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Abstract: Seed-flooding stress is one of the major abiotic constraints severely affecting soybean yield
and quality. Understanding the molecular mechanism and genetic basis underlying seed-flooding
tolerance will be of greatly importance in soybean breeding. However, very limited information is
available about the genetic basis of seed-flooding tolerance in soybean. The present study performed
Genome-Wide Association Study (GWAS) to identify the quantitative trait nucleotides (QTNs)
associated with three seed-flooding tolerance related traits, viz., germination rate (GR), normal
seedling rate (NSR) and electric conductivity (EC), using a panel of 347 soybean lines and the
genotypic data of 60,109 SNPs with MAF > 0.05. A total of 25 and 21 QTNs associated with all
three traits were identified via mixed linear model (MLM) and multi-locus random-SNP-effect mixed
linear model (mrMLM) in three different environments (JP14, HY15, and Combined). Among these
QTNs, three major QTNs, viz., QTN13, qNSR-10 and qEC-7-2, were identified through both methods
MLM and mrMLM. Interestingly, QTN13 located on Chr.13 has been consistently identified to be
associated with all three studied traits in both methods and multiple environments. Within the 1.0 Mb
physical interval surrounding the QTN13, nine candidate genes were screened for their involvement
in seed-flooding tolerance based on gene annotation information and available literature. Based on
the qRT-PCR and sequence analysis, only one gene designated as GmSFT (Glyma.13g248000) displayed
significantly higher expression level in all tolerant genotypes compared to sensitive ones under
flooding treatment, as well as revealed nonsynonymous mutation in tolerant genotypes, leading
to amino acid change in the protein. Additionally, subcellular localization showed that GmSFT
was localized in the nucleus and cell membrane. Hence, GmSFT was considered as the most likely
candidate gene for seed-flooding tolerance in soybean. In conclusion, the findings of the present study
not only increase our knowledge of the genetic control of seed-flooding tolerance in soybean, but will
also be of great utility in marker-assisted selection and gene cloning to elucidate the mechanisms of
seed-flooding tolerance.
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1. Introduction

Soybean [Glycine max (L.) Merr] is one of the most economically important crops, and is rich
in edible protein and oil. However, in recent years the changing global climate has resulted in
increased occurrence of flooding events [1]. Due to the transient and excessive rainfall or irrigation
with poor drainage, flooding stress has severely disrupted the crop growth and development, leading
to considerable losses in grain yields globally. The most visible symptoms of flooding-stress include
leaf chlorosis, necrosis, stunting, defoliation and plant death. However, to overcome the challenges
of flooding stress, plants have evolved different mechanisms of physiological and morphological
adaptations, including the formation of adventitious roots, aerenchyma development in roots, enhanced
ethylene production and up-regulation of genes associated with leaf photosynthesis, ROS-scavenging
and anaerobic metabolism [2–4]. However, the potential adaptive mechanisms involved in plants
for responding to flooding stress are not well known. Previous study has reported that soybean is
relatively susceptible to flooding stress at different growth stages such as germination, vegetative and
reproductive stages [5], and flooding stress is a major limiting factor for normal soybean growth and
grain yield. For example, flooding stress has been reported to reduce overall soybean yield by 17%–43%
at the vegetative growth stage, and 50%–56% at the reproductive stage [6]. Although flooding stress
tolerance has been widely studied in soybean at vegetative and reproduction stages, little attention has
been focused on the germination stage. Hence, efforts are needed to understand the genetic mechanism
and genetic basis underlying the seed-flooding tolerance at germination stage in soybean.

