
genes
G C A T

T A C G

G C A T

Article

A High-Performance Computing Implementation of
Iterative Random Forest for the Creation of Predictive
Expression Networks

Ashley Cliff 1,2, Jonathon Romero 1,2, David Kainer 2, Angelica Walker 1,2, Anna Furches 1,2 and
Daniel Jacobson 1,2,*

1 Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville,
Knoxville, TN 37996, USA; ashley.cliff4@gmail.com (A.C.); jromero1208@gmail.com (J.R.);
walkeram@ornl.gov (A.W.); furchasak@ornl.gov (A.F.)

2 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; kainerd@ornl.gov
* Correspondence: jacobsonda@ornl.gov

Received: 21 October 2019; Accepted: 26 November 2019; Published: 2 December 2019

Abstract: As time progresses and technology improves, biological data sets are continuously
increasing in size. New methods and new implementations of existing methods are needed
to keep pace with this increase. In this paper, we present a high-performance computing
(HPC)-capable implementation of Iterative Random Forest (iRF). This new implementation enables
the explainable-AI eQTL analysis of SNP sets with over a million SNPs. Using this implementation, we
also present a new method, iRF Leave One Out Prediction (iRF-LOOP), for the creation of Predictive
Expression Networks on the order of 40,000 genes or more. We compare the new implementation
of iRF with the previous R version and analyze its time to completion on two of the world’s fastest
supercomputers, Summit and Titan. We also show iRF-LOOP’s ability to capture biologically
significant results when creating Predictive Expression Networks. This new implementation of
iRF will enable the analysis of biological data sets at scales that were previously not possible.

Keywords: Random Forest; Iterative Random Forest; Gene Expression Networks; high-performance
computing; X-AI-based eQTL

1. Introduction

Due to innovation in the areas of genome sequencing and ’omics analysis, biological data is
entering the age of big data. As opposed to other fields of research, biological data sets tend
to have large feature quantity, but much smaller sample counts, such as in a GWAS population
where there are typically hundreds to thousands of genotypes, but millions of SNPs. The number of
independent features of biological systems is large, and would require many lifetimes of the entire
scientific community to sufficiently study [1]. The ability to determine which features are influential
to a particular phenotype, be it SNPs, gene expression, or interactions between multiple molecular
pathways, is essential in reducing the full feature space to a subset that is feasible to analyze.

Many methods exist to determine feature importance and feature selection, such as Pearson
Correlation, Mutual Information (MI), Sequential Feature Selection (SFS) [2], Lasso, and Ridge
Regression. Random Forest [3] is a commonly used machine learning method for making predictions,
and while not classically defined as a feature selection method, it is useful in scoring feature importance.
During the training phase, decision trees are built, where a subset of features is examined at each
decision point and the one that best divides the data is chosen. Feature importance is calculated for
each feature based on its location and effectiveness within the tree structures. By using random subsets
of the training data for each tree and considering random features for each decision point, Random

Genes 2019, 10, 996; doi:10.3390/genes10120996 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-9822-8251
http://dx.doi.org/10.3390/genes10120996
http://www.mdpi.com/journal/genes

Genes 2019, 10, 996 2 of 13

Forest prevents over fitting. Because of the nature of decision trees, the importance of any chosen
feature is inherently conditional on the features that were chosen previously. In this way the Random
Forest can account for some of the interconnected dependencies that occur in biological systems. As a
non-linear model, Random Forest has been applied to a range of biological data problems, including
GWAS, genomic prediction, gene expression networks and SNP imputation [4].

Iterative Random Forest [5] (iRF) is an algorithmic advancement of Random Forest (RF), which
takes advantage of Random Forests ability to produce feature importance and produces a more
accurate model by iteratively creating weighted forests. In each iteration, the importance scores
from the previous iteration are used to weight features for the current forest. Until now, iRF was
implemented solely as an R package [6]. While useful for small projects, it was not designed for big data
analysis. This paper describes the process of implementing a high-performance computing-enabled
iRF, using MPI (Message Passing Interface) [7]. This new implementation enabled the creation of
Predictive Gene Expression Networks with 40,000 genes and quickly completed the feature importance
calculations for 1.7 million Arabidopsis thaliana SNPs in relation to a gene expression profile, as part of a
genome-wide explainable-AI-based eQTL analysis.

2. Materials and Methods

2.1. Random Forest and Iterative Random Forest Methods

The base learner for the Random Forest (RF) and Iterative Random Forest (iRF) methods is
the decision tree, also known as a binary tree. A decision tree starts with a set of data: samples,
features, and a dependent variable. The goal is to divide the samples, through decisions based on the
features, into subsets containing homogeneous dependent variable values, generally following the
CART (Classification and Regression Trees) method [8], where each decision divides one node into
two child nodes. This is a greedy algorithm which will continue to divide the samples into child nodes,
based on a scoring criterion, until a stopping criteria is met. Decision trees are weak learners and tend
to over-fit to the data provided.

