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Abstract: Taxus chinensis is a precious woody species with significant economic value. Anthocyanin
as flavonoid derivatives plays a crucial role in plant biology and human health. However, the genes
involved in anthocyanin biosynthesis have not been identified in T. chinensis. In this study, twenty-five
genes involved in anthocyanin biosynthesis were identified, including chalcone synthase, chalcone
isomerase, flavanone 3-hydroxylase, anthocyanidin synthase, flavonoid 3’-hydroxylase, flavonoid
3’,5’-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin reductase, and leucoanthocyanidin
reductase. The conserved domains and phylogenetic relationships of these genes were characterized.
The expression levels of these genes in different tissues and different ages of xylem were investigated.
Additionally, the anthocyanin accumulation in xylem of different ages of T. chinensis was measured.
The results showed the anthocyanin accumulation was correlated with the expression levels of
dihydroflavonol 4-reductase, anthocyanidin synthase, flavonoid 3’-hydroxylase, and flavonoid
3’,5’-hydroxylase. Our results provide a basis for studying the regulation of the biosynthetic pathway
for anthocyanins and wood color formation in T. chinensis.
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1. Introduction

Secondary metabolites are the products of plant adaptation to the environment during their
evolution. Anthocyanins as a kind of secondary metabolite play a vital role in various processes
of plant development, such as providing color to organs to attract pollinators, and of antioxidant
activity to protect plants from injury by biotic and abiotic stress [1–4]. In addition, anthocyanidins
are widely used in food, health care products, and drugs for their excellent antioxidant activity [5,6].
Anthocyanins can be divided into different types according to the different chemical groups on the
lateral chains of the anthocyanidin skeleton. Typical anthocyanins have the anthocyanidin skeleton
called 2-phenylbenzo-pyran that contains an aromatic benzene ring-oxygenated heterocycle-aromatic
benzene ring (C6-C3-C6) structure [7,8]. Cyanidin, pelargonidin, and delphinidin are the three most
fundamental anthocyanidins in plants as all other anthocyanidins are directly or indirectly modified
from these three types.

The structure and biosynthesis pathways of anthocyanins have been well studied. The genes
related to anthocyanin biosynthesis have been reported in many plant species such as Arabidopsis
thaliana, Medicago sativa, Petunia hybrida, and Salvia miltiorrhiza [9–12], which provide a good basis
for understanding anthocyanin biosynthesis in these species. The biosynthesis of anthocyanin is
complex. The 4-phosphoerythritose from the pentose phosphate pathway and the phosphoenolpyruvate
from glycolysis are condensed into 7-phosphate heptanolose, which is modified into tyrosine and
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phenylalanine through a series involving the transformation of shikimic acid and the branching acid
pathway (Figure 1). Tyrosine and phenylalanine can be catalyzed into p-coumaroyl-CoA through
the phenylalkane metabolism pathway. P-coumaroyl-CoA and malonyl-CoA produced by glycolysis
are the raw materials for the anthocyanins branch pathway. Chalcone synthase (CHS) is the key
enzyme involved in anthocyanin biosynthesis; it catalyzes the condensation of P-coumaroyl-CoA
and malonyl-CoA into chalcone. Chalcone is closed-loop for the formation of naringinin by chalcone
isomerase (CHI). Naringinin is a key intermediate in the pathway of flavonoid biosynthesis. Flavanone
3-hydroxylase (F3H) catalyzes naringinint into dihydrokaempferol, which converts to leucopelargonidin
under the catalysis of dihydroflavonol 4-reductase (DFR). Naringinin and dihydrokaempferol can
also be catalyzed by flavonoid 3’-hydroxylase (F3’H) and flavonoid 3’,5’-hydroxylase (F3’5’H)
into eriodictyol, pentahydroxyflavanone and dihydroquercetin, dihydromyricetin. Products of
DFR belong to leucoanthocyanidin, which is catalyzed by anthocyanidin synthase (ANS) into
cyaniding, pelargonidin, and delphinidin, the three most fundamental anthocyanidins. These
three anthocyanidins generate various anthocyanins by oxidation, dehydration, and glycosylation.
In addition, leucoanthocyanidin can also be catalyzed by anthocyanidin reductase (ANR) into
flavane-3-alcohol, a precursor of procyanidin.

Figure 1. The biosynthetic pathways of anthocyanins. CHS, chalcone synthase; CHI, chalcone isomerase;
F3H, flavanone 3-hydroxylase; F3’H, flavonoid 3’-hydroxylase; F3’5’H, flavonoid 3’,5’-hydroxylase;
DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; ANR, anthocyanidin reductase; LAR,
leucoanthocyanidin reductase.
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T. chinensis is a valuable woody species with important medicinal value. Paclitaxel, which is
extracted from the bark of T. chinensis, is a natural antineoplastic drug that is widely used in the
treatment of breast, ovarian, and lung cancers. In addition, the wood of Taxus species has many
attributes, for example, good aesthetic appearance, purple red brown colored heartwood, straight
texture, and rich elasticity [13,14]. The heartwood of T. chinensis contains high levels of anthocyanins
and flavonoids. However, the genes involved in anthocyanins biosynthesis in T. chinensis have not yet
been reported. To understand the correlation between gene expression and anthocyanin accumulation,
we performed a systematic identification and analysis of genes related to anthocyanin biosynthesis in
T. chinensis. In this study, 25 genes involved in anthocyanins biosynthesis in T. chinensis were identified
through bioinformatics analysis and the conserved domains and phylogenetic relationships of these
genes were analyzed. The expression profiles of these genes in different tissues and in different ages
of T. chinensis xylem was also investigated. Moreover, the correlation between gene expression and
anthocyanins accumulation was determined. Our results provide a basis for studying the regulation
mechanism of biosynthetic pathway of anthocyanins in T. chinensis.

2. Materials and Methods

2.1. Plant Materials

T. chinensis was planted in the greenhouse located at Chinese Academy Forestry, Beijing, China.
Leaf, xylem, phloem, root tissue, and one to four-year-old xylem were sampled from ten-year-old
trees and stored in liquid nitrogen for RNA isolation. The bark was peeled from the developing stem,
the phloem tissue was scraped from inside of the bark, and the xylem tissue was collected from the
peeled log. Samples were taken from 3 plants and stored in ultra-cold storage freezer (−80 °C) until
use. One- to four-year-old xylem were weighed accurately for HPLC analysis of anthocyanin content.

