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Abstract: The imbalance of human gut microbiota has been associated with colorectal cancer. In recent
years, metagenomics research has provided a large amount of scientific data enabling us to study the
dedicated roles of gut microbes in the onset and progression of cancer. We removed unrelated and
redundant features during feature selection by mutual information. We then trained a random forest
classifier on a large metagenomics dataset of colorectal cancer patients and healthy people assembled
from published reports and extracted and analysed the information from the learned decision trees.
We identified key microbial species associated with colorectal cancers. These microbes included
Porphyromonas asaccharolytica, Peptostreptococcus stomatis, Fusobacterium, Parvimonas sp., Streptococcus
vestibularis and Flavonifractor plautii. We obtained the optimal splitting abundance thresholds for
these species to distinguish between healthy and colorectal cancer samples. This extracted consensus
decision tree may be applied to the diagnosis of colorectal cancers.

Keywords: microbial relative abundances; random forest; colorectal cancer; microbial community
analysis; mutual information

1. Introduction

Many microbial communities cohabit the human body, among which microbiota in the gut is the
richest with more than 1000 species [1]. Gut microbes participate in many important physiological
processes, such as food digestion, metabolism and immune response. In the long-term process
of natural evolution, a dynamic balance has always been struck among gut microbiota, host and
environment. Changes in the structure, composition and function of the microbiota lead to abnormal
metabolites of gut microbes, causing, in turn, metabolic diseases, such as obesity [2] and diabetes [3],
in addition to chronic gut infections, like inflammatory bowel disease [4], ulcerative colitis, and Crohn’s
disease [5,6], and malignant digestive system tumors, such as colorectal [7,8] and gastric cancers [9].

Colorectal cancer (CRC) is the third most prevalent malignant tumor in the world. Deaths from colon
and rectal cancers account for >9% of total cancer-related deaths [10]. Early detection can significantly
improve the overall survival of CRC patients. Colonoscopy is by far the most accurate colon cancer
diagnosis method but, because of the discomfort caused by its intrusiveness, many people are reluctant
to undergo the procedure [11,12]. The fecal occult blood test (FOBT) [13] is another clinical tool for
identifying colorectal cancer, which has the advantages of being both noninvasive and economical.
However, since the accuracy of the FOBT test is relatively low, it has not been widely accepted.
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Progress has been made in studying the relationship between microbes and cancers. Studies
have reported signature microbial species as indicators for the early diagnosis of CRC [14–16].
In 2014, Zackular et al. leveraged a logit regression model, based on age, gender, race/ethnicity,
Body Mass Index (BMI), and drug usage, and significantly improved the model’s accuracy in predicting
colorectal adenoma by adding microbiota data [17]. Georg Zeller et al. used the nonparametric
Wilcoxon rank-sum test to analyze the differentially abundant gut microbes of healthy people versus
CRC patients [18]. Based on the obtained data, they developed an operational taxonomic units
(OTUs)-based logistic regression classifier using least absolute shrinkage and selection operator
(LASSO) regulation [19]. Their classifier performed more accurately than FOBT and, when combined
with FOBT, it showed high specificity with increased sensitivity of 45% over FOBT alone [18].

In 2015, Feng et al. compared the fecal samples of cancer patients and healthy people. They used
the Kruskal-Wallis test to identify differentially abundant metagenomic genes, clustered those genes
into metagenomic linkage groups (MLGs), and constructed a random forest classifier with MLGs as the
features. In doing so, they established the feasibility of diagnosing CRC by using only fecal microbial
structures [20]. In addition to the above classifiers, support vector machines (SVMs) [21], Bayesian
networks [22] and other models have been used for this task. Such research has increased awareness
of the potential for screening for CRC using gut microbiota. This awareness has, in turn, spurred the
ongoing search for more predictive diagnostic models [21].