Flooding tolerance is a complex quantitative trait governed by multiple/polygenes genes, and
is highly affected by environmental factors [7]. Extensive efforts have been made to identify the
quantitative trait loci (QTLs) for flooding tolerance at different stages in soybean. Till now, 27 QTLs
associated with flooding tolerance in soybean have been documented in Soybase (http://www.soybase.
org). For example, one QTL associated with flooding tolerance on Chr.18 was identified at R1 growth
stage that contributed to improved plant growth and grain yield [8]. In addition, previous study
has detected two QTLs associated with flooding tolerance on Chr.05 and Chr.13 using two RIL
populations [9], accounting for 10% and 16% of the phenotypic variation, respectively. Moreover,
seven QTLs viz., ft1 to ft7 for flooding tolerance were detected at early vegetative growth stage in
soybean [10]. Among them, ft1 located on Chr.06 exhibited the largest phenotypic effects and explained
30.5%–49.2% of the phenotypic variation in two different environments. Furthermore, six putative
QTLs were identified to be associated with flooding tolerance score (FTS) and flooding yield index
(FYI) traits on Chr.11 and Chr.13 [11]. Interestingly, these QTLs appeared to be overlapped or closely
linked with the previously mapped QTLs [9,10]. Although extensive QTLs for flooding tolerance have
been detected, most of these QTLs were mainly identified either at vegetative or reproductive stages.
Limited information is available about QTLs associated with seed-flooding tolerance at germination
stage in soybean. It is known that seed germination is a critical phase that determines the successful
establishment and productivity of soybean in water-logged soils. So far, only four QTLs associated
with germination rate (GR) and normal seedling rate (NSR) under seed-flooding stress have been
reported at the germination stage [12]. Among these four QTLs, sft2 located on Chr.08 displayed the
largest effect on seed-flooding tolerance and it was potentially involved in seed coat pigmentation.

Although many QTLs associated with flooding tolerance in soybean have been reported at different
growth stages, most of these loci were identified via linkage mapping with a relatively low genomic
resolution. Thus, these QTLs possess very low selection accuracy, and cannot be effectively utilized in
marker-assisted selection (MAS) for breeding enhanced flooding tolerance in soybean. Conventional
linkage mapping is based on segregating populations derived from bi-parental crosses [13], resulting
in limited recombination events and poor resolution of linkage mapping. Hence, it is difficult for
bi-parental segregating populations to detect tightly associated markers and some minor alleles per
locus. In contrast to classical linkage mapping, genome-wide association study (GWAS) using natural
population based on linkage disequilibrium (LD) exhibited high mapping resolution and abundant
genetic variation due to the high ancestral recombination events in natural populations [14]. Thus,
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GWAS is an efficient method to detect single nucleotide polymorphisms (SNPs) or quantitative trait
nucleotide (QTNs) associated with important complex quantitative traits, and predict or identify causal
genes [15,16]. In recent years, GWAS has been widely used for association mapping to dissect the genetic
architecture of complex traits in various plants, including Arabidopsis thaliana [17], rice [18], maize [19],
wheat [20], cotton [21], and soybean [22]. However, the GWAS mapping for seed-flooding tolerance in
soybean has not been reported, to date. Among all the methods used for GWAS analysis, the mixed
linear model (MLM) is the most commonly used method in association mapping [23]. Meanwhile, some
advanced MLM-based methods have been subsequently developed such as compressed MLM (CMLM),
which was proposed to save the computing time and improve the statistical efficiency. However, these
methods are based on single-locus genome-wide scanning, and Bonferroni correction for multiple
tests is still required. Recently, one better method was proposed called multi-locus random-SNP effect
MLM (mrMLM), which is based on the combination of single locus genome scanning and multiple
locus model [24]. The mrMLM exhibited significantly improved power and accuracy in quantitative
trait nucleotide (QTN) detection and effect estimation. In the present study, both MLM and mrMLM
methods are used to identify the SNPs/QTNs, as well as candidate genes associated with seed-flooding
tolerance at germination stage in soybean.

By keeping the above into view, the objectives of our study were to elucidate the underlying genetic
mechanisms of seed-flooding tolerance in soybean using the natural variation. In the present study, we
utilized 60,109 high-quality SNPs to identify significant QTNs associated with seed-flooding tolerance
in soybean by GWAS strategy as well as to identify underlying possible candidate genes. These
findings will not only enhance our understanding of the genetic mechanisms underlying seed-flooding
tolerance in soybean at germination stage, but will also be highly useful in marker-assisted breeding
(MAB) for developing soybean varieties with improved seed-flooding tolerance.