A Random Forest is an ensemble of decision trees. However, the trees in a Random Forest differ
from standard decision trees in that each tree starts with a subset of the samples, chosen via random
sampling with replacement. Also differing from standard decision trees, the features being considered
at each node are a random subset, with the number of features provided by a parameter. Once a forest
has been generated, the importance of each feature can be calculated from node impurity, such as the
Gini index for classification or variance explained for regression, or permutation importance. Unlike a
single decision tree, a Random Forest is a strong learner, because it averages many weak learners and
avoids putting too much weight on outlier decisions. The number of trees in a forest is a parameter
that is chosen by the user and influences the accuracy of the model.

Iterative Random Forest expands on the Random Forest method by adding an iterative boosting
process, producing a similar effect to Lasso in a linear model framework. First, a Random Forest is
created where features are unweighted and have an equal chance of being randomly sampled at any
given node. The resulting importance scores for the features are then used to weight the features in
the next forest, thus increasing the chance that important features are evaluated at any given node.
This process of weighting and creating a new Random Forest is repeated i times, where i is set by the
user. Due to the ability to easily follow the decisions that these models make, they have been deemed
explainable-AI (X-AI) [1], which differs from many standard machine and deep learning methods.

For both Random Forest and Iterative Random Forest, the total number of features, samples, trees,
and iterations (for iRF) all influence run time to differing degrees. Most of the computation time is
spent creating the decision trees, so run time scales with the number of trees. The number of samples
influences the number of decisions within a tree needed to divide the data into homogeneous subsets.
This influences the number of nodes created in a tree, and thus the run time per tree. Furthermore,
the number of features influences the amount of time required to find the feature that best divides the

Genes 2019, 10, 996 3 of 13

samples at any given node. Finally, for iRF, a whole new forest must be generated for each iteration,
though the run time for subsequent forests tends to diminish as many feature weights are set to zero.
The number of iterations allows the user to find a balance between over- and under-parameterization
of the model, by progressively eliminating features.

2.2. Implementation of iRF in C++

We used Ranger [9], an open source Random Forest implementation in C++, as the core of
our iRF implementation. Ranger already implements the decision tree and forest creation aspects,
but implements neither the communication necessary for running on multiple compute nodes of a
distributed HPC system, nor the iterative aspect of iRF.

Within our implementation, each decision tree is initialized with a random subset of the data
sample vectors and is then built in an independent process. Groups of trees (sub-forests) are built
on compute nodes and then sent to a master compute node that aggregates them into a full Random
Forest. This is done by giving each sub-forest a randomly generated seed number which determines
the random subset of data each tree in a sub-forest uses, allowing for a higher likelihood of unique
random data subsets on each tree. Once in the form of a single Random Forest, Ranger’s functions for
forest analysis are used, including feature importance aggregation.

On a distributed system, where parts of the forest are created on different compute nodes, the
aggregation of results requires most of the inter-node communication. This process relies on MPI (the
Message Passing Interface), an internode-communication standard for parallel programming, and
Open-MPI [10], an open source C library containing functions that follow the MPI standard.

To implement i iterations, the forest creation and aggregation is performed i times. After the
completion of each iteration, the feature weights are written to a file. At the beginning of the
next iteration, this file is read into an array that is used to create the weighted distribution from
which features are sampled during the decision process at each node on each tree. This process,
while potentially slow due to the file I/O, uses the preexisting functionality of weighted sampling
from Ranger.

2.3. iRF-LOOP: iRF Leave One out Prediction

Given a data set of n features and m samples, iRF Leave One Out Prediction (iRF-LOOP) starts
by treating one feature as the dependent variable (Y) and the remaining n − 1 features as predictor
matrix (X) of size m x n − 1. Using an iRF model, the importance of each feature in X, for predicting
Y, is calculated. The result is a vector, of size n, of importance scores (the importance score of Y, for
predicting itself, has been set to zero). This process is repeated for each of the n features, requiring n
iRF runs. The n vectors of importance scores are concatenated into an n x n importance matrix. To keep
importance scores on the same scale across the importance matrix, each column is normalized relative
to the sum of the column. The normalized importance matrix can be viewed as a directional adjacency
matrix, where values are edge weights between features. See Figure 1 for a diagram of this process.
Due to the nature of iRF, the adjacency matrix is not symmetric as feature A may predict feature B with
a different importance than feature B predicts feature A.