Most existing models perform classification based on OTU and MLG data and have shown
some success in diagnosing cancer. Of the existing classification models, the random forest classifier
typically had a superior area under the curve (AUC) score. It also showed better generalizability
and robustness [23], making it suitable for use with high-dimensional data. In this paper, mutual
information [24,25] is introduced to remove species that are weakly associated with CRC. As a result,
the quality of input data is better, thereby improving random forest classifier’s accuracy. We also
extracted decision tree data from the random forest and identified the microbes that were the best
predictors of the disease, thus providing a new tool for screening CRC.

Our analysis also took advantage of the available high-throughput whole genome shotgun (WGS)
metagenomics data and a highly accurate relative abundance estimation algorithm-GRAMMy [26].
Accurate estimation of microbial abundance is the basis of achieving high classification accuracy.
16S rRNA-based and OTU-based microbiome analysis showed limited resolution and sensitivity [27]
for abundance estimation. GRAMMy was based on a probabilistic mixture model which explicitly
models the ambiguity inherent in the reference assignment of short reads, the great variation of
microbial genome sizes and homologous gene copies and handles all of them well. Thus, GRAMMy
can estimate relative abundance with high accuracy, enabling high-fidelity downstream analysis.

2. Materials and Methods

2.1. Mutual Information-Based Feature Selection

The number of gut microbes cells is in the same order as the number of human cells [28]. Although
a large number of those microbes participate in biochemical reactions, most are not significantly
different between patients and healthy people. Improper handling of those background microbes
can lead to incorrect modeling, affecting efficiency and accuracy. In particular, when the random
forest model is used to study the relationship between CRC and microbiota, it can lead to a high
false-negative rate [17]. For small datasets, these background features can be removed intuitively
and manually. With the development of metagenomics sequencing technology, the data feature space
expands rapidly. Those manual removal of weakly correlated and/or irrelevant features can no longer
meet the requirements of accurate classification algorithms. In this study, we proposed a mutual
information criterion to filter out species with weak associations with CRC in order to improve the
quality of input data and reduce the complexity of resulting classification models [29].
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First, let x be a microbial species and y be the health or disease state (CRC) of a given sample.
Let P(xi) be the probability that the microbe has an abundance level of xi and, likewise, let P(yi) be
the probability that the sample is in the state of yi. P(xi

∣∣yj) denotes the probability that microbe x
has an abundance level of xi, given that the sample is in the state of yi. For a given microbial species,
the information entropy, H(x), and the conditional entropy, H(x|y) , are defined as

H(x) = −∑
i

P(xi) log p(xi) (1)

and H(x|y) = −∑j P(yi)∑i P
(

xi
∣∣yj

)
log p

(
xi
∣∣yj

)
, (2)

assuming that the disease state of a given sample is known.
Based on H(x) and H(x|y) , one can obtain the mutual information of the microbe x and the

sample’s disease status y, MI(x, y), as

MI(x, y) = H(x)− H(x|y)
= H(y)− H(y|x)
= ∑

x,y
p(x, y) log p(xy)

p(x)p(y)

(3)

Then, one can obtain a standardized similarity measure between the microbe x and the disease state y.

Sim(x, y) = 2
[

MI(x, y)
H(x) + H(y)

]
(4)

This similarity, Sim(x, y), has a value range of [0, 1]. A value of 1 indicates that the microbe is
sufficiently informative for the disease status, and a value of 0 indicates that the microbe is completely
independent, or uninformative, for the disease status. Commonly, similarity is a number between 0
and 1. Thus, we can remove microbes that have a weak association with the disease status by filtering
out features have MI below a specified similarity threshold to ensure data compactness.