2. Materials and Methods

2.1. Plant Materials

In the present study, we used a Yangtze-Huai soybean breeding germplasm (YHSBG) population
that consists of 347 diverse soybean genotypes for GWAS analysis, and this population was provided by
the National Center for Soybean Improvement, Nanjing, Jiangsu Province, China. Seeds of the whole
population were harvested from two different environments Jiangpu Experimental Station (abbreviated
as JP) of Nanjing Agricultural University in Nanjing (latidude 32.12◦N; longitude 118.37◦E), China, in
2014; and the Experimental Farm of Huaiyin Institute of Agricultural Sciences (abbreviated as HY)
in Huaian (latidude 33.31◦N; longitude 119.01◦E), China, in 2015. The JP14 and HY15 represent two
different environments. All lines of the YHSBG population were planted in a complete randomized
block design (CRBD) with three replications in each environment. The list of 347 soybean lines was
presented in Supplementary Table S1.

2.2. Seed-Flooding Tolerance Evaluation

Fifty healthy and good-quality seeds were selected, and sterilized with 70% ethanol for 10 seconds.
These seeds were further rinsed with distilled water for three times. Furthermore, seeds were subjected
to submergence treatment/seed-flooding stress by dipping them in 350 mL plastic cups containing 100
mL distilled water at 25 ◦C that were covered by sterilized petri dishes placed on the top of cups to
prevent loss of water through evaporation. The submergence treatment was applied for different time
intervals (0, 2, 3, 4, 5, 6 and 7 days) to determine the optimum duration of flooding treatment. The
experiment was conducted in a completely randomized design (CRD). All the lines were phenotypically
evaluated for three traits related to seed-flooding tolerance at germination stage, viz., germination
rate (GR), normal seedling rate (NSR) and electric conductivity (EC). For the estimation of EC, we
used conductivity meter (model: DDS-307A) to record the EC value of steep-water in the plastic cups.
Germination experiment was carried out by paper rolling method as follows: stressed seeds were
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grown for 5 days under normal conditions, and the number of germinated seeds and normal seedlings
were recorded. Seeds with radicle length more than 1 cm were regarded as the germinated. Seedlings
with normal cotyledon and radicle were regarded as the normal seedlings. For control, seeds without
submergence treatment were grown under the same normal conditions. The soaking and germination
experiment was conducted in the lab at 25 ◦C with a long-day light cycle (16 h light/8 h dark). The GR
and NSR were estimated using the following formula:

GR = (germination rate under flooding treatment)/(germination rate in control) × 100%

NSR = (normal seedling rate under flooding treatment)/(normal seedling rate in control) × 100%

2.3. Phenotypic Data Analysis

Descriptive statistics such as mean, range, standard deviation (SD), skewness and kurtosis were
calculated for the selected YHSBG population in two different environments JP14 and HY15 using SAS
PROC UNIVARIATE programs. Analysis of variance (ANOVA) and Pearson’s correlation coefficient
among traits related to seed-flooding tolerance were estimated using SAS PROC generalized linear
model (GLM) and PROC CORR programs, respectively [25]. Broad-sense heritability (h2) of the
association mapping panel was estimated as:

h2 = σ2
G/
(
σ2

G +σ2
GE /n + σ2

e /nr
)

for combined environments, and
h2 = σ2

G/
(
σ2

G +σ2
e

)
for an individual environment, where σ2

G represents the genotypic variance, σ2
GE is the variance of the

genotype-by-environment interaction, σ2
e is the error variance, n is the number of environments, and r

represents the number of replications within each environment [26].

