maps can then be used to help the 

tertiary structure prediction of the proteins. To help the development of high-quality protein 

tertiary structure prediction methods, a worldwide experiment called Critical Assessment of Protein 

Structure Prediction (CASP) has been held every two years since 1994 [11]. The goal of the CASP is 

to evaluate existing protein structure prediction methods or detect their flaws. CASP provides 

research groups with an opportunity to objectively test their structure prediction methods and 

delivers an independent assessment of the state of the art in protein structure modeling to the 

research community and software users. The decoy sets, generated by I-TASSER, of single-domain 

targets in the CASP11 [12] and CASP10 [13] were used in our experiments. These decoy sets can be 

downloaded from the Zhang Lab website [14]. 

One of the challenges in designing the ab initio structure prediction method is to select the best 

near-native model from a large number of predicted decoy structures. Using clustering methods 

based on structure similarity score have been shown to be superior to using energy function in 

selecting the near-native structures [15]. To use the clustering methods, a key problem is the 

computation of the protein structure similarity. 

Many tools for comparing protein structures and computing structure similarity have been 

developed. One type of the comparison methods is based on the model superposition, which can be 

further divided into two categories: the rigid-body approaches and flexible alignment approaches. 

The rigid-body approaches consider the proteins as rigid objects and aim to find alignments that 

have the maximum number of mapped residues and the minimum deviations between the mapped 

structures. The rigid-body approaches mainly differ in how they combine these two objectives [16]. 

The final score is often expressed in terms of root mean square deviation (RMSD). Combinatorial 

extension (CE) [17] is a typical example of rigid structure comparison method. It aligns protein 

structures by chaining the consecutive aligned fragment pairs (AFPs) without twists. These AFPs are 

combined to evaluate the protein similarity. Global distance test (GDT) [18], also written as GDT-TS 

(GDT total score), is one of the scores developed to overcome shortcomings of RMSD. The GDT-TS 

measures the structure similarity by quantifying the number of corresponding atoms in the model 

that can be superposed within a set of predefined tolerance thresholds to the reference structure. 

Unlike RMSD, GDT-TS is more robust against small fragments movements, benefited from using 

several superposition thresholds. The GDT-TS is now a major assessment criterion in CASP. The 

template modeling score (TM-score) [19] is a variation of the Levitt-Gerstein (LG) score to assess the 

quality of protein structure templates and predicted full-length models. All the residues of the 

modeled proteins are evaluated by a protein size dependent scale, rather than using a specific 

distance cutoff and focusing only on the fractions of structures as in the GDT-TS. TM-score is more 

sensitive to the correctness of global topology than the local structural errors, while the RMSD 

measure is sensitive to local small disorientations which may result in a big overall RMSD change 

even though the core region of the model may be correct. Because proteins are flexible molecules 

and can undergo large conformational changes that are not captured by the rigid-body approaches, 

flexible alignment methods have also been developed. Flexible alignment methods overcome the 

limitations of the rigid body approaches by either allowing twists between rigidly aligned fragments 

or by only maximizing local similarities (in terms of Euclidean distance) [20]. One of the typical 
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flexible alignment methods is FATCAT (flexible structure alignment by chaining aligned fragment 

pairs with twists) [20]. FATCAT is an improvement based on CE. It first identifies the local AFPs and 

then produces an optimal combination of these AFPs using dynamic programming, where twists 

and gap penalty are used to allow flexible alignments. 

Another type of the protein structure comparison methods is not based on the model 

superposition. One of the methods is Contact Area Difference (CAD) [21], which evaluates the 

structure similarities based on contacts. It computes the structure similarity by measuring the 

differences between the physical contacts of a model and a reference structure, without supposition 

of the two models. The local Distance Difference Test (lDDT) [22] is another superposition free score 

that evaluates local distance differences of all atoms in a model, including validation of 

stereochemical plausibility. The reference can be a single structure, or an ensemble of equivalent 

structures. It is computed over all pairs of atoms in the reference structure at a distance closer than a 

predefined threshold, and not belonging to the same residue. 