Genes 2019, 10, 996 4 of 13

…
G1 G2 G3 Gn

S1
S2

Sm

…
Feature Matrix

…
Gn

S1
S2

Sm

…

…
Gn

S1
S2

Sm

…

…
Gn

S1
S2

Sm

…

Repeat

Repeat

Repeat

iRF

G1

G2 G3

Gn

G1

G2 G3

Gn

Importance Edge Weights

G1

G2 G3

Gn

G1

G2 G3

Gn

iRF-LOOP Network

G1

G2

G3

…

w2,1

w3,1

wn,1

…

Gn

G1 0

G1 G2 GnG3

G1

G2

G3

Gn

…

…

0

0

0

0

G2

G2

G3

…

w1,2

w3,2

wn,2

…

Gn

G1

0

Gn

G2

G3

…

w1,n

w3,n

…
Gn

G1

w2,n

0

w2,1

w3,1

wn,1

w1,2

w3,2

wn,2

w1,n

w2,n

w3,n

w2,1

w3,1

wn,1

w1,2

w3,2

wn,2

… …

w1,n

w2,n

w3,n

… …

w1,3

w2,3

wn,3

Importance Matrix

G1 G2 G3

G1 G2 G3

G1 G2 G3

Figure 1. The diagram shows the process of iRF-LOOP for a set of Expression profiles, creating a
Predictive Expression Network. Each gene is independently treated as the target for an iRF run, with all
other genes as predictors. iRF provides importance scores of each predictor gene, and creates network
edge weights between target and predictors. These importance scores are then combined into an
edge matrix, providing a value for each possible connection, from which a network can be generated.
Generally, the weights are thresholded at some value, determined through other means, and only edges
with large enough weights are included in the final network. Due to the inherent directionality of a
prediction, the edges are weighted, and not likely to be symmetric.

2.4. Big Data: Showing the Scale of iRF with Arabidopsis thaliana SNP Data

A typical use case of iRF, with a matrix of features and a single target vector of outcomes,
becomes comparable to an X-AI-based eQTL analysis, when the matrix of features is a set of single
nucleotide polymorphisms (SNPs) and the dependent variable vector is a gene’s expression measured
across samples. This analysis determines which set(s) of SNPs are important to variation in the
gene’s expression.

We obtained Arabidopsis thaliana SNP data from the Weigel laboratory at the Max Planck Institute
for Developmental Biology, available at https://1001genomes.org/data/GMI-MPI/releases/v3.1/.
We filtered the SNPs using bcftools 1.9 [11] to keep only those that were biallelic, had a minor allele
frequency greater than 0.01, and had less than ten percent missing data across the population. This
resulted in a set of 1.71 million SNPs for 1135 samples, from the original 11.7 million SNPs.

We obtained Arabidopsis thaliana expression data [12] from 727 samples and 24,175 genes. Of these
727 samples, 666 samples were also present in the SNP data set. The vector of gene expression values
for gene AT1G01010 for those 666 samples was used as the dependent variable for iRF. The feature set
was the full set of 1.71 million SNPs, for the same 666 samples. While this is not many samples, this is
clearly many features.

The C++ iRF code was run using these data as input with five iterations, each generating a forest
containing 1000 trees. The number of trees was chosen as a value close to the square root of the number
of features (a common setting for this parameter), where each feature has a 95% chance of being
included in the feature subset within the first two layers in at least one tree. This helps to guarantee
that all features are considered at least once across an iteration. HPC node quantities of 1, 2, 5, and 10
were used to show run time changes as the amount of resources increases.

https://1001genomes.org/data/GMI-MPI/releases/v3.1/

Genes 2019, 10, 996 5 of 13

Due to the large number of SNPs, the full data could not fit in memory on a standard laptop, for
use in the R iRF program. Instead, small subsets of features of sizes 2000, 1000, 500, 100 and 50 features
were run, each using the full 666 samples and the same AT1G01010 gene expression dependent variable.
Each feature set was run three times and averaged to account for the inherent stochasticity in the
algorithm. Only one run was performed for each parameter set on Summit with the full data set due
to limited compute time availability.

2.5. Using iRF-LOOP to Create Predictive Expression Networks

Given a matrix of gene expression data, there are a multitude of approaches for inferring which
genes potentially regulate the expression of other genes, ranging in complexity from pairwise Pearson
Correlations to advanced methods such as Aracne [13], Genie3 [14], and dynamic Bayesian networks
(DBNs) [15]. Due to the large number of features and the complexity of the interactions between them,
Random Forest-type approaches are well suited to this task.

We applied iRF-LOOP to a matrix of gene expression data measured in 41,335 genes across
720 genotypes of Populus trichocarpa (Black cottonwood). The RNAseq data [16] from were obtained
from the NCBI SRA database (SRA numbers: SRP097016– SRP097036; www.ncbi.nlm.nih.gov/sra).
Reads were aligned to the Populus trichocarpa v.3.0 reference [17]. Transcript per million (TPM) counts
were then obtained for each genotype, resulting in a genotype–transcript matrix, as referenced in [18].
The adjacency matrix resulting from iRF-LOOP represents a Predictive Expression Network (PEN)
where a directed edge (AB) between and two genes (A and B) is weighted according to the importance
of gene A’s expression in predicting gene B’s expression, conditional on all other genes in the iRF
model. We removed zeros and produced four thresholded networks, keeping the top 10%, 5%, 1%,
and 0.1% of edge scores, respectively.