2.4. SNP Data Analysis

Restriction-site-associated DNA sequencing (RAD-seq) approach was utilized in the present study
to sequence the genomic DNA of all lines of YHSBG population, and this sequencing was carried
by Beijing Genomics Institution (BGI), Shenzhen, China. First, the genomic DNA of all 347 soybean
lines was extracted from young leaves using a modified CTAB method [27]. Taq I enzyme was used to
digest this genomic DNA for constructing genomic DNA library. The DNA fragments of 400–700 bp
were selected and sequenced using an Illumina HiSeq 2000 standard protocol for multiplexed shotgun
genotyping (MSG), and 90-mer paired-end reads were generated [28]. All the sequence reads were
aligned to the reference genome of the Glyma.Wm82.a1.v1.1 [29] using the SOAP2 software [30]. Based
on the Bayesian estimation of the site frequency, RealSFS was utilized for the SNP calling [31]. The
SNP data was screened at a rate of missing and heterozygous allele calls ≤30% and then the missing
genotypes were imputed using fastPHASE software [32]. A total of 60,109 SNPs with minor allele
frequencies (MAF) > 5% for 347 lines were selected from 87,308 SNPs and used for the GWAS analysis.

2.5. Population Genetic Analysis

In this study, 3851 SNPs were screened using the indep-pairwise command option of pLINK
software [33]. Model-based cluster analysis was performed to infer genetic structure and to define
the number of clusters (gene pools) in the dataset using the software STRUCTURE version 2.2 [34].
The number of presumed populations (K) was set from 1 to 10, and the analysis was repeated four
times, then each Q and the related P-value were calculated. The most likely number of subpopulations
was determined by the Delta K method [35]. Neighbor-joining tree was constructed using TASSEL 5.0
software [36], then principal component analysis (PCA) was performed using the R package software.
In addition, Kinship was calculated using TASSEL 5.0, and LD between pairwise SNPs was estimated
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with the squared correlation coefficient r2 using the RTM-GWAS V1.1 software [37]. The LD decay rate
was measured as the chromosomal distance where the r2 dropped to half of its maximum value.

2.6. Genome-Wide Association Analysis

In the present study, 60,109 SNPs with minor allele frequencies (MAF) > 5% were utilized for
the genotyping of YHSBG population consisting of 347 soybean accessions. To validate and increase
the accuracy of the GWAS results, we used two different models MLM and mrMLM for association
analysis in this study. Besides, the population structure (Q) and kinship (K) matrix were analyzed. The
mixed linear model (MLM) was performed using the TASSEL 5.0 software, and in this model Q and K
matrices act as a fixed effect and random effect, respectively. However, multi-locus random-SNP-effect
mixed linear model (mrMLM) was performed by the R package mrMLM V2.1 [24]. The Bonferroni
threshold P = 1.0 × 10−4 (−log10 P = 4.0) was used as the critical threshold to identify significant
SNP-trait association/quantitative trait nucleotides (QTNs). With the −log10 P ≥ 4.0 of significance
level, the significant SNPs identified by GWAS were analyzed by Haploview4.2, and the QTNs were
identified by LD-block analysis [38].

2.7. Candidate Gene Predictions and Expression Analysis

Based on the gene annotations available at the SoyBase (http://www.soybase.org) and Phytozome
(http://phytozome.jgi.doe.gov) databases, as well as in the available literature, we predicted possible
candidate genes within the major QTN region identified on Chr.13 in the present study. These
candidate genes were further subjected to qRT-PCR analysis to verify their differential expression
between contrasting soybean genotypes. The root parts of seedlings were selected for RNA extraction
and qRT-PCR analysis. Total RNA was extracted using the RNA Simple Total RNA kit (TIANGEN,
Beijing, China). The cDNA was synthesized using the Prime ScriptTM RT Reagent Kit (TaKaRa, Shiga,
Japan) following a standard protocol. Then qRT-PCR assay was performed to examine the differential
expression levels of the candidate genes in selected lines using the Bio-rad CFX96 system (Bio-Rad,
Hercules, USA). The PCR conditions were 95 ◦C for 3 min followed by 37 cycles of 95 ◦C for 15 s,
55 ◦C for 30 s and 72 ◦C for 30 s. Polymerase chain reaction were normalized using the Ct value
corresponding to the soybean actin gene (Actin11) as an internal control. Three biological replications
were used, and three measurements were performed on each replicate. All the primers used were
designed by Vector NTI 11.5 (Supplementary Table S2).