2.2. Identification of Genes Related to Anthocyanin Biosynthesis

In order to predict the genes related to anthocyanin biosynthesis in T. chinensis, all the anthocyanin
biosynthesis-related genes of Arabidopsis protein sequences were obtained from GenBank and were
used as a query to search for homologous genes against the assembly of transcriptome (PRJNA580323)
in T. chinensis using the tBLASTn algorithm with an e-value cut-off of 10−10. The predicted genes were
inspected manually and corrected by sequence alignment with the genes involved in anthocyanin
biosynthesis identified from other plant species by the BLASTx algorithm.

2.3. Gene Analysis in Bioinformatics and Phylogenetic Tree Construction

The molecular weight (Mw) and theoretical isoelectric point (pI) of deduced proteins involved
in anthocyanin biosynthesis were analyzed by the Compute pI/MW tool on the ExPASy server
(http://web.expasy.org/compute_pi/). Conserved domains were searched using CD-search tool on
NCBI (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) against the Pfam v31.0-16709 PSSMs
database. Multiple amino acid sequence alignments were performed by Clustal Omega tool on
EMBL-EBI (https://www.ebi.ac.uk/Tools/msa/clustalo). Phylogenetic trees were constructed by MEGA
software (Philadelphia, CA, USA) with the neighbor joining (NJ) method (molecular evolutionary
genetics analysis version 7.0) [15]. The protein sequences used for the sequence alignment and
phylogenetic analysis were retrieved from NCBI. The accession numbers of protein sequences are used
for the sequence alignment listed in Supplementary Tables S2–S6.

http://web.expasy.org/compute_pi/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ebi.ac.uk/Tools/msa/clustalo
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2.4. Quantitative Real-Time Reverse Transcription-PCR (qRT-PCR)

Total RNA was isolated from the tissues of T. chinensis using the EASYspin plant total RNA
isolation kit (Aidlab RN38, Beijing, China). RNA integrity and quantity were determined by 1.2%
agarose gel electrophoresis and NanoDrop 1000C spectro-photometer (Thermo Scientific, Waltham,
MA, USA). Reverse transcription was performed using the FastKing RT Kit (with gDNase) (TIANGEN,
Beijing, China). The qRT-PCR are performed with SYBR® rapid quantitative PCR Kit (KAPA KK4601,
Pleasanton, CA, USA). Primers used for qRT-PCR are listed in Table S1. Tcactin was used as a reference
gene as described previously [16]. Gene expression levels were calculated according to the 2-∆∆Ct

method for the different tissues and aged xylem samples [17,18].

2.5. HPLC Analysis of Anthocyanin Contents

The conventional extraction method of anthocyanin is solvent extraction. Hydrochloric acid
can prevent the degradation of non-acylation anthocyanin in the extraction process, and ultrasonic
waves can improve the extraction efficiency [19]. Total anthocyanin was extracted by the ultrasonic
assisted method [20]. Briefly, 200 mg of xylem was ground into powder in liquid nitrogen; the powder
was then transferred into 2 mL methanol with 1% HCl at 4 ◦C protected from light for 12 h. After
sufficient mixing, 2 mL of ddH2O and 4 mL chloroform were put in the solution and then centrifuged
at 12,000 g for 20 min after ultrasonic treatment with an ultrasonic extractor for 1 h. The LC-20AD
system (Shimadzu, Japan) and phenominex lunar C18 (4.6 µm × 250 mm) was used to analyze
anthocyanin content according to previous studies [21,22]. The standard curve was established with
cyanidin-3-glucoside chloride (Solarbio, Beijing, China) by the same method. Anthocyanin contents
were calculated according to the standard curve.

3. Results

3.1. Identification of Genes Involved in Anthocyanin Biosynthesis in T. chinensis

In order to identify genes in the pathway of anthocyanin biosynthesis in T. chinensis, BLAST
analysis of protein sequences of these genes in Arabidopsis against the assembly transcriptome
data of the T. chinensis was performed using the tBLASTn algorithm [23]. A total of 25 genes were
identified with 22 of these genes not previously identified. They belonged to nine families including
CHS, CHI, F3’H, F3’5’H, F3H, LAR, DFR, ANR, and ANS. The identified genes are named TcCHS,
TcCHI1-TcCHI2, TcF3’H1-TcF3’H4, TcF3’5’H, TcF3H1-TcF3H5, TcLAR1-TcLAR2, TcDFR1-TcDFR8, TcANR,
and TcANS (Table 1). Sequence feature analysis of these genes included the length of ORFs (open
reading frames), the molecular weight (Mw), the size of deduced proteins, and the theoretical pI
which are listed in Table 1. All the deduced protein sequences contained the conserved domains
(Figures S1–S3), suggesting that they are the likely proteins involved in anthocyanin biosynthesis
pathway in T. chinensis. Analysis of the deduced protein sequences against the Nr/nt database using
BLAST algorithm showed that TcCHI2 has extremely high identities (98.58%) with TcCHI (AIQ85030.1,
unpublished). TcF3’H4 and TcF3’5’H have 99.61% and 100% identity with CYP75B115 (ATG29929.1)
and CYP75A77 (ATG29931.1) that were previously predicted from transcriptome data [24]. The other
22 genes were identified in this study.
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3.2. Phylogenetic Analysis and Expression Pattern of TcCHS

CHS plays a crucial role in anthocyanin biosynthesis pathway, and it is also one of the decisive
factors affecting anthocyanin content [25]. CHS is one member of the type III polyketide synthase (PKS)
family with two conserved domains (Chal_sti_synt_N and Chal_sti_synt_C). The Chal_sti synt_C
domain is similar to domains of thiolase and beta-ketoacyl synthase. Only one CHS was identified in T.
chinensis. The TcCHS contained two conserved motifs (Figure S1) and shared high sequence similarities
with other plant species. Multiple protein sequence alignment of TcCHS and CHSs from other plant
species indicated that all of them had the catalytic triad (Cys164-His303-Asn336) (Figure S4), which
is the core active site of the type III PKS. In addition, the “gatekeepers” Phe-215 and Phe-265 and
some inert active site residues such as Thr-132, Ser-133, Thr-194, Thr-197, Gly-256, and Ser-338 are
highly conserved in the plants used in this study, except for Thr-197 of PcCHS which is replaced by
Cys [26,27].