There are also methods developed specially for evaluating predicted decoys using both energy 

functions and the structure information. The random forest-based model quality assessment 

(RFMQA) [23] predicts a relative score of a decoy model by using its secondary structure, solvent 

accessibility and knowledge-based potential energy terms. The support-vector-machine-based 

single-model quality assessment (SVMQA) [24] is trained to predict TM-score and GDT_TS score 

based on both statistical potential energy terms and structure consistency features.  

In this article, a new protein structure similarity score, called the GR_score, was defined based 

on maximum Contact Map Overlap (CMO) [25] which is a superposition free protein structure 

alignment method defined by Godzik and Skolnick, and the ordered graphlet degree [26] which is a 

new systematic measure of a network’s local structure similarity. The superposition free structure 

alignment methods based on contact maps may capture both the local structure similarities from 

contact maps and the global structure similarities using dynamic programming. Using the ordered 

graphlet degree can further improve the measuring of the local structure similarities by comparing 

the local topology structures. Thus, the proposed GR_score can help in measuring the decoy 

structure similarities, and in selecting the near-native models from a large number of predicted 

decoy models in ab initio structure prediction. 

2. Materials and Methods  

2.1. Maximum Contact Map Overlap (CMO) 

A contact map is an ordered graph, �� = (�, �), where nodes V and edges E are defined as 

follows. Each node in V represents an amino acid of a protein. It leads to a strict total ordering of the 

nodes: for two different nodes � and �, either � <  � if � is before � in the protein sequence or 

� >  � otherwise. The two nodes � and�are connected by an edge (�, �) ∈ �,if and only if the 

Euclidean distance between the C atoms of the corresponding amino acids is less than a given 

threshold ɛ. This is presented in Figure 1 [27]. 

2.2. Graphlets and Graphlet Degrees 

Graphlets are small, connected, non-isomorphic and induced subgraphs of a larger graph � =

(�, �) having � ≥  2 nodes [27]. Some nodes are identical to each other topologically within each 

graphlet, which is considered to belong to the same automorphism orbit to represent that a graphlet 

can touch a node in �  by different ways topologically. The concepts used to summarize the 

graphlets degree are: the graphlet degree of node �, represented by ��
� , is the number of times a 

graphlet touches node �  at orbit � . In the graph degree distribution protocol, the degree 

distribution is extended to 73 graph degree distributions by using all 2-5 nodes and their 

corresponding 73 automorphism orbits (the first of the 73 graph degree distributions is the degree 

distribution) [28]. The ���ordered graphlet degree of node �, represented by ��,
� ,, is the number of 

times an ordered graphlet touches the node � at orbit �. To reduce the calculation times, the five 

2-node and 3-node ordered graphlets have been chosen to define 14 orbits (see Figure 2) [27]. 
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Therefore, a 14-dimensional vector (��,
� ��

�, … , ��
��) could describe each node � of a contact map. For 

a given contact map �� = (�, �), there would be a limitation of the degree of a node by the number 

of residues that can fit in a sphere with radius ɛ. In fact, a linear worst time complexity could be led 

by using a distance threshold ɛ of 7.5 Å. 

 

Figure 1. (a) Schematic diagram of a protein backbone. Amino acid 2 is in contact with 12 and 4 is in 

contact with 10 (the distance between two nodes is less than ɛ). (b) The corresponding contact map 

graph, where two edges connect node 2 with 12 and 4 with 10 [27]. 

 

Figure 2. The five 2-node and 3-node ordered graphlets and the corresponding 14 automorphism 

orbits. The ordering of the graphlet nodes in each graphlet ��, �Î{1, … ,5} is represented by their 

colors: white nodes <gray nodes<black nodes [27]. 

2.3. TM-Score 

The TM-score [19] is intended as a more accurate measure of the protein structure similarity 

than RMSD and GDT-TS. It gives the residue pairs at smaller distance higher weights than those at 

larger distances and normalized by the length of the target proteins, thus, it can represent the global 

structure similarities better than RMSD or GDT-TS measures. The TM-score is between 0 and 1, 

where 1 indicates a perfect match between two structures. Generally, scores below 0.2 correspond to 

randomly chosen unrelated proteins. The score of the structures roughly having the same fold is 

higher than 0.5. 