2.8. Sequence Analysis of Candidate Genes

To investigate the nucleotide mutation of candidate genes related to seed-flooding tolerance
in seed-flooding tolerant and sensitive lines, the sequence analysis of the CDS region and 2 kb
promoter region of these genes was performed. Total RNA was extracted using the RNA Simple Total
RNA kit (TIANGEN, China). The reverse transcription was conducted using Transcript two-step
gDNA Removal and the cDNA was synthesized by Prime ScriptTM RT Reagent Kit (TaKaRa, Japan).
Additionally, the CDS of these candidate genes were amplified using Phanta® Max Super Fidelity
DNA Polymerase from Vazyme (Supplementary Table S2). The band size of PCR products was
verified using agarose gel electrophoresis (3%). PCR samples were sent to Generalbiol for sequencing.
The nucleotide sequence and amino acid sequence alignment was carried out using DNAMAN and
BioXM2.6 software, respectively.

2.9. Plasmid Construction and Subcellular Localization

The coding sequence of GmSFT (Glyma.13g248000) was introduced into pJRH0641-GFP to generate
the pJRH0641-GmSFT::GFP vector. Primers were designed according to the nucleotide sequence of
GmSFT and the XhoI restriction site on the pJRH0641-GFP (Supplementary Table S2). The construction
of the recombinant plasmid was conducted using In-Fusion® HD Cloning Plus (TaKaRa, Japan). Then
the recombinant plasmid was transformed into E.coli DH5α, and finally transformed into Agrobacterium
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tumefaciens strain EHA105 by electroporation method. The transient expression was carried out through
the infection of Agrobacterium liquids containing the recombinant plasmid in young N. benthamiana
leaves. At 36 h following infection, the fluorescence in N. benthamiana leaves was detected using a
confocal laser scanning microscope (Zeiss LSM780, Oberkochen, Germany).

3. Results

3.1. Determination of Optimum Seed-Flooding Treatment Duration

To determine the optimum seed-flooding treatment duration to be used for seed-flooding tolerance
evaluation in soybean association mapping population, we tested the germination performance of
four core lines viz., Nannong88-48(NN88-48), Caidou No.5, Nannong86-4(NN86-4) and Youchu No.4
(included in the YHSBG population) under different flooding treatment intervals (0, 2, 3, 4, 5, 6 and
7 days). These four soybean lines are all cultivated genotypes, and displayed similar grain shape,
including seed size and seed coat color (Figure 1A). According to the previous results of optimum
seed-flooding tolerance evaluation in our lab, the seed-flooding stress was performed under three
days treatment [39]. Interestingly, in this experiment, the growth performance of seedlings after
3 days flooding treatment revealed significantly considerable difference among these selected four
lines (Figure 1B). Furthermore, the analysis of variance (ANOVA) displayed significant differences of
both GR and NSR among these four lines under 3 days treatment (Supplementary Table S3). Hence,
by considering the above results, the 3 day seed-flooding treatment was considered the optimum
seed-flooding treatment duration for the evaluation of seed-flooding tolerance of population in the
present study.
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Figure 1. Germination performance of four core lines NN88-48, Caidou No.5, NN86-4 and Youchu
No.4. (A) Grain shape of four core lines. (B) The germination and growth of seedlings among selected
four lines under control and three days treatment. Scale bars are 1.0 cm in (A) and 3.0 cm in (B).

3.2. Phenotypic Evaluation

The seed-flooding tolerance of 347 soybean lines of YHSBG population was evaluated using three
germination-related traits GR, NSR and EC. The values of descriptive statistics, ANOVA (F-value)
and estimates of heritability (h2) for all three studied traits of the YHSBG population in two different
environments JP14 and HY15 were presented in Table 1. In JP14, the mean of GR and NSR were 0.55
and 0.40, respectively, and their ranges were 0–1.00 and 0–0.94. Furthermore, the mean of EC was 1248
us/mL, and ranges from 153 to 2840 us/mL. However, compared with the mean in JP14, the means of
GR and NSR in HY15 were lower, whereas the mean of EC was relatively higher (Table 1), suggesting
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that seed-flooding tolerance in soybean is an environmentally sensitive trait. The results of F values
from ANOVA revealed highly significant differences across genotypes/lines (G) and environments (E).
Moreover, significant line × environment (G×E) interaction was observed for EC in this study (Table 1).
Furthermore, the heritability estimate (h2) of GR, NSR and EC across both environments were high and
ranged from 0.69 to 0.77, indicating that most of the phenotypic variance of seed-flooding tolerance in
the association mapping population was genetically controlled.