Table 1. Sequence features of genes related to anthocyanin biosynthesis in Taxus chinensis.

Gene Name ORF (bp) AA Len Mw (Da) pI

TcCHS 1191 396 43296.04 6.53
TcCHI1 1275 424 45693.46 5.26
TcCHI2 636 211 23169.55 5.08
TcF3H1 1083 360 40313.02 5.36
TcF3H2 1074 357 40289.22 6.09
TcF3H3 1020 339 37757.17 5.86
TcF3H4 1239 412 46216.48 5.79
TcF3H5 1110 369 41338.03 6.14
TcF3’H1 1518 505 57751.83 7.28
TcF3’H2 1521 506 57549.63 6.38
TcF3’H3 1518 505 56727.74 8.99
TcF3’H4 1551 516 57159.38 6.78
TcF3’5’H 1515 504 56269.67 9.33
TcDFR1 969 322 35761.2 5.63
TcDFR2 915 304 33774.41 5.6
TcDFR3 1053 350 38957.03 5.78
TcDFR4 1023 340 37318.85 5.49
TcDFR5 975 324 35997.33 6.33
TcDFR6 960 319 35470.71 5.95
TcDFR7 933 310 34393.59 5.44
TcDFR8 847 280 31009.74 5.83
TcANS 1050 349 39181.75 5.53
TcANR 1053 350 37627.39 7.6
TcLAR1 966 321 35852.81 5.35
TcLAR2 1215 404 44577.57 6.01

Amino acid sequences of CHS from 15 plant species including dicots, monocots, and gymnosperms
were used to conduct the phylogenetic tree. The phylogenetic tree indicated that the CHSs were clustered
into three clades (Figure 2a). TcCHS was included in clade1 with GbCHS, GmCHS, MdCHS, AtCHS,
CsCHS, MsCHS, PtCHS, VvCHS, TuCHS, OsCHS, and GaCHS. Clade1 included both angiosperms
and gymnosperms CHSs, indicating the function of these CHSs is highly conserved and consistent
with a previous study [12]. The expression levels of TcCHS in roots, leaves, phloem, and xylem were
analyzed using qPCR (Figure 2b). TcCHS exhibited the highest expression level in xylem, followed by
phloem and leaves, with the lowest in roots. This indicated that TcCHS may play an important role in
the development of xylem.
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Figure 2. The phylogenetic relationship of TcCHS and expression patterns of TcCHS: (a) The phylogenetic
relationship of CHSs in plants. CHS of T. chinensis was shown with underline. The sequences
analyzed include Arabidopsis thaliana AtCHS (NP_196897.1); Vitis vinifera VvCHS (NP_001267879.1);
Glycine max GmCHS (NP_001347353.1); Populus trichocarpa PtCHS (ABD24226.1); Nicotiana tabacum
NtCHS1, NtCHS2, NtCHS3, NtCHS4, NtCHS5, and NtCHS6 (ANA78327.1, ANA78328.1, ANA78329.1,
ANA78330.1, ANA78331.1, and ANA78438.1), Camellia sinensis CsCHS (AAT75302.1); Medicago
sativa MsCHS (AAB41559.1); Malus domestica MdCHS (AGE84303.1); Gossypium arboreum GaCHS
(KHG25969.1); Zea mays ZmCHS (NP_001149508.1); Oryza sativa OsCHS (BAA19186.2); Triticum urartu
TuCHS (EMS66719.1); Sorghum bicolor SbCHS (XP_002441839.1); and Ginkgo biloba GbCHS (AAT68477.1).
(b) The expression levels of TcCHS in leaves (Le), phloem (Ph), xylem (Xy), and roots (Rt): The expression
level in roots was arbitrarily set to 1. Error bars represent the standard deviation of three technical PCR
replicates. One-way ANOVA was calculated using IBM SPSS 19 software. p < 0.01 was considered
statistically significant and was represented by asterisks.
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3.3. Phylogenetic Analysis and Expression Pattern of TcCHIs

CHI generally catalyzes naringenin chalcone into the flavanone (2S)-naringenin. It can be divided
into four types including type I, type II, type III, and type IV. We identified two putative CHI genes
from T. chinensis. The TcCHIs contained the conserved domain Chalcone_3 (pfam02431) (Figure S1).
Multiple amino acid sequence alignments of TcCHIs and type I (AtCHI), type II (MsCHI), type III
(AtFAP1), and type IV (AtCHIL) were performed [12,28,29] (Figure S5). Due to TcCHI1 possessing two
Chalcone_3 domains, we separated it into two fragments for the alignment. The result showed that the
two fragments of TcCHI1 share high sequence identity with AtCHI, indicating that TcCHI1 belongs to
a type I CHI. Doubling of the functional domain might be caused by gene duplication. TcCHI2 has
high sequence identity with AtCHIL, indicating it belongs to a type IV CHI.

Amino acid sequences of CHI from plant species as previously used in CHS were used to conduct
the phylogenetic tree except for Ginkgo biloba as no identified CHI from gymnosperms has been reported.
The phylogenetic tree showed that the CHIs were divided into four clades (Figure 3a) and that most of
the CHIs belong to type I, which is consistent with two previous studies [29,30]. TcCHI1 and TcCHI2
were clustered with AtCHI (type I CHI) and AtCHIL (type IV CHI), respectively, which is consistent
with the multiple sequence alignment. There are some differences in the four types of CHI with regards
to their biological functions [28]. Analysis of the qRT-PCR data showed that the two TcCHIs were
expressed in all tissues of T. chinensis but exhibited different expression patterns. TcCHI1 was highly
expressed in leaves, followed by roots and xylem, and less in phloem, whereas TcCHI2 showed the
highest expression in xylem, followed by leaves and roots, and lower in phloem (Figure 3b).