2.2. Workflow for Metagenomics Analysis

The bioinformatics workflow we implemented for metagenomic analysis was shown in Figure 1.
First, we downloaded the metagenomic gut microbiome data of colorectal cancer and a comprehensive
set of microbial reference sequences from the NCBI. The relative abundance of gut microbial species
were estimated using GRAMMy. We used mutual information to screen features and filter out
weakly correlated, or unrelated, microorganisms, as well as redundant features, then trained and
tested random forest models based on the filtered estimated microbial abundance data. All decision
tree classification results were combined using a weighted voting method. The information of all
random forest generated decision trees was extracted and analyzed. It included the frequencies of
different microbes and their positions in the decision trees. We computed the voting weights as
the correlation between microbes and colorectal cancer. We then aggregated the splitting values of
species abundance for all decision trees and averaged them to obtain an unbiased estimate of the
optimal splitting value for the differentiating threshold for each species. All data, along with the
bioinformatics pipeline to reproduce the results described in this paper, can be freely accessed from
GitHub at https://github.com/gutmicrobes/metaRF.git.

https://github.com/gutmicrobes/metaRF.git
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forest model. This short come can be attributed to the formulation of random forest model which is 
typically treated as a black box [30], that is a random forest is comprised of a large number of decision 
trees in each of which a set of randomly selected features are used to fit the training data [31]. The 
introduction of stochasticity in building the random forest has, correspondingly, introduced 
significant complexity for understanding the decision process. 

Although randomness is introduced in the random forest, determinism could be traced [32]. One 
way to achieve it is by extracting the underlying decision trees. After the random forest is trained, all 
node contents, partitioning method, and threshold values of individual decision trees are kept. Post-
training, then, it is possible to extract and analyze these data to create a faithful description of the 
black box fitting process. To accomplish this, we proposed a method of extracting information from 
the decision trees of the random forest. More specifically, we first infer features informative to disease 
status by mining and analyzing all node data to identify microbes most predictive of disease status 
and learn their corresponding splitting threshold values. Then, when random forest training is 
completed and the structures of all decision trees have been determined, we perform feature 
extraction of these microbes. Figure 2 shows a diagram of a typical decision tree inside the trained 
random forest. Each box contains the feature ID (microbe ID), split threshold, sample numbers, and 
other information about the node. 

Figure 1. The workflow for metagenomic analysis.

2.3. Extracting the Information of Decision Trees from Random Forest

A random forest-based disease screening model was trained to classify healthy and disease
samples in the dataset. However, beyond classification, it is not previously possible to draw conclusions
about which features would have greater effects on the results from the trained random forest model.
This short come can be attributed to the formulation of random forest model which is typically treated
as a black box [30], that is a random forest is comprised of a large number of decision trees in each of
which a set of randomly selected features are used to fit the training data [31]. The introduction of
stochasticity in building the random forest has, correspondingly, introduced significant complexity for
understanding the decision process.

Although randomness is introduced in the random forest, determinism could be traced [32].
One way to achieve it is by extracting the underlying decision trees. After the random forest is trained,
all node contents, partitioning method, and threshold values of individual decision trees are kept.
Post-training, then, it is possible to extract and analyze these data to create a faithful description of
the black box fitting process. To accomplish this, we proposed a method of extracting information
from the decision trees of the random forest. More specifically, we first infer features informative to
disease status by mining and analyzing all node data to identify microbes most predictive of disease
status and learn their corresponding splitting threshold values. Then, when random forest training is
completed and the structures of all decision trees have been determined, we perform feature extraction
of these microbes. Figure 2 shows a diagram of a typical decision tree inside the trained random forest.
Each box contains the feature ID (microbe ID), split threshold, sample numbers, and other information
about the node.



Genes 2019, 10, 112 5 of 12
Genes 2019, 10, 112 5 of 12 
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(samples = 73, 53) after the first splitting; although, they are weaker than the feature X[324] in the first 
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disease, by summarizing them for each feature over all decision trees. We termed this process the 
informative rank analysis within the random forest model. 