2.4. SPICKER 

SPICKER is an iterative clustering method to identify near-native protein folds developed by 

Zhang and Jeffery [29]. The procedure of selecting protein structure by this clustering method is as 

follows. First, a self-adjusting cutoff between 7.5 to 12 Å is found in an iterative way to make sure 

that the largest cluster contains less than 70% and more than 15% of total decoys. Second, another 

iterated approach is applied to identify the cluster with the most neighbors under the cutoff 
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excluding the members of cluster found in the previous iterations. Finally, an averaging model, 

called final model, is built from all the decoy members of the cluster in the current iteration. 

2.5. Ensemble Clustering 

Using the ensemble clustering method as introduced in [30] can avoid local optimality. The 

most popular centroid structure identified in the ensemble clustering is selected as the near-native 

structure in the proposed method. The method includes two steps: constructing a distance matrix 

for the decoy set using a similarity score, and finding the most possible largest cluster centroid using 

an ensemble k-medoids. A confidence score as described in [30] is used to select the cluster centroid 

with the maximum score as the near-native structure. 

2.6. GR_score  

2.6.1. Ordered Graphlet Degree Similarity. 

Only C atoms were used in the structure comparison in the proposed method. For two 

proteins A and B, � and �are the different C atoms of the two proteins. Based on graphlet degrees, 

between two nodes � and �, the order graphlet degree similarity is defined as follows [27]: 

 � (�, �) = �
1

14
�

���(��
� ,   ��

� ) + 1

���(��
� ,   �� 

� ) + 1

��

���

�

�

                                     (1)   

the range of the similarity score is from 0 to 1. The two nodes having similar local topologies will 

have a high similarity score. 

2.6.2. Structure Alignment Algorithm. 

The alignment between two structures having, respectively, �� and�� nodes was computed 

using the Needleman-Wunsch dynamic programming algorithm [31] as in the original CMO, where 

the score of mapping two nodes is their ordered graphlet degree similarity defined in (1). It 

corresponds to the following dynamic programming procedure: 

�[�, 0] = 0,

�[0, �] = 0,

�[�, �] = ��� �

�[� − 1][� − 1] + �[�, �],

�[� − 1][�] − �,

�[�][� − 1] − �

�

                                             (2) 

where the gap penalty � is defined as follows: 

� = � ×
∑ ∑ �(�, �)

��
���

��
���

����

                                                                             (3) 

where � is a constant parameter that will be discussed in Subsection 3.2 

2.6.3. Definition of the GR_score.  

The dynamic programming algorithm introduced in the above section produces the �[�, �] 

matrix, where � ∈ [1, ��] and � ∈ [1, ��]. Thus, the final similarity score of the two proteins is 

defined as follows: 

��_����� =  
�[��, ��]

���(��, ��)
                                                                               (4)  
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The range of the similarity score is also from 0 to 1. The closer the value of the GR_score is to 1, the 

higher the similarity of the two structures; the closer the value of the GR_score is to 0, the lower the 

structural similarity of the two proteins. 

2.7. Constructing the Distance Matrix 

To get the distance matrix for the clustering method, a similarity matrix for the decoys needed 

to be constructed, and then we can get the distance matrix by defining �������� =  1 − ����������. 

The distance matrix is a symmetric matrix whose diagonal elements are all 0. The element in ��� row 

and ��� column represents the dissimilarity between two decoys � and �. 

2.8. Select the Near-native Structure using Ensemble Clustering 

K-medoids was ran m = 500 times, which was enough to ensure statistical stability, with 

random initialization. The times a decoy became the centroid of the largest cluster was counted. It 

was found that a reasonable value for parameter k used in k-medoids was five. Finally, to consider 

both the size and the internal similarity of a cluster in selecting the near-native structure, a 

confidence score as defined in [30] was used. The centroid with the maximum confidence score 

within the cluster centroids whose count was more than 70% of the maximum count was selected as 

the near-native structure, where the count was the times a decoy became the centroid of the largest 

cluster. 