3.4. Phylogenetic Analysis and Expression Pattern of TcF3Hs and TcANS

F3H and ANS contain two conserved domains, including DIOX_N (pfam03171) and 2OG-FeII_Oxy
(pfam14226) (Figure S1), and they belong to the 2-oxoglutarate dependent dioxygenase (2-ODD)
superfamily. The DIOX_N domain is highly conserved in the N-terminal region with 2-oxoglutarate/Fe
(II)-dependent dioxygenase activity [12,31–33]. F3H catalyzes naringenin, eriodictyol, and
dihydrotricetin into dihydrokaempferol, dihydroquercetin, and dihydromyricetin. ANS catalyzes
leucopelargonidin, leucocyanidin, and leucodelphinidin into pelargonidin, cyanidin, and delphinidin.
We identified five putative F3H genes and one putative ANS gene from T. chinensis. The deduced
amino acid sequences were aligned with F3Hs and ANSs of other plant species; the result showed that
all of TcF3Hs and TcANS have the conserved H-x-D-xn-H motif (Figures S6 and S7) [34,35]. TcF3H1 and
TcF3H2 have higher identity with AtF3H, whereas TcF3H3, TcF3H4, and TcF3H5 have higher identity
with GbF3H. TcANS contains enzyme-specific active sites of ANS including Arg-298, which form the
electrostatic interaction, and Phe-304, which binds the A-ring of the substrate and the “lip”structure
(Val-235, Phe-334, IIe-338, and Leu-342) except for Val-235, which was replaced by Ile in T. chinensis.
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Figure 3. The phylogenetic relationship of TcCHIs and expression patterns of TcCHI genes: (a) The
phylogenetic relationship of CHIs in plants. CHIs of T. chinensis were shown with underlines.
The sequences analyzed include Arabidopsis thaliana AtCHI1, AtCHI2, AtCHIL, and AtFAP1
(NP_191072.1, NP_201423.2, NP_568154.1, and NP_567140.1); Vitis vinifera VvCHI (CAA53577.1);
Glycine max GmCHI (NP_001351382.1); Populus trichocarpa PtCHI (XP_002315258.1); Nicotiana tabacum
NtCHI (BAE48085.1); Camellia sinensis CsCHI (AGC30727.1); Medicago sativa MsCHI (AAB41524.1);
Malus domestica MdCHI (XP_028956659.1); Gossypium arboreum GaCHI (KHG18033.1); Zea mays ZmCHI
(NP_001144002.2); Oryza sativa OsCHI (AAO65886.1); Triticum urartu TuCHI (AHI94947.1); and Sorghum
bicolor SbCHI (XP_002463631.1). (b) The expression levels of TcCHIs in leaves (Le), phloem (Ph), xylem
(Xy), and roots (Rt): The expression level in roots was arbitrarily set to 1. Error bars represent the
standard deviation of three technical PCR replicates. One-way ANOVA was calculated using IBM SPSS
19 software. p < 0.01 was considered statistically significant, and there was no significant difference
between different tissues.

The phylogenetic tree was constructed by using amino acid sequences of F3Hs and ANSs from
plant species that are partially different from CHS, as there was no identified F3H and ANS from
the same plant species. The phylogenetic trees showed that all the TcF3Hs and TcANS are clustered
with gymnosperm F3Hs and ANSs (Figure 4a). TcF3H1 clustered with F3Hs from Pinus radiata, Picea
sitchiensis, and Picea glauca, whereas TcF3H3, TcF3H4, and TcF3H5 were clustered with F3H from Ginkgo
biloba (Figure 4a), implying possible different roles. The analysis of expression revealed that TcF3Hs
had different expression patterns in different tissues (Figure 4b). TcF3H1 showed similar expression
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levels in each tissue, whereas TcF3H3 and TcF3H4 showed prominently high expression levels in roots
and phloem, respectively. In addition, TcF3H2 showed prominently low expression levels in xylem
and roots. The expression level of TcF3H5 increased slightly in leaves, phloem, xylem, and roots. These
results indicate that different TcF3Hs may have different functions in T. chinensis. TcANS exhibited high
expression levels in phloem and xylem, implying that TcANS may be a candidate gene that participates
in the color formation of red brown bark (Figure 4b).

3.5. Phylogenetic Analysis and Expression Pattern of TcF3’Hs and TcF3’ 5’H

F3’H and F3’5’H belong to the cytochrome P450-dependent monooxygenase superfamily and
are haem-thiolate proteins involved in the oxidative degradation of various compounds [36,37].
They catalyze 3’ or 3’,5’ sites of the benzene ring in dihydrokaempferol oxygenated into taxifolin
or dihydromyricetin. Four possible TcF3’Hs and one TcF3’5’H gene were identified in T. chinensis.
All the deduced proteins contained p450 domain (pfam00067) (Figure S2), which belonged to the
cytochrome P450 superfamily. The p450 domain usually contained conserved motifs including
the proline-rich “hinge” region, oxygen binding pocket motif, E-R-R motif, and heme-binding
domain [38,39]. Alignment of TcF3’Hs, TcF3’5’H and F3’Hs, F3’5’Hs from other plant species showed
that the TcF3’Hs and TcF3’5’H contained the conserved motifs mentioned above (Figures S8 and
S9). The proline-rich “hinge” region (PPGXXXP) is conserved at both ends, which is consistent with
previous work [37]. The oxygen binding pocket motif (AGTDTSS) is almost completely conserved for
F3’5’Hs but not for F3’Hs. It is replaced by “GGTESSA” for TcF3’H1, DcF3’H, and AcF3’H, while it
is replaced by “AGTDTAS” and “GSTDTTS” for TcF3’H2 and TcF3’H3, respectively. Similar to the
E-R-R motif and heme-binding domain, it is completely conserved for F3’5’Hs, whereas it has a one
amino acid difference for F3’Hs. In addition, all of F3’5’Hs have the two conserved sequences “GHML”
and “GLALQK” and F3’Hs do not. The differences in all these sequences may be responsible for the
substrate specificity of the two enzymes [40].