To perform the informative rank analysis, we enumerated the nodes from the tree structure in 
Figure 2 in tabular format as Table 1. The columns: Tree_ID is the decision tree index in the random 
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included, which measures the importance of the feature. After aggregating the data into this tabular 
format, we counted the position and number of occurrences of each feature in all decision trees. 
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Figure 2. Schematic diagram of one decision tree. Decision trees have nodes and every node includes a
feature ID (microbe ID), split value, Gini index, and sample number.

The position of some features, e.g., the relative distance from the root, in the decision tree reflects
the strength of association between microbes and diseases. For example, in Figure 2, feature X[324]
is the optimal splitting feature, found via the Gini index, in the training set of the decision tree
(samples = 126). Features X[443] and X[167] in the second layer are the optimal splitting features found
for the subsets (samples = 73, 53) after the first splitting; although, they are weaker than the feature
X[324] in the first layer. Likewise, the features found in the third layer are weaker still than those in the
second layer in association. Based on these ranks, we can measure the strength of association between
microbes and disease, by summarizing them for each feature over all decision trees. We termed this
process the informative rank analysis within the random forest model.

To perform the informative rank analysis, we enumerated the nodes from the tree structure
in Figure 2 in tabular format as Table 1. The columns: Tree_ID is the decision tree index in the
random forest, Node_Index is the node index within the decision tree, Father is the parent node of the
indexed node in the tree, and Layer is the layer’s depth where the node is located in the decision tree.
Microbe_ID and Split_Value refer to the optimal feature ID and split value selected by computing the
Gini coefficient, respectively. Sample_Number shows the number of samples for which the feature is
included, which measures the importance of the feature. After aggregating the data into this tabular
format, we counted the position and number of occurrences of each feature in all decision trees.

Table 1. Schematic diagram of node information in decision tree.

Tree ID Node
Index Father Layer Microbe

ID
Split
Value

Gini
Index

Sample
Number

0 0 0 0 324 0 0.4829 126
0 1 0 1 443 0.0006 0.3648 76
0 2 1 2 313 0.0001 0.4861 19
0 3 2 3 170 0.0001 0.4688 13
0 4 3 4 275 0 0.48 6
0 9 1 2 85 0 0.1818 54
0 11 9 3 428 0.0003 0.0907 51
0 13 11 4 429 0 0.2975 14
0 16 0 1 167 0 0.4543 53
0 17 16 2 90 0.0031 0.1327 8
0 20 16 2 440 0.0034 0.3607 45
0 21 20 3 273 0.0011 0.2706 39
0 22 21 4 319 0.0027 01349 35
0 25 21 4 458 0 0.2449 4
0 28 20 3 132 0.002 0.42 6
0 29 28 4 233 0.0002 0.2188 5
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Taking feature X[324] as an example (Table 2), it has 151 Layer 0 occurrences, 156 Layer 1
occurrences, and 155 Layer 2 occurrences in the decision tree. Based strata data similar to this,
we compute a score indicating the effect of feature on the disease, which is described below.

Table 2. Examples of the number of occurrences in various decision tree layers and the overall score
of features.

Layer
0 1 2 3 4 Score Microbial Species

Microbe ID

334 213 262 270 239 181 232.437 Porphyromonas asaccharolytica
200 168 160 146 122 111 154.21 Eubacterium hallii
324 151 156 155 134 94 146.661 Parvimonas oral
220 177 127 129 117 80 145.268 Fusobacterium 7
350 144 147 157 131 132 144.319 Prevotella melaninogenica
443 117 149 170 151 136 136.618 Streptococcus vestibularis
343 119 129 161 138 122 129.228 Prevotella copri
332 130 138 118 118 89 125.879 Peptostreptococcus stomatis
226 131 128 125 115 68 123.025 Fusobacterium nucleatum
323 135 122 81 133 107 122.101 Parvimonas micra
233 117 104 123 103 111 112.955 Gemella morbillorum
213 82 130 131 142 125 109.201 Flavonifractor plautii
217 135 103 82 78 47 107.802 Fusobacterium 21
139 103 113 111 96 82 104.154 Clostridium SS2