3. Results and Discussion 

3.1. Dataset 

Up to 54 decoys sets (from CASP11) [12] and 43 decoys sets (from CASP10) [13], which are 

single-domain targets and have experimental native structures, were downloaded from Zhang Lab 

website [14]. These decoy sets contain structurally non-redundant set of protein structures from the 

raw decoy sets. The native structure, the generated model by SPICKER used in I-TASSER [32] sever, 

and the best TM-score for the target in the decoy set were also  downloaded from the Zhang Lab 

website [14]. 

3.2. Parameter Selection 

In the dynamic programming, to select a good parameter�, four values of�, 0.2, 0.5, 1, and 2, 

were compared. For each decoy set, the similarity matrix was obtained by using the proposed 

GR_score in Subsection 2.6.3 using each � value. Then, the most popular centroid structure was 

selected as the near-native structure by the proposed method. The near-native structures selected by 

the proposed method and the corresponding native structures were compared using the TM-score.  

In the experiments, 54 targets from CASP11 were used. For each target, four different 

TM-scores were produced from four �  values, and the �  value that produced the highest 

TM-score was recorded. Finally, for each � value, the number of the targets for which the highest 

TM-scores were produced using the � value was counted. The numbers of the targets with the 

highest TM-scores for four � values are shown in Figure 3. 
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Figure 3: Parameter selection 

It can be seen from Figure 3 that when � = 0.5, the selected near-native structures were more 

similar to the corresponding native structure, compared to the other � values. Thus, the parameter 

� was set to 0.5 in the proposed method. 

3.3. Experimental Results 

3.3.1. The Experimental Results for Datasets from CASP10. 

For the proposed method, the GR_score was used to calculate the similarity matrix of the 43 

decoy sets from CASP10. Then, the ensemble clustering was used to select the near native structures 

for each target. The near-native structure selected by the proposed method and the near-native 

structure generated by the SPICKER method used in I-TASSER sever were compared. The TM-sore 

and the GR_score between the selected near-native structures and the native structure were 

computed. The results are shown in the scatter plots in Figure 4, in which each target protein is 

represented as one point. The x-axis represents the GR_score or TM-score produced by the proposed 

method, and the y-axis represents the scores produced by the SPICKER method for the same target. 

The blue diagonal line in Figure 4 represents y=x. The same score does not necessarily mean the 

same model. 

 

 

Figure 4: The plot of GR_scores and TM-scores produced by two methods for datasets from CASP10. 

The details of the comparison can also be found in Table 1, in which the first column is the ID of 

the target protein, the second column and the third column are the GR_scores of the selected 

near-native models by the proposed method and the SPICKER method, the fourth column and the 

fifth column are the TM-scores of the selected near-native model by the proposed method and the 

SPICKER method. All the scores were computed between the selected near-native model and the 

corresponding native structure. 

To better understand the results, the number of the targets for which each method produced the 

better results was counted. The results are shown in Figure 5, where the white bar represents the 

number of decoy sets for which our method produces better results than SPICKER, the gray bar 

represents the number of decoy sets for which our method produces worse results than SPICKER, 

and the black bar represents the number of the similar results produced by the two methods. It can 

be seen from the left part of Figure 5 that the proposed method selected more near-native structures 

with higher GR_scores, compared to the SPICKER method. However, when measuring the 

similarity using the TM-score, the SPICKER method produced more near-native structures with 

higher scores, as can be seen from the right part of Figure 5, although the difference was smaller 

compared to the GR_score result on the left part of Figure 5. This may be due to fact that the 

similarity measure used in the proposed method is GR_score, instead of the TM-score. 
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Table 1: The Comparison of GR_scores and TM-scores for datasets from CASP10. The bold number 

indicates the highest GR_score or TM-score for each target. 