To determine the biological significance of the PEN produced by the iRF-LOOP, we compared
each of the four thresholded networks to a network of known biological function, created from Gene
Ontology (GO) annotations. GO is a standardized hierarchy of gene descriptions that captures the
current knowledge of gene function. It is accepted that there is both missing information and some
error, nevertheless it is useful as a broad truth set for large sets of genes. We calculated scores for
each network by intersecting with the GO network. We then evaluated the probability of achieving
such scores relative to random chance by creating null distributions of scores produced by random
permutation of the iRF-LOOP networks and calculated t-statistics for each threshold.

We created a Populus trichocarpa GO network for the Biological Process (BP) GO terms, using
annotations from [19]. Genes are connected if they share one or more GO terms. Due to the hierarchical
nature of the Gene Ontology, a term shared by only a few genes, indicates a very detailed and specific
association, where the associations shared by many genes are generally broad categorizations. The edge
weight between two genes equals 1

/
(n − 1), where n is the number of genes with the shared term.

This weighting attempts to balance the scoring metric so that correctly identifying rare edges is not out
weighted by simply capturing many generic GO terms. Genes that share a GO term create connected
sets of genes, where each gene has an edge with each other gene in the set. A predicted network’s
intersect score is a summation of all GO edge weights from edges that appear in both the GO and
predicted networks. For example, if the predicted network has an edge between gene A and gene B,
and the GO network also has an edge between gene A and B with a weight of X, then the intersect
score would increase by X. If two genes share more than one GO term, then the largest weight is used
for the edge. To avoid edges between very loosely associated genes, only GO terms with less than
1000 genes were used for this analysis. The resulting network provides the relationship between genes
that share some level of known functionality.

To generate the null distribution of intersect scores for each thresholded PEN, the node labels of
each network were randomly permuted 1000 times, and each random network was scored against the
GO network. From these null distributions, t-statistics were calculated for the score of each thresholded
Predictive Expression Network.

Genes 2019, 10, 996 6 of 13

For comparison purposes, the noted GO scoring process was also done on a Pearson’s
Correlation-generated network, creating co-expression scores. The input data was the same expression
data, and Pearson’s Correlation was calculated for each pair of genes. The top 0.1% of correlation
values was then analyzed with the GO scoring process, and compared to the top 0.1% of edge scores
from the PEN.

2.6. Comparison of R to C++ Code

To compare the original iRF R code to the new implementation, both were run on a single node
of Summit with a variety of running parameters. These parameters included all combinations of 100,
1000, and 5000 trees and 1, 2, 3, and 4 threads for 1000 features. All combinations were run three times
and the scores were averaged. Due to the R code’s doParallel [20] back-end not being designed for an
HPC system, the R code was limited to a single CPU on a node with up to four independent threads.
For consistency, the new implementation was limited to the same resources. A subset of the Populus
trichocarpa expression data mentioned above was used as the feature set.

2.7. Computational Resources

The computational resources used in this work were Summit, Titan, and a 2015 MacBook Pro
laptop. Summit is an Oak Ridge Leadership Computing Facility (OLCF) supercomputer located at Oak
Ridge National Laboratory (ORNL). It is an IBM system with approximately 4600 nodes, each with
two IBM POWER9 processors, each with 22 cores (176 hardware threads) and six NVIDIA VOLTAV100
GPUs, and 512 GB of DDR4 memory. Titan was a former OLCF supercomputer, recently decommission,
and was a Cray system that had approximately 18,688 nodes, each with a 16-core AMD Opteron 6274
processor and 32 GB of DDR3 ECC memory. The 2015 MacBook Pro has a 3.1 GHz Intel Core i7
Processor and 16 GB of DDR3 memory.

3. Results

3.1. Comparison of the R to C++ Code

Previously, the only published iRF code existed as an R library. This library uses R’s ’doParallel’
functionality, generally allowing for multi-core thread parallelism on shared memory CPUs. However,
this system did not function on Summit, so our analysis was limited to running differences on a single
Summit CPU.