We assumed that a random forest has a total of N decision trees and that each decision tree has L
layers. The sum of the node numbers in the lth layer is denoted as Nl , and the sample number at the
ith node of the lth layer is denoted ali. First, the average number of participating decision samples for
the nodes in the lth layer is calculated as

al =
1
nl

Nl

∑
i=1

ali (5)

Hence, we assigned a weight to the lth layer.

vl =
al

∑L
l=1 al

(6)

With the weight for lth layer in combination cjl , which is the occurrence number of a feature cj at lth
layer, the effect score (cj·score) of feature j is calculated as

cj·score =
L

∑
l=1

cjl × vl (7)

Finally, according to the ranking based on this overall effect score, the microbial species associated
with the CRC were identified.

To understand the microbes associated with CRC, we further analyzed the abundance split
threshold values for the pivotal microbes in the decision trees. Every time a microbe feature was
selected by a decision tree to split the samples, the optimal abundance threshold of this microbe was
also determined. This abundance threshold represented the optimal split point for abundance of
the microbe between healthy samples and diseased samples, a tipping point while more or less its
abundance predicts healthy samples or diseased samples. To obtain a generalizable splitting value,
we counted the number of all decision trees (Nck ) with features selected as the first splitting feature,
and the corresponding splitting abundance threshold are. Then, the averaged splitting abundance
threshold (ack ) can be derived as
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ack =
1

Nck

Nck

∑
n=1

anck (8)

2.4. Training and Testing Datasets

The data used in this paper were obtained from the NCBI (National Center for Biotechnology
Information), as shown in Table 3. Dataset F [18] consists of 156 samples from France (61 adenoma
samples, 42 adenoma patient samples, and 53 CRC patient samples). The adenoma samples were
divided into two groups according to tumor size. The number of samples with an adenoma diameter
smaller than 10 mm (small) was 27, and the number of samples with an adenoma diameter larger
than 10 mm (large) was 15. The CRC samples were divided into two parts according to the American
Joint Committee on Cancer (AJCC) cancer staging system (forth version) [33]: early stage (0, I, II)
and late stage (III, IV). The number of samples were 22 and 31 for the two stages, respectively.
The metagenomics data were obtained from the European Nucleotide Archive (ENA) and NCBI
databases (accession number ERP005534). Another dataset, A, included 156 samples from Austria,
including 61 healthy samples, 47 adenoma patient samples (both sizes), and 46 colorectal cancer patient
samples (both stages). The metagenomics data of this dataset were downloaded from the ENA and
NCBI databases (accession number ERP008729) [18].

Table 3. Information about the two sample groups.

Study
Population Healthy

Adenoma Colorectal Cancer
Country of
Residence

Small
(<1 cm)

Large
(≥1 cm)

Early Stage Late Stage

0 I II III IV

F (N = 156) 61 27 15 0 15 7 10 21 France
A (N = 156) 63 47 46 Austria

First, relative abundance data of microbes from stool samples of healthy people and CRC patients
were selected from dataset F and dataset A, respectively, with dataset F having 124 samples and
dataset A having 99 samples. The small number of training samples necessitated feature selection
to avoid trapping by local minimum and overfitting. The mutual information index for each feature
was calculated, and the top 300 mutual information index ranked features were selected from nearly
600 features to generate the filtered input data. We used a 6-fold cross-validation method for training
classification models. We did the cross-validation with data rotation using 5/6 of data for training and
the remaining 1/6 data for testing in each rotate. In each round of training, 1000 decision trees were
generated with a maximum allowed tree depth of 5.