Phylogenetic trees were constructed with F3’Hs and F3’5’Hs from plant species, of which
F3’H and F3’5’H genes have been identified, including four TcF3’Hs and one TcF3’5’H (Figure 5a).
TcF3’H1-TcF3’H2 clustered together with F3’H of Pohlia nutans (lower plant), whereas TcF3’H3-TcF3’H4
clustered together with F3’Hs of Plectranthus scutellarioides (dicot). TcF3’5’H clustered together with
F3’5’Hs of Glycine max and Salvia miltiorrhiza. TcF3’H1 showed higher expression level in roots than
other tissues, while TcF3’H2 showed the lowest expression level in roots (Figure 5b). TcF3’H3 exhibited
higher expression level in leaves and phloem than that in roots and xylem; TcF3’H4 exhibited lower
expression level in xylem than that in leaves, phloem, and roots. This possibly reflects the functional
diversity of TcF3’Hs in T. chinensis. TcF3’5’H exhibited lower expression level in leaves than that in
phloem, xylem, and roots (Figure 5b). The different spatial and temporal expression patterns of TcF3’Hs
and TcF3’ 5’H indicate possibly different roles in the growth process of T. chinensis.
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Figure 4. The phylogenetic relationship of TcF3Hs and TcANS and expression patterns of TcF3H and
TcANS genes: (a). The phylogenetic relationship of F3Hs and ANSs in plants. F3Hs and ANS of T.
chinensis were shown with underlines. The sequences analyzed include Arabidopsis thaliana AtF3H
(NP_190692.1), Boehmeria nivea BnF3H (QBC98316.1), Ipomoea nil InF3H (BAA21897.1), Clivia miniata
CmF3H (ARI70437.1), Lepidium apetalum LaF3H (ARA73611.1), Triticum aestivum TaF3H (ABR13013.1),
Daucus carota DcF3H (AAD56577.1), Anthurium andraeanum AaF3H (ABI50233.1), Phyllanthus emblica
PeF3H (AGT79807.1), Nelumbo nucifera NnF3H (AGT56413.1), Pinus radiata PrF3H (AGY80772.1),
Ginkgo biloba GbF3H (ACY00393.1), Camellia nitidissima CnF3H (ADZ28514.1), Camellia sinensis
CsF3H (AAT68774.1), Persea americana PaF3H (AAC97525.1), Prunus persica PpF3H (AQX36284.1),
Hololachna songarica HsF3H (AEY81365.1), Glycine max GmANS (NP_001239794.1), Vitis vinifera
VvANS (ABV82967.1), Theobroma cacao ThcANS (ADD51355.1), Brassica juncea BjANS (ACH58398.1),
Arabidopsis thaliana AtANS (AEI99590.1), Allium cepa AcANS (ABM66367.1), Acer palmatum ApANS
(AWN08246.1), Citrus sinensis CsANS (NP_001275784.1), Rubus idaeus RiANS (AQP31154.1), Camellia
sinensis CasANS (ALF36156.1), Rosa rugosa RrANS (AKT74337.1), Ribes nigrum RnANS (AGI16383.1),
Dahlia pinnata DpANS (AIZ70322.1), Paeonia suffruticosa PsANS (AIL29327.1), Solanum tuberosum StANS
(NP_001274859.1), Lycoris chinensis LcANS (AGD99672.1), Paeonia lactiflora PlANS (AFI71900.1), Ipomoea
nil InANS (BAB71811.1), Oryza sativa OsANS (CAA69252.1), Ipomoea batatas IbANS (ACT31916.1), and
Magnolia sprengeri MsANS (AHU88620.1). (b) The expression levels of TcF3Hs and TcANS in leaves (Le),
phloem (Ph), xylem (Xy), and roots (Rt): The expression level in roots was arbitrarily set to 1. Error bars
represent the standard deviation of three technical PCR replicates. One-way ANOVA was calculated
using IBM SPSS 19 software. p < 0.01 was considered statistically significant and was represented
by asterisks.
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3.6. Phylogenetic Analysis and Expression Pattern of TcDFRs and TcANR

DFR catalyze dihydroflavonols into leucoanthocyanidins, which are the substrates of ANS.
The products of ANS have two possible outcomes: one is conversion into anthocyanins by chemical
modification, and the other is the production of flavane-3-alcohol catalyzed by ANR. DFR and ANR
belong to the NAD/NADH-dependent epimerase family, which use nucleotide sugar as substrate for
a variety of chemical reactions [41–43]. All of TcDFRs and TcANR contained the conserved domain
epimerase (pfam01370) (Figure S3). DFR has three kinds of substrates including dihydrokaempferol,
dihydroquerceti, and dihydromyricetin, which make contributions to different colors, in most plants,
whereas DFR reduces the combining capability of substrates that cannot produce orange such as
Petunia [44,45]. Multiple amino acid sequence alignments of GaDFR, MnDFR, GbDFR, VvDFR,
AtDFR, and TcDFRs indicated that all TcDFRs have the enzyme specific active sites including Ser-128,
Tyr-163, and Lys-167 (numbers refer to VvDFR) (Figures S10 and S11) [42]. There is a substrate specific
recognition region between Ser-128 and Tyr-163 of which was reported that the conversion of Asn-133 to
Asp-133 made the enzyme lose the combining capability of dihydrokaempferol as a substrate. TcDFR3
has Asn-133 in the substrate-specific recognition region alike that of GbDFR, VvDFR, and AtDFR,
indicating that they can combine all the three substrates. Morus notabilis may lack the ability since
MnDFR has Asp-133 in the recognition region. In addition, the other TcDFRs and GaDFR (Gossypium
arboreum) have neither Asn nor Asp in the specific site, indicating that there are different substrate
specific recognition mechanisms of DFR. Multiple amino acid sequence alignment of TcANR and ANRs
from other species showed they were highly conserved. TcANR had active sites (Ser-130, Tyr-167, and
Lys-171) and the NAD/NADH combination domain (G-G-X-G-X-X-A).