To compare the R code to the C++ code, both programs were run on a single CPU on Summit.
While this is a small resource set, it was sufficient in showing trends and making comparisons between
the two implementations. Figure 2 shows the time to completion as the number of threads increases.
As the number of threads that the runs are spread over increases, both implementations decrease in
run time. However, for the 5000 tree runs for 1, 2, and 3 threads the R code was unable to complete in
the 2 h time limit set by the Summit system. This is a good indication that these runs were not efficient
enough, as the C++ implementation runs were able to complete.Even though the R implementation
uses C++ and Fortran functions internally, it is likely that the overhead of using R and the associated
I/O bottlenecks significantly impacts total run time. Similarly, as seen in Figure 3, as the number of
trees increases, the R code takes significantly longer than the C++ code to complete. Together, these
figures show that in a one-on-one comparison using appropriate resources, the C++ implementation is
more efficient than the R implementation, and can handle more computations per unit of time.

Genes 2019, 10, 996 7 of 13

Figure 2. Each of these graphs shows the total run time as the number of threads increases. Both the R
code and C++ code were run on Summit. Note for 5000 trees, the R implementation failed to complete
using less than 4 threads.

Figure 3. These graphs show a different orientation of the data from Figure 2. Each graph shows the
total run time as the number of trees increases, while the number of features and number of threads
stays constant. Due to the 5000 tree runs not completing with the R code for 1, 2, or 3 threads, those
graphs are missing points.

3.2. Scaling Results for Big Data: Arabidopsis thaliana SNPs to Gene Expression

To show how well our implementation of iRF handles large feature sets, a set of 1.7 million SNPs
from Arabidopsis thaliana was used to predict the expression of gene AT1G01010. Figure 4 shows the
times to completion for the four thread quantities tested on Summit (160 threads per compute node).
Our implementation was easily able to handle the data set for all thread quantities and finished in
reasonable amounts of time. It is worth noting that there were diminishing returns as the number of
nodes gets close to 10 (1600 threads) since the number of trees per node at this scale would only be 100
(1000 trees total spread over 10 nodes) and did not use the resources to its fullest potential. For a larger
feature set, a larger number of trees would be advised, and a larger number of nodes could be used
more efficiently.

To try to determine approximately how long this calculation would take on a standard laptop,
multiple smaller runs were completed. Figure 5 shows the run times for multiple feature amounts for
the R iRF code on one CPU of a 2015 MacBook Pro laptop. The linear fit, while not perfect, is accurate
enough for a rough estimate for larger feature sizes. Using the provided equation, the 1.7 million
feature set run on Summit would take approximately 33 days to complete on a laptop, given that the
system had enough memory to contain the data set and results, which most standard laptops do not
have. When compared to the approximately 40 min required on 5 nodes of Summit, it is easy to see
what a difference these resources, and programs that can use them, can make.

Genes 2019, 10, 996 8 of 13

Figure 4. The graph shows the run times for four different compute node quantities, each completing
1000 trees for the 1.7 million SNPs.

Y = -172.84 + 1.6787X
R2= 0.9861

Figure 5. The graph shows the run time for five different feature sizes, on a single CPU of a standard
MacBook Pro laptop. Each point represents the average of three runs. A linear regression was fit,
with the equation shown. The fit is not perfect, but is enough to indicate that the run time increase
approximately linearly in comparison to the number of features.

3.3. Predictive Expression Networks

We used iRF-LOOP to produce Predictive Expression Networks for Populus trichocarpa. Figure 6a
shows the run time results for the C++ code for all varying numbers of threads and trees, for one of the
approximately 40,000 iRF runs within an iRF-LOOP. Figure 6b shows the total run time as the number
of threads increases on Summit and Titan for the C++ code, showing that iRF works comparably on
different system architectures. Due to the architecture differences, Summit nodes can independently
run 160 threads simultaneously while Titan nodes could only run 16 threads. Summit (in red) had
a harder time with larger data on a single thread, but both systems function well as the number of
threads increases to appropriate numbers for general uses cases. The full graph of all parameters
comparing time to completion on Summit and Titan is available in Figure S1.

Genes 2019, 10, 996 9 of 13

(a) (b)

Figure 6. Graph (a) provides the total run time for the C++ code on Summit, with various tree and
thread counts, for 40,000 features. Graph (b) provides a comparison of the C++ code on Summit and
Titan, two HPC systems. For both graphs, run time is in seconds.

Table 1 shows the number of edges and nodes in the four resulting thresholded PENs , as well
as for the co-expression comparison network. The GO network that was generated to analyze the
PENs contained 16,836 nodes and 3,274,574 edges. Figure 7 shows a small example of the intersected
networks with a calculated intersect score.The iRF-LOOP edges that do not have corresponding GO
network edges are important for biological discovery. These edges do not necessarily represent ’wrong’
results, but rather interactions found using iRF that are not listed in the GO network. These edges
can be used for hypothesis generation of gene interactions, such as regulation, as well as putative
gene functions.

Table 1. The table provides the graph results for the 4 thresholded Predictive Expression Networks,
as well as the co-expression comparison network. The listed mean and standard deviation are for the
corresponding null distributions, as pictured in Figure 8, for the PEN networks. The p-values for the
listed t-statistics were effectively zero.