3. Results and Discussion

3.1. Informative Rank Extraction from Decision Tree

The random forest classifier, which is a multi-classification integration system, is often considered
a black box model, as previously noted. It concerns itself with the identification rate, but does not
elect to describe the decision process [34]. However, after training a random forest, we know the every
detail of the forest, such as what features were used to split each node, as well as their applicable
threshold values and efficiencies. We analyzed the gut microbes and microbial abundance thresholds
closely related to CRC based on these details. Table 4 lists the 14 microbes with high scores and
abundance thresholds obtained according to Equation (3). These microbes were predicted as the most
closely associated with CRC. Our finding was consistent with the findings of many existing studies.
For example, Zeller and Feng et al. showed that Porphyromonas asaccharolytica, Peptostreptococcus
stomatis, Fusobacterium vincentii, and Fusobacterium animalis were predictive in the early diagnosis
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of colorectal cancer, which are among the tops of our list; in particular, F. nucleatum is a common
CRC-related species which promotes tumor development [18,20,35]. In addition to these well-known
correlated species, Mancabelli L et al. showed that Parvimonas sp., Streptococcus vestibularis and
Flavonifractor plautii, all of which had high scores, in our list and were associated with CRC [36].
Further experiments are required to elucidate their mechanistic implications.

Table 4. Microbial species with high scores and abundance thresholds.

Microbe ID Microbial Species Score Abundance Thresholds

334 Porphyromonas asaccharolytica 232.437 3.052 × 10−5

200 Eubacterium hallii 154.21 0.006662
324 Parvimonas sp. 146.661 1.391 × 10−5

220 Fusobacterium 7 145.268 0
350 Prevotella melaninogenica 144.319 0
443 Streptococcus vestibularis 136.618 0.0006701
343 Prevotellacopri 129.228 0.000179
332 Peptostreptococcus stomatis 125.879 9.154 × 10−5

226 Fusobacterium nucleatum 123.025 9.15 × 10−5

323 Parvimonas micra 122.101 7.63 × 10−5

233 Gemella morbillorum 112.955 5.19 × 10−5

213 Flavonifractor plautii 109.201 9.83 × 10−5

217 Fusobacterium 21 107.802 0
139 Clostridium SS2 104.154 0.000912

In addition to identifying the microbes closely associated with CRC, we also obtained the optimal
splitting relative abundance thresholds of gut microbes between both the control and disease datasets,
as shown in Table 4. These abundance thresholds of special gut microbes may be important for
the diagnosis and treatment of CRC. That is, knowing the abundance of a specific microbe through
analysis of a sample data enables the potential for more accurate disease diagnosis. According to
these abundance thresholds, we calculated the proportion of CRC patients in the sample, making it
possible to extrapolate the probability of being diseased beyond these thresholds. For instance, when
the relative abundance of Porphyromonas asaccharolytica is greater than 3.052 × 10−5, the percentage of
CRC among all samples exceeds 88%, or when the abundance of Peptostreptococcus stomatis is greater
than 9.154 × 10−5, the percentage of CRC among all samples exceeds 90%. In addition, the percentage
of CRC in cases in which Fusobacterium 7 was detected exceeds 85%. As noted, such information
may allow for an earlier diagnosis of the disease and as well as more options for treating disease.
Specifically, according to the abundance characteristics of gut microbes, fecal transplantation may be
performed for the targeted adjustment of some microbes with abnormal abundance in order to abate
the development of, or even cure, the disease in conjunction of other therapies. Further research needs
to be conducted to test such hypothetical interventions in a clinical setting.

3.2. Top 20 Microbial Species with High Relative Abundance

To conduct a more in-depth study of the relationship between colorectal cancer patients and
microbes, this section uses boxplots to show the average relative abundances of the top 20 microbes
in the healthy control group, small adenoma patients, large adenoma patients, and colorectal cancer
patients (Figure 3).
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Figure 3. Top 20 microbial species with high relative abundance in samples of different disease stages.
(A) The relative abundances of the top 20 microbes in the healthy samples. (B) The relative abundances
of the top 20 microbes in small adenoma patients. (C) The relative abundances of the top 20 microbes
in large adenoma patients. (D) The relative abundances of the top 20 microbes in colorectal cancer
patients. The horizontal axis represents the abbreviation of the corresponding names of microbial
species, the vertical axis represents the relative abundance of the corresponding microbes, and the
different colored bars in the box plot indicate different microbial genera in Figure 3A–D.