Amino acid sequences of DFR and ANR from plant species as previously used in CHS were used
to conduct the phylogenetic tree, including eight TcDFRs and one TcANR, respectively (Figure 6a). It
showed that TcDFR3 is closely related to GbDFR (Ginkgo biloba), which is consistent with the results
of a previous study [45]. The other seven TcDFRs were closely related to angiosperm plants such as
GaDFR (Gossypium arboreum), GmDFR (Glycine max), and NtDFR (Nicotiana tabacum) especially for
TcDFR1, TcDFR2, and TcDFR5. TcANR clustered with PsANR (Picea sitchensis) and GbANR (Ginkgo
biloba), which are gymnosperms. The analysis of expression profiles revealed that TcDFR5 exhibited
similar expression in the tissues analyzed; TcDFR2 and TcDFR6 exhibited prominently high expression
level in leaves, TcDFR3 and TcDFR7 exhibited mainly high expression level in roots and TcDFR1, and
TcDFR4 exhibited high expression levels in phloem and xylem (Figure 6b). In addition, TcDFR8 had
almost no expression in leaves, phloem, and xylem, except for roots. The expression level of TcANR
exhibited no significant difference among the different tissues (Figure 6b). Together with the expression
data, the conservation and diversity of TcDFRs indicate their possible important role in anthocyanin
biosynthesis in T. chinensis.
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Figure 5. The phylogenetic relationship of TcF3’Hs and TcF3’5’H with F3’Hs and F3’5’Hs of
other plant species and expression patterns of TcF3’Hs and TcF3’5’H genes: (a) The phylogenetic
relationship of F3’Hs and F3’5’Hs in plants. F3’Hs and F3’5’H of T. chinensis were shown with
underlines. The sequences analyzed include Arabidopsis thaliana AtF3’H (NP_196416.1), Pyrus
pyrifolia PpF3’H (AWW17197.1), Acacia koa AkF3’H (JAI52338.1), Juglans sigillata JsF3’H (AYK27187.1),
Canarium album CaF3’H (ATJ26448.1), Morus alba MaF3’H (AOV62762.1), Garcinia mangostana GmaF3’H
(ACM62746.1), Glycine max GmF3’H (NP_001237015.1), Vitis vinifera VvF3’H (BAE47006.1), Plectranthus
scutellarioides PsF3’H (APT37063.1), Matthiola incana MiF3’H (AAG49301.1), Pohlia nutans PnF3’H
(AHI15955.1), Sorghum bicolor SbF3’H (AAV74195.1), Brassica napus BnF3’H (ABC58723.1), Raphanus
sativus RsF3’H (BAX90121.1), Trifolium pratense TpF3’H (PNY13215.1), Dracaena cambodiana DcF3’H
(AYM47547.1), Egeria densa EdF3’H (BAO56861.1), Vitis amurensis VaF3’H (ACN38268.1), Glycine max
GmF3’5’H (NP_001236632.2), Epimedium sagittatum EsF3’5’H (ADE80942.1), Cyclamen persicum CpF3’5’H
(ACX37698.1), Solanum pennellii SpF3’5’H (XP_015059023.1), Vitis vinifera VvF3’5’H (RVW36344.1),
Petunia axillaris PaF3’5’H (AUI38393.1), Salvia miltiorrhiza SmF3’5’H (AWX67419.1), Nemophila menziesii
NmF3’5’H (BBA68555.1), and Camellia sinensis CsF3’5’H (ASU87427.1). (b) The expression levels of
TcF3’Hs and TcF3’5’H in leaves (Le), phloem (Ph), xylem (Xy), and roots (Rt): The expression level
in roots was arbitrarily set to 1. Error bars represent the standard deviation of three technical PCR
replicates. One-way ANOVA was calculated using IBM SPSS 19 software. p < 0.01 was considered
statistically significant and was represented by asterisks.
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Figure 6. The phylogenetic relationship of TcDFRs and TcANR with DFRs and ANRs of other plant
species and expression patterns of TcDFRs and TcANR genes: (a) The phylogenetic relationship of
DFRs and ANRs in plants. DFRs and ANR of T. chinensis were shown with underlines. The sequences
analyzed include Arabidopsis thaliana AtDFR (NP_199094.1), Vitis vinifera VvDFR (NP_001268144.1),
Glycine max GmDFR (NP_001236658.1), Populus trichocarpa PtDFR (XP_006383711.2), Nicotiana tabacum
NtDFR (AHZ08759.1), Camellia sinensis CsDFR (AAT66505.1), Medicago sativa MsDFR (AEI59122.1),
Malus domestica MdDFR (AAD26204.1), Gossypium arboreum GaDFR (KHG24485.1), Zea mays ZmDFR
(NP_001152467.2), Oryza sativa OsDFR (BAA36183.1), Triticum urartu TuDFR (EMS68193.1), Sorghum
bicolor SbDFR (XP_002440593.1), Ginkgo biloba GbDFR (AGR34043.1), Vitis vinifera VvANR (BAD89742.1),
Glycine max GmANR (NP_001241913.2), Populus trichocarpa PtANR (XP_002317270.2), Nicotiana tabacum
NtANR (XP_016512400.1), Camellia sinensis CsANR (AHJ11240.1), Medicago sativa MsANR (ADK95116.1),
Malus domestica MdANR (NP_001280930.1), Gossypium arboreum GaANR (NP_001316937.1), Zea mays
ZmANR (ONM35828.1), Oryza sativa OsANR (XP_015637099.1), Triticum urartu TuANR (EMS67269.1),
Sorghum bicolor SbAN R(XP_002447157.1), and Ginkgo biloba GbANR (AAU95082.1). (b) The expression
levels of TcDFRs and TcANR in leaves (Le), phloem (Ph), xylem (Xy), and roots (Rt): The expression
level in roots was arbitrarily set to 1. Error bars represent the standard deviation of three technical PCR
replicates. One-way ANOVA was calculated using IBM SPSS 19 software. p < 0.01 was considered
statistically significant and was represented by asterisks.
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3.7. Phylogenetic Analysis and Expression Pattern of TcLARs

LAR is a NADPH-dependent enzyme that catalyzes leucoanthocyanidin into (+)-flavane-3-alcohol,
which is the precursor of procyanidin [46]. LAR has been identified and characterized by the conserved
domain NmrA (pfam05368) in a number of plant species such as Vitis vinifera, Malus domestica, and
Medicago truncatula, and the crystal structure from Vitis vinifera has been analyzed [47–50]. Ser-118,
Lys-140, Ile-162, and Asp-98 are residues associated with NADPH binding. In this study, we identified
two TcLARs. Sequence feature of TcLARs is shown in Table 1. The deduced TcLAR proteins contain the
NmrA domain (Figure S2) and Ser-118, Lys-140, and Ile-162 residues. It has been shown that Asp-98 is
conserved in VvLAR, FtLAR, CsLAR, MrLAR, PaLAR, and PtLAR but is replaced by Asn, Glu, and Ser
in CasLAR, TcLAR1, and TcLAR2 (Figure S12). In addition, Tyr-137 and His-122 are associated with
OH-7 binding site; Met-136, Val-269, and Phe-272 are associated with A-C ring binding site; and Gly-93
and Met-136 are associated with the B-ring binding site. TcLARs all have the enzyme active residues
except Met-136, which is replaced by Phe, similar to PaLAR and PtLAR.