Network Nodes Edges Intersect Score Null Dist Mean Null Dist s.d. t-Statistic
0.1% PEN 26,617 57,112 59.74 0.9831 0.2597 226.27
1% PEN 38,758 563,887 213.28 9.6930 0.8720 233.47
5% PEN 39,349 2,795,636 484.07 48.1309 2.0784 209.74
10% PEN 39,349 5,846,200 692.08 100.5038 2.9316 201.79
0.1% COEX 6261 312,030 34.91 7.7701 1.5668 17.32

Also shown in Table 1 are the mean and standard deviation for the null distribution of the
random permutations for each thresholded PEN and the co-expression comparison network. The null
distribution and intersect score (in red) for two of the four PEN networks are shown in Figure 8.
The null distribution and intersect score comparison between the top 0.1% PEN and 0.1% co-expression
network is shown in Figure 9. The other two PEN null distributions are available in Figure S2.
The t-statistic for each network was calculated from these values, giving the values shown. All PEN
t-statistic values had a p-value of effectively zero, as the iRF intersect scores were all significantly
larger than the null distributions. The t-statistic for the co-expression comparison network also had a
small p-value, but it is worth noting that even with more edges than the comparable PEN network,
it had a lower GO score. This result confirms that the PENs created using iRF-LOOP are finding
more biologically annotated GO edges than would be found by chance., with respect to known GO
annotations. Quantile-quantile plots for each of the PEN null distributions are provided in Figure S3,
showing that the null distributions are all close enough to normal.

Genes 2019, 10, 996 10 of 13

A

B

C

D

E

F

G

H

ribosomal large subunit assembly
ribosomal small subunit assembly

maturation of LSU-rRNA

Gene Ontology Associations

Gene Node Labels

A: Potri.015G112900

B: Potri.016G063200

C: Potri.013G159600

D: Potri.004G113800

E: Potri.007G034800

F: Potri.007G035600

G: Potri.014G108400

H: Potri.002G066200

0.
02

12
8

0.02083

0.
03

57
1

0.0
35
71

0.03571

0.
02

08
3

0.03
571

0.
03
57
1

0.03571

0.02083

iRF-LOOP Edges

Figure 7. The network shown is a small example from the iRF prediction expression network overlaid
with the GO process network. The nodes represent the genes. The black edges represent the iRF edges,
which are directed from the feature to the predicted target. The colored edges represent different GO
associations between genes, meaning that they share a GO term. Using the provided GO edge weights,
this network has an intersect score of 0.0714, from connections DE and FE with both iRF edges and
GO edge.

(a) (b)

Figure 8. Graph (a) shows the null distribution histogram (blue) and the iRF network score (red) for
the top 10% of edges. Graph (b) shows the null distribution histogram (blue) and the iRF network
score (red) for the top 0.1% of edges. Please note that the x-axis is different for the two graphs. Each
distribution was calculated from 1000 random permutations.

Genes 2019, 10, 996 11 of 13

GO Score

N
um

be
r o

f P
er

m
ut

at
io

ns

Top 0.1 Percent Co-expression Process GO vs Top 0.1 Percent iRF GO Score

Figure 9. The null distribution histogram of the iRF network is shown in blue, with the network score
in red. The co-expression null distribution is shown in orange, with the corresponding network score
also in orange.

4. Discussion

We have presented a high-performance computing-capable implementation of Iterative Random
Forest. This implementation uses Ranger, C++, and MPI to use the resources available on multi-node
computation resources. We have shown that our implementation can perform X-AI-based eQTL-type
analyses with millions of SNPs and have shown its ability to scale with multiple parameters. Using iRF
to complete a whole analysis of the 24,175 gene expression profiles for Arabidopsis thaliana, assuming
each run took approximately the same time as the shown above, would take approximately 705
days using 5 nodes, or 84,680 compute node hours, or 18 h using 4600 Summit nodes. To complete
the analysis for all 24,175 gene expression predictions on a laptop using the R code would take
approximately 2191 years. While this comparison seems impressive, it should also be noted that for a
larger feature set and larger number of trees the large resources will be even more appropriate as the
scaling factor will be even less effected by overhead. For cases where the number of SNPs is 10 million
and higher, the code should be even more efficient on HPC systems. However, as not everyone has
access to the fastest computers in the world this code could still run efficiently on a smaller system
using a smaller set of SNPs.

Using this new implementation, we developed iRF-LOOP and used it to produce Predictive
Expression Networks which were shown to have biologically relevant information. The process
of iRF-LOOP has the potential to be used for a wide variety of data analysis problems. With an
appropriate amount of compute resources, it would be possible to build connected networks for each
level of ’omics data available for a given species. The same concept could also be used to connect
’omics layers to each other as shown by using the SNPs in the X-AI-based eQTL analysis. This machine
learning method is not limited to genetics or biology and has uses in other fields where systems can be
represented as a matrix.