Target ID 

GR_scores of 

the Proposed 

Method 

GR_scores of 

SPICKER 

TM-scores of 

the Proposed 

Method 

TM-scores of 

SPICKER 

T0644 0.764 0.781 0.869 0.865 

T0645 0.666 0.664 0.932 0.929 

T0649 0.423 0.454 0.382 0.369 

T0650 0.702 0.703 0.876 0.877 

T0654 0.626 0.634 0.819 0.820 

T0655 0.672 0.677 0.743 0.749 

T0657 0.693 0.681 0.827 0.831 

T0659 0.753 0.754 0.909 0.906 

T0662 0.727 0.737 0.798 0.796 

T0664 0.684 0.671 0.936 0.934 

T0665 0.756 0.732 0.738 0.739 

T0667 0.643 0.646 0.807 0.803 

T0669 0.675 0.641 0.614 0.606 

T0672 0.590 0.601 0.785 0.784 

T0673 0.535 0.509 0.317 0.350 

T0675 0.552 0.606 0.356 0.346 

T0676 0.553 0.505 0.503 0.510 

T0678 0.599 0.594 0.297 0.362 

T0679 0.648 0.625 0.807 0.798 

T0680 0.709 0.637 0.699 0.513 

T0681 0.700 0.710 0.875 0.872 

T0683 0.660 0.639 0.888 0.889 

T0688 0.629 0.627 0.862 0.869 

T0689 0.734 0.742 0.919 0.927 

T0691 0.468 0.464 0.480 0.500 

T0692 0.704 0.710 0.921 0.942 

T0703 0.673 0.673 0.894 0.895 

T0704 0.675 0.677 0.831 0.838 

T0708 0.736 0.726 0.887 0.891 

T0714 0.781 0.781 0.911 0.911 

T0716 0.753 0.752 0.674 0.685 

T0721 0.716 0.710 0.870 0.872 

T0722 0.780 0.729 0.541 0.513 

T0723 0.697 0.702 0.866 0.859 

T0733 0.647 0.645 0.864 0.863 

T0749 0.755 0.737 0.961 0.963 

T0752 0.721 0.729 0.873 0.874 

T0753 0.696 0.698 0.797 0.790 

T0757 0.760 0.768 0.888 0.893 

R0001 0.390 0.333 0.212 0.202 

R0008 0.574 0.566 0.522 0.519 

R0014 0.536 0.486 0.469 0.393 

R0018 0.514 0.508 0.345 0.366 

Average 0.657 0.651 0.729 0.726 
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Figure 5: The comparison of the two methods using both GR_score and TM-score for datasets from CASP10. 

3.3.2. The Experimental Results for Datasets from CASP11. 

To further evaluate the proposed method, it was also applied to the 54 decoy sets from CASP11. 

The near-native structure selected by the proposed method and the near-native structure generated 

by the SPICKER method used in I-TASSER sever were compared. The results of the GR_score are 

shown in the left scatter plot in Figure 6, while the results of the TM-score are shown in the left 

scatter plot in Figure 6. 

 

Figure 6: The plot of GR_scores and TM-scores produced by two methods for datasets from CASP11. 

Detailed results with scores for all the targets are shown in Table 2.  

 

Table 2: The Comparison of GR_scores and TM-scores for datasets from CASP11. The bold number 

indicates the highest GR_score or TM-score for each target. 

Target ID 

GR_scores of 

the Proposed 

Method 

GR_scores of 

SPICKER 

TM-scores of 

the Proposed 

Method 

TM-scores of 

SPICKER 

T0759 0.547 0.530 0.362 0.356 

T0762 0.721 0.728 0.921 0.925 

T0763 0.432 0.416 0.272 0.198 

T0764 0.679 0.697 0.883 0.885 
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T0765 0.530 0.597 0.740 0.761 

T0766 0.772 0.800 0.938 0.935 

Table 2. Cont. 