Phylogenetic trees were constructed with LARs from plant species of which LAR genes have
been identified. The phylogenetic tree revealed that the LARs are divided into three clades: clade 1
(monocots), clade 2 (gymnosperms), and clade 3 (dicots) (Figure 7a). TcLARs and other gymnosperms
LARs clustered together, which is consistent with the genetic classification of plants. The expression
patterns of TcLAR1 and TcLAR2 are different in different tissues (Figure 7b). The expression levels of
TcLAR1 in leaves, xylem, and phloem were significantly higher than that in root, while the expression
level of TcLAR2 in roots was higher than that in other tissues, suggesting TcLAR1 and TcLAR2 may
have different gene functions.

3.8. Correlation Analysis of the Expression of Genes Involved in Anthocyanin Biosynthesis and
Anthocyanin Accumulation

In order to investigate the relationship between the expression levels of genes involved in
anthocyanin biosynthesis and anthocyanin accumulation, the content of anthocyanin and the expression
level of genes involved in anthocyanin biosynthesis of xylem ranging in age between one to four
years in T. chinensis was measured by HPLC; 1% methanol hydrochloric acid was used as solvent
in combination with ultrasonic extractor-assisted extraction at low temperature and dark conditions
to obtain the best extraction. The results showed that one-year-old xylem had relatively higher
anthocyanin content, which increased gradually from two-year-old to four-year-old xylem (Figure 8a).
The chromatographic data is shown in Supplementary Table S8. The one-year-old xylem may contain
more chlorophyll, covering up some red pigments that make the one-year-old branches appear green.

Expression levels of genes involved in anthocyanin biosynthesis in T. chinensis were analyzed
using qRT-PCR (Figure 8b,c). The results showed that TcCHS exhibited higher expression levels in
one-year-old xylem than any other sample. TcCHI1 and TcCHI2 both exhibit higher expression levels
in one-year-old xylem than others, especially for TcCHI2. This may suggest that the enhanced effect
on anthocyanin biosynthesis in one-year-old xylem is also higher than that in older xylem. TcF3H1,
TcF3H2, and TcF3H3 exhibited higher expression levels in one-year-old xylem than older xylem; TcF3H4
and TcF3H5 exhibited similar expression level in the different ages of xylem, except for relatively high
level of TcF3H4 in four-year-old xylem. TcF3’H2 and TcF3’H4 exhibited higher expression levels in
one-year-old xylem and three-year-old xylem, respectively, while TcF3’H1 and TcF3’H3 exhibited higher
expression levels in four-year-old xylem. TcF3’5’H exhibited higher expression level in one-year-old
xylem than that in older xylem. TcDFRs exhibited similar expression patterns except for relatively high
levels for TcDFR1, TcDFR4, and TcDFR8 in one-year-old xylem. TcANR exhibited similar expression
level in each tissue and higher levels in one-year-old xylem than other ages. TcLAR1 showed similar
expression, while TcLAR2 showed the highest expression in one-year-old xylem. Taken together,
the anthocyanin accumulation was correlated with the expression levels of TcDFR1, TcANS, TcF3’H1,
and TcF3’5’H, suggesting these genes may play a vital role in the anthocyanin biosynthesis of xylem.
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Figure 7. The phylogenetic relationship of TcLARs with LARs of other plant species and expression
patterns of TcLARs genes: (a) The phylogenetic relationship of LARs in plants. LARs of T. chinensis
were shown with underlines. The sequences analyzed include Vitis vinifera VvLAR1 (NP_001267887.1),
Vitis vinifera VvLAR2 (NP_001268089.1), Glycine max GmLAR(NP_001352050.1), Fagopyrum tataricum
FtLAR (AHA14498.1), Zea mays ZmLAR (NP_001148881.2), Phaseolus coccineus PcLAR (CAI56322.1),
Lotus uliginosus LuLAR (AAU45392.1), Desmodium uncinatum DunLAR (CAD79341.1), Ricinus communis
RcLAR (XP_002524404.2), Picea abies PaLAR1 (AHB89627.1), Picea abies PaLAR4 (AIA08662.1), Morella
rubra MrLAR (AIX02997.1), Pinus taeda PtLAR (CAI56321.1), Camellia sinensis CsLAR (AZJ17294.1),
Populus trichocarpa PotLAR (XP_024467009.1), Morus notabilis MnLAR (XP_010110804.1), Camellia
sinensis CasLAR (ASU87431.1), Jatropha curcas JcLAR (XP_012082024.1), and Prunus persica PpLAR
(XP_007222274.1). (b) The expression levels of TcLARs in leaves (Le), phloem (Ph), xylem (Xy), and roots
(Rt): The expression level in roots was arbitrarily set to 1. Error bars represent the standard deviation of
three technical PCR replicates. One-way ANOVA was calculated using IBM SPSS 19 software. p < 0.01
was considered statistically significant and was represented by asterisks.
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Figure 8. Accumulation of anthocyanins and expression levels of genes involved in anthocyanin
biosynthesis in differently aged xylem in T. chinensis: (a) Accumulation of anthocyanins in differently
aged xylem; 1Y, 2Y, 3Y, and 4Y represent one-year-old xylem, two-year-old xylem, three-year-old
xylem, and four-year-old xylem, respectively. Error bars represent the standard deviation of three
biological replicates. One-way ANOVA was calculated using IBM SPSS 19 software. p < 0.01 was
considered statistically significant and was represented by asterisks. (b) Expression levels of TcDFR1,
TcANS, TcF3’H1, and TcF3’5’H in differently aged xylem: The expression level in four-year old xylem
was arbitrarily set to 1. Error bars represent the standard deviation of three technical PCR replicates.
(c) Expression levels of genes involved in anthocyanin biosynthesis in different aged xylem. Different
colors represent different expression levels. The expression level of each gene is compared to Tcactin×100.

4. Discussion

Anthocyanins are an important type of secondary metabolites which play significant roles in
colored plant tissues, such as flowers, fruits, and wood. Although the genes related to biosynthesis of
anthocyanin have been identified in many plant species, they have not been systematically identified
in T. chinensis. In this study, up to 25 genes putatively related to anthocyanin biosynthesis were
identified in T. chinensis, including TcCHS, TcCHI1-TcCHI2, TcF3H1-TcF3H5, TcF3’H1-TcF3’H4, TcF3’5’H,
TcDFR1-TcDFR8, TcANS, TcANR, and TcLAR1-TcLAR2. Only three of these have been previously
reported. The sequence features and tissue-specific expression patterns of these genes in T. chinensis
were analyzed. The conserved domains of deduced amino acid sequences of these genes and their
phylogenetic relationships were performed and found to have high identity and close phylogenetic
relationships with the corresponding genes from gymnosperms.