Downstream of any iRF analysis, there is the possibility of finding epistatic interactions among
features from the resulting forests, using Random Intersection Trees (RIT) [21]. This method works
regardless of the data type for the features, where it can find sets of SNPs that influence gene expression
or sets of genes that influence other gene’s expression, adding another set of nodes and groups to a
Predictive Expression Network.

Genes 2019, 10, 996 12 of 13

5. Software Availability

The Ranger-based Iterative Random Forest code is available at https://github.com/Jromero1208/
RangerBasediRF.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/12/996/
s1, Figure S1: Runtime on HPC Systems, Figure S2: Null Distribution Plots, Figure S3: Quantile-Quantile Plots for
the PENs.

Author Contributions: Conceptualization, A.C., D.J. and J.R.; methodology, A.C.; software, A.C.; validation, A.C.;
formal analysis, A.C., J.R., A.W., and A.F.; investigation, A.C.; resources, D.J.; data curation, A.C., J.R., D.K., A.W.,
and A.F.; writing—original draft preparation, A.C. and J.R.; writing—review and editing, A.C., J.R., D.K. and D.J.;
visualization, A.C.; supervision, D.K. and D.J.; project administration, D.J.; funding acquisition, D.J.

Funding: Funding provided by the Plant-Microbe Interfaces (PMI) Scientific Focus Area in the Genomic Science
Program and by The Center for Bioenergy Innovation (CBI). The U.S. Department of Energy Bioenergy Research
Centers are supported by the Office of Biological and Environmental Research in the DOE Office of Science. This
work is also supported by the Exascale & Petascale Networks for KBase project funded by the Genomic Sciences
Program from the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.

Acknowledgments: This research used resources of the Oak Ridge Leadership Computing Facility and the
Compute and Data Environment for Science at Oak Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The manuscript was
coauthored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy.
The US Government retains and the publisher, by accepting the article for publication, acknowledges that the
US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for US Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

iRF Iterative Random Forest
iRF-LOOP iRF Leave One Out Prediction
RF Random Forest
MPI The Message Passing Interface
HPC High-Performance Computing
GO Gene Ontology
SNP Single Nucleotide Polymorphism
eQTL Expression Quantitative Trait Loci
X-AI Explainable Artificial Intelligence
RIT Random Intersection Trees

References

1. Harfouche, A.; Jacobson, D.; Kainer, D.; Romero, J.; Harfouche, A.H.; Scarascia Mugnozza, G.; Moshelion, M.;
Tuskan, G.; Keurentjes, J.; Altman, A. Accelerating Climate Resilient Plant Breeding by Applying
Next-Generation Artificial Intelligence. Trends Biotechnol. 2019, accept. [CrossRef] [PubMed]

2. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16.
[CrossRef]

3. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
4. Chen, X.; Ishwaran, H. Random forests for genomic data analysis. Genomics 2012, 99, 323–329. [CrossRef]

[PubMed]
5. Basu, S.; Kumbier, K.; Brown, J.B.; Yu, B. Iterative random forests to discover predictive and stable high-order

interactions. Proc. Natl. Acad. Sci. USA 2018, 115, 1943–1948. [CrossRef] [PubMed]
6. Basu, S.; Kumbier, K. iRF: Iterative Random Forests; R Package Version 2.0.0; 2017. Available online: https:

//CRAN.R-project.org/package=iRF (accessed on 8 October 2019).

https://github.com/Jromero1208/RangerBasediRF
https://github.com/Jromero1208/RangerBasediRF
http://www.mdpi.com/2073-4425/10/12/996/s1
http://www.mdpi.com/2073-4425/10/12/996/s1
http://energy.gov/downloads/doe-public-access-plan
http://dx.doi.org/10.1016/j.tibtech.2019.05.007
http://www.ncbi.nlm.nih.gov/pubmed/31235329
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.ygeno.2012.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22546560
http://dx.doi.org/10.1073/pnas.1711236115
http://www.ncbi.nlm.nih.gov/pubmed/29351989
https://CRAN.R-project.org/package=iRF
https://CRAN.R-project.org/package=iRF

Genes 2019, 10, 996 13 of 13

7. Walker, D.W.; Dongarra, J.J. MPI: A Standard Message Passing Interface. Available online: https://www.
mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf (accessed on 8 October 2019).

8. Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Tree; Taylor & Francis: Boca Raton,
FL, USA, 1984, ISBN 0412048418, 9780412048418.