It can be seen from Figure 3 that, several microbial species belong to the Bacteroides genera ranked
in the top twenty, demonstrating that Bacteroides play a pivotal role in the human gut. Notably, a study
has shown that the Bacteroides genera plays an important role in the human gut digestion process and
is closely related to human health [37].

By comparing the boxplots at different disease stages, we found some microbes are in abundance
in healthy samples but, in patients with disease samples, the abundance of those microbes decreases.
For example, multiple microbes in the genus of Bifidobacterium ranked in the top 20 most abundant
microbes in the healthy samples but the abundance was significantlyreduced in the adenoma and
cancer patients, in a way that could not be seen any more in the boxplot. Bifidobacterium is an important
probiotic and, in conjunction with other microbes, can have a range of beneficial health effects,
regulating gut microbiota balance, inhibiting pathogens and pathogenic bacteria that infect intestinal
mucosa, inhibiting the activities of many carcinogenic enzymes, improving gut mucosal barriers,
and reducing intestinal lipopolysaccharide levels [38]. In addition, Bifidobacterium has been clinically
demonstrated to be used as a probiotic in the treatment of ulcerative colitis and has a beneficial effect
on maintaining and alleviating the disease [39]. It has, therefore, been widely used in the food industry
and pharmaceutical fields.

Similar to Bifidobacterium, Clostridium is only present in Figure 3A, yet not in the other three
figures. It also has a very important impact on human health. A study of Brüggemann has shown that
some non-pathological Clostridium strains may help treat diseases such as cancer; it can selectively
target cancer cells, invade solid tumors and self-replicate. Therefore, Clostridium can be used to deliver
therapeutic proteins to tumors, and this application model has been confirmed in clinical practice [40].

In addition to some of the above-mentioned microbial species found in abundance in the healthy
samples, some microbes, with the aggravation of the disease, demonstrated a significantly increased
abundance in the patients’ bodies compared to the healthy samples. For example, microbes such
as Dorealongicatena and Parabacteroides, whose abundance was generally low or even non-existent in
the healthy samples, was high in patients with adenoma and colorectal cancer. One hypothesis is
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that members of these genera may be harmful to the human body and cause imbalance in the human
microbiota, causing the body to develop diseases such as adenoma and colorectal cancer. However, this is
not the case. In the case of Dorea longicatena, which belongs to Dorea, this microbial species has been found
to inhibit the progression of inflammatory diseases. When the body is experiencing inflammation, the
microbial species increased correspondingly, producing butyrate and other anti-inflammatory molecules
that are closely related to inflammatory colitis [41]. Therefore, it is important to identify key microbes
closely related to disease and to determine their the abundance thresholds.

4. Conclusions

To improve upone existing random forest classification models, a mutual information method
was introduced in this paper to screen features and remove features weakly correlated or unrelated to
CRC, thus reducing the scale of the input data. The structure and information of all decision trees in
the random forest were extracted to count and analyze the extent of the influence of various microbes
on CRC to, in turn, determine the microbiota most closely related to CRC. Furthermore, the selected
species in each decision for the decision trees and their corresponding abundance thresholds were
used to explore the abundance threshold values of microbes associated with cancer.

To verify the feasibility and effectiveness of the above improved forest-based disease screening
model, two metagenomics datasets of CRC samples were analyzed. After using GRAMMy to calculate
the relative abundance and based on the extraction of internal information of the random forest model,
the degree to which microbes impacted CRC in the sample data was further analyzed. The data
presented in study may provide more streamlined criteria for clinical diagnosis and treatment; Which
may also provide certain data to support clinical treatments such as fecal transplantation.
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