T. chinensis is thought to have evolved in the Paleozoic era approximately 300 million years ago,
surviving the harsh environment of the Quaternary glacier period. It belongs to relict plants of the
Tertiary period and has a longer evolutionary period than angiosperms. Analysis of phylogenetic trees
conducted in this study showed that most of the identified T. chinensis genes are located at the root
of the phylogenetic tree, which is consistent with the evolutionary relationship between T. chinensis
and other angiosperms [51,52]. However, different members in different gene families have different
evolutionary relationships due to genetic differentiation [53]. Genes such as TcF3’H1 and TcLAR2 of
which deduced proteins were closely related to angiosperms in phylogenetic trees may have more
variation in their selection process. The gene family originated by gene duplication and divergence
from a common ancestor. Interestingly, TcCHI1 possesses two Chalcone_3 domains in a tandem array
in T. chinensis, whereas one CHI gene contains only one conserved domain similar to that found in other
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species. The sequence analysis of Lotus japonicus showed that there were four CHI genes in a tandem
array in its genome [29]. Since T. chinensis precedes Lotus japonicus in the evolutionary relationship, we
speculate that the ancestor gene of CHI family existed with several tandemly conserved domains and
became a cluster of tandem genes through the long period of evolution. The number of genes identified
in anthocyanin biosynthesis-related gene families in T. chinensis were different from other plant species
such as Arabidopsis thaliana, salvia miltiorrhiza, and Oryza sativa, indicating that genes encoding the same
enzyme may have different evolution patterns in different species (Table S7) [12,28,54], for example,
the number of T. chinensis DFR genes is significantly more than the number in Arabidopsis thaliana,
Salvia miltiorrhiza, and Oryza sativa, suggesting that more gene duplication events occurred for DFR
genes in T. chinensis (Table S7).

The anthocyanin biosynthesis pathway has been extensively studied in plants. A number of studies
about transcriptomics and metabonomics in anthocyanin biosynthesis revealed that the expression
levels of structural genes play an important role in anthocyanin accumulation, especially DFR, ANS,
and F3H [55–58]. DFR and ANS are considered as very important enzymes in anthocyanin biosynthesis,
as they could direct the flavonoid flux into the anthocyanin branch [55–58]. Previous studies showed
that the expression levels of DFR, ANS, and F3H and some transcription factors were positively
correlated with anthocyanin accumulation. The expression levels of TcDFR1, TcDFR4, and TcDFR5
showed higher expression levels in phloem than in other tissues. Similarly, the expression levels
of TcDFR3and TcDFR8 showed high expression in roots, possibility resulting in high anthocyanins
accumulation in phloem and root. This is consistent with the red bark and red root of T. chinensis.

The wood of T. chinensis has high commercial value because of its aesthetic appearance, straight
texture, high density, mechanical strength, rich elasticity, corrosion resistance, and purple red brown
colored wood. The color of the wood is an important trait reflecting its quality and economic value.
It has been shown that the formation of wood color is due to the existence of secondary metabolites
in heartwood, including different kinds of phenolic compounds [59]. In order to study the effect
of anthocyanin biosynthesis in wood formation, analysis of expression patterns of genes related
to anthocyanin biosynthesis and the accumulation of anthocyanins in differently aged xylem of T.
chinensis was conducted. Analysis of the expression levels of these genes in different tissues showed
different expression patterns, suggesting potential different functions. The expression levels of TcCHS,
TcANS, and TcDFR1 showed relatively higher in xylem than in other tissues. The expression levels
of TcDFR1, TcANS, TcF3’H1, and TcF3’5’H were observed to increase gradually from two-year-old
to four-year-old xylem, especially for TcDFR1 and TcF3’5’H that showed the highest expression
level in one-year-old xylem, which is consistent with the trend of anthocyanin content accumulation
(Figure 8a,b). In the flavonoid biosynthetic pathway, CHS, CHI, F3H, F3’H, and F3’5’H catalyze the
flavonol biosynthesis, whereas DFR, ANS, and ANR lead to anthocyanin and procyanidins biosynthesis.
F3’H and F3’5’H play primary roles in the diversification of anthocyanins through determining their
B-ring hydroxylation pattern. DFR is specific for substrates which affect the anthocyanin composition
and pigmentation [60]. ANS is a key enzyme for anthocyanin biosynthesis, which catalyzes the
conversion of leucoanthocyanidin into anthocyanidin [61]. Our results indicate that the accumulation
of xylem anthocyanins in T. chinensis has a close association with TcDFR1, TcANS, TcF3’H1, and TcF3’5’H
their expression levels not only are consistent with the trend of anthocyanin content but also showed
relatively high expression levels in xylem (Figure 8b,c), implying their potential important roles in
anthocyanin accumulation in xylem, which provides a framework for future research focused on
improved wood color. Another noteworthy result was that 14 of all the 25 genes exhibited the highest
expression level in one-year-old xylem, which had the highest content of anthocyanins. This may be
because one-year-old xylem as a young tissue has very high level of primary metabolism, which can
provide the raw material for secondary metabolism. These results provide insights into the genes
associated with wood color formation. Our results provide a basis for further research and possibly
the manipulation of the regulation and accumulation of anthocyanins in T. chinensis.
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Abbreviations

CHS chalcone synthase
CHI chalcone isomerase
F3H flavanone 3-hydroxylase
F3’H flavonoid 3’-hydroxylase
F3’5’H flavonoid 3’, 5’-hydroxylase
DFR dihydroflavonol 4-reductase
ANS anthocyanidin synthase
ANR anthocyanidin reductase
LAR leucoanthocyanidin reductase
NJ neighbor-joining
2-ODD 2-oxoglutarate dependent dioxygenase
pI theoretical isoelectric point
Mw molecular weight
NCBI the web of National Center for Biotechnology Information
1Y one-year-old xylem
2Y two-year-old xylem
3Y three-year-old xylem
4Y four-year-old xylem
ORF open reading frames
AA amino acids
HPLC High Performance Liquid Chromatography
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