9. Wright, M.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in
C++ and R. J. Stat. Softw. Artic. 2017, 77, 1–17. [CrossRef]

10. Gabriel, E.; Fagg, G.E.; Bosilca, G.; Angskun, T.; Dongarra, J.J.; Squyres, J.M.; Sahay, V.; Kambadur, P.; Barrett,
B.; Lumsdaine, A.; et al. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation.
In Proceedings of the 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, 19–22 September
2004; pp. 97–104.

11. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population
genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [CrossRef]
[PubMed]

12. Kawakatsu, T.; Huang, S.S.C.; Jupe, F.; Sasaki, E.; Schmitz, R.J.; Urich, M.A.; Castanon, R.; Nery, J.R.;
Barragan, C.; He, Y.; et al. Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions.
Cell 2016, 166, 492–505. [CrossRef] [PubMed]

13. Margolin, A.A.; Nemenman, I.; Basso, K.; Wiggins, C.; Stolovitzky, G.; Favera, R.D.; Califano, A. ARACNE:
An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC
Bioinform. 2006, 7, S7. [CrossRef] [PubMed]

14. Huynh-Thu, V.A.; Irrthum, A.; Wehenkel, L.; Geurts, P. Inferring Regulatory Networks from Expression
Data Using Tree-Based Methods. PLoS ONE 2010, 5, 1–10. [CrossRef] [PubMed]

15. Perrin, B.E.; Ralaivola, L.; Mazurie, A.; Bottani, S.; Mallet, J.; d’Alché-Buc, F. Gene networks inference using
dynamic Bayesian networks. Bioinformatics 2003, 19, ii138–ii148. [CrossRef] [PubMed]

16. Zhang, J.; Yang, Y.; Zheng, K.; Xie, M.; Feng, K.; Jawdy, S.S.; Gunter, L.E.; Ranjan, P.; Singan, V.R.;
Engle, N.; et al. Genome-wide association studies and expression-based quantitative trait loci analyses reveal
roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription
factors in Populus. New Phytol. 2018, 220, 502–516. [CrossRef]

17. Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.;
Rombauts, S.; Salamov, A.; et al. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray).
Science 2006, 313, 1596–1604. [CrossRef]

18. Furches, A.; Kainer, D.; Weighill, D.; Large, A.; Jones, P.; Walker, A.M.; Romero, J.; Gazolla, J.G.F.M.;
Joubert, W.; Shah, M.; et al. Finding New Cell Wall Regulatory Genes in Populus trichocarpa Using Multiple
Lines of Evidence. Front. Plant Sci. 2019, 10. [CrossRef] [PubMed]

19. Jin, J.; Tian, F.; Yang, D.C.; Meng, Y.Q.; Kong, L.; Luo, J.; Gao, G. PlantTFDB 4.0: Toward a central hub
for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2016, 45, D1040–D1045.
[CrossRef] [PubMed]

20. Corporation, M.; Weston, S. doParallel: Foreach Parallel Adaptor for the ’Parallel’ Package; R Package
Version 1.0.14; 2018. Available online: https://CRAN.R-project.org/package=doParallel (accessed on
8 October 2019).

21. Shah, R.D.; Meinshausen, N. Random intersection trees. J. Mach. Learn. Res. 2014, 15, 629–654.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://dx.doi.org/10.18637/jss.v077.i01
http://dx.doi.org/10.1093/bioinformatics/btr509
http://www.ncbi.nlm.nih.gov/pubmed/21903627
http://dx.doi.org/10.1016/j.cell.2016.06.044
http://www.ncbi.nlm.nih.gov/pubmed/27419873
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://www.ncbi.nlm.nih.gov/pubmed/16723010
http://dx.doi.org/10.1371/journal.pone.0012776
http://www.ncbi.nlm.nih.gov/pubmed/20927193
http://dx.doi.org/10.1093/bioinformatics/btg1071
http://www.ncbi.nlm.nih.gov/pubmed/14534183
http://dx.doi.org/10.1111/nph.15297
http://dx.doi.org/10.1126/science.1128691
http://dx.doi.org/10.3389/fpls.2019.01249
http://www.ncbi.nlm.nih.gov/pubmed/31649710
http://dx.doi.org/10.1093/nar/gkw982
http://www.ncbi.nlm.nih.gov/pubmed/27924042
https://CRAN.R-project.org/package=doParallel
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Random Forest and Iterative Random Forest Methods
	Implementation of iRF in C++
	iRF-LOOP: iRF Leave One out Prediction
	Big Data: Showing the Scale of iRF with Arabidopsis thaliana SNP Data
	Using iRF-LOOP to Create Predictive Expression Networks
	Comparison of R to C++ Code
	Computational Resources

	Results
	Comparison of the R to C++ Code
	Scaling Results for Big Data: Arabidopsis thaliana SNPs to Gene Expression
	Predictive Expression Networks

	Discussion
	Software Availability
	References