T0768 0.547 0.544 0.629 0.626 

T0769 0.707 0.684 0.747 0.741 

T0773 0.729 0.754 0.608 0.812 

T0778 0.817 0.836 0.910 0.929 

T0782 0.580 0.589 0.691 0.687 

T0784 0.717 0.742 0.932 0.937 

T0785 0.387 0.380 0.257 0.261 

T0786 0.618 0.618 0.782 0.782 

T0787 0.594 0.593 0.235 0.235 

T0788 0.688 0.681 0.901 0.897 

T0792 0.750 0.735 0.665 0.672 

T0796 0.585 0.579 0.687 0.666 

T0797 0.934 0.934 0.794 0.826 

T0798 0.823 0.822 0.936 0.937 

T0800 0.523 0.495 0.592 0.575 

T0801 0.710 0.703 0.937 0.926 

T0803 0.464 0.431 0.475 0.467 

T0805 0.706 0.713 0.848 0.843 

T0807 0.693 0.691 0.911 0.913 

T0811 0.736 0.727 0.942 0.941 

T0812 0.503 0.525 0.539 0.536 

T0813 0.724 0.712 0.921 0.922 

T0815 0.794 0.798 0.888 0.885 

T0816 0.647 0.658 0.298 0.296 

T0817 0.678 0.675 0.715 0.718 

T0819 0.685 0.699 0.916 0.920 

T0820 0.472 0.488 0.325 0.324 

T0821 0.768 0.769 0.810 0.818 

T0822 0.528 0.470 0.514 0.442 

T0823 0.621 0.623 0.778 0.779 

T0824 0.477 0.446 0.308 0.296 

T0825 0.786 0.785 0.511 0.509 

T0829 0.603 0.611 0.496 0.584 

T0833 0.753 0.736 0.754 0.743 

T0835 0.531 0.541 0.697 0.700 

T0836 0.532 0.570 0.276 0.276 

T0837 0.608 0.604 0.418 0.427 

T0838 0.579 0.548 0.577 0.543 

T0841 0.715 0.715 0.861 0.926 

T0843 0.718 0.713 0.926 0.924 

T0847 0.673 0.683 0.788 0.788 

T0849 0.610 0.608 0.731 0.730 

T0851 0.678 0.717 0.913 0.782 

T0854 0.679 0.684 0.795 0.794 

T0855 0.576 0.551 0.541 0.494 

T0856 0.677 0.683 0.870 0.869 

T0857 0.516 0.534 0.475 0.487 

T0858 0.673 0.683 0.908 0.910 
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Average 0.644 0.645 0.688 0.688 

To clearly represent the results, the number of the targets for which each method produces the 

better results was counted. The results are shown in Figure 7. It can be seen from the Figure 7 that 

the proposed method can select better near-native structures for more targets compared to the 

SPICKER method, evaluated either with GR_scores or with TM-scores. 

 
Figure 7: The comparison of the two methods using both GR_score and TM-score for datasets from CASP11. 

Taking target T0851 as an example, Figure 8 shows the superposition between the native 

structure and the near-native structure found by the proposed method and the near-native structure 

selected by SPICKER. The red model is the native structure and the blue is the structure selected by 

the proposed method in Figure 8(a), the other blue structure is generated by SPICKER in Figure 8(b). 

It can be seen from Figure 8 that the SPICKER model has an obvious mismatch in the right half part 

of the protein. 

 

Figure 8: (a) The superposition of T0851 native structure and the near-native structure selected by the 

proposed method. (b) The super-position of T0851 native structure and the model selected by 

SPICKER. 

4. Conclusions 

In this paper, we have proposed a new similarity score, GR_score, for comparing two protein 

structures based on both CMO and order graphlet degrees. The introduced GR_score can serve as a 

new assessment criterion for protein structure comparison. It is shown that the proposed GR_score 

along with the ensemble clustering can be used to select the near-native structures from the decoy 

sets. Compared to the state-of-the-art SPICKER method, the proposed method can select more high 

quality near-native structures if evaluated using the GR_score for datasets from both CASP10 and 
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CASP11. In future work, we will continue to improve the computation of the similarity scores 

between protein structures, and to evaluate the similarity scores from more aspects. 

Supplementary Materials: following are available online at www.mdpi.com/xxx/s1, code and data used. 
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