Table 1. Descriptive statistics, heritability (h2) and F values from ANOVA for germination rate (GR),
normal seedling rate (NSR) and electric conductivity (EC) in two environments (JP14 and HY15).

Trait Env. Mean ± SD Range h2 F Values from ANOVA
Line Env. Line × Env.

GR
JP14 0.55 ± 0.29 0–1

0.74 9.84*** 13.27*** 0.47ns
HY15 0.43 ± 0.26 0–0.95

NSR
JP14 0.40 ± 0.27 0–0.94

0.69 8.11*** 7.04** 0.37ns
HY15 0.27 ± 0.24 0–0.93

EC
JP14 1248 ± 446 154–2840

0.77 3.58*** 5.19** 2.16***
HY15 1309 ± 450 228–3620

Env., represents environment; SD, represents standard deviation; JP14 and HY15, represent two environments
Jiangpu 2014 and Huaiyin 2015; ** indicates significant level at P < 0.01; *** indicates significant level at P < 0.001;
h2 broad sense heritability.

3.3. Genetic Diversity, Population Structure and Linkage Disequilibrium Analysis

In the present study, out of a total 87,308 SNPs, 31.15% of the SNPs with the minor allele frequency
(MAF) ≤ 0.05 were excluded for further analysis, whereas the remaining 60,109 SNPs with MAF > 0.05
were utilized to analyze the genetic diversity in the YHSBG association mapping population of 347
soybean lines (Figure 2A). These selected SNPs were unevenly distributed on 20 different chromosomes
of soybean (Figure 2B). The average number of SNPs on each chromosome was 3005, with the minimum
number of 1432 SNPs on Chr.05 and the maximum number of 4836 SNPs on Chr.18. Moreover, the
average distance between SNPs on 20 different chromosomes were shown in Figure 2C, which ranged
from 10.96 kb on Chr.15 to 28.90 kb on Chr.05.
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Furthermore, three different methods—Bayesian model-based methods, principal component
analysis (PCA) and phylogenetic analysis—were used to determine the population structure of 347
soybean lines of YHSBG population. Delta K (∆K) was calculated using STRUCTURE 2.3.4 (Figure 3A;
K = 1–10), and exhibited the presence of three subpopulations (selected K = 3) based on ∆K values
(Figure 3C). Furthermore, the phylogenetic tree and PCA analysis displayed the consistent results in
agreement with the population structure analysis (Figure 3B,D).

 1 

Figure 3. Population structure analysis of 347 soybean lines. (A) Calculation of the true K value in the 2 
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In the present study, we estimated the r2 values of all pairs of SNPs located within 10 Mb of each
other and determined the linkage disequilibrium (LD) decay trend based on regression to the negative
natural logarithm. In comparison with LD decay of other plant species such as Arabidopsis thaliana [40],
rice [41] and maize [42], soybean displayed relatively high level of LD [43]. In this study, r2 decreased
gradually with increased distance, and the LD decay distance was estimated at ~1.60 Mb, where r2

dropped to half of its maximum value (Figure 4).
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3.4. GWAS Analysis via MLM

In the present study, the MLM model was performed to identify significant QTNs associated with
GR, NSR and EC. A total of 8, 6 and 11 QTNs were identified to be associated with GR, NSR and EC,
respectively, at the significance level of −log10P = 4 in JP14, HY15 and Combined-environments (Table 2
and Figure 5). The eight QTNs of GR were distributed on four different chromosomes Chr.01, Chr.08,
Chr.13 and Chr.14. Among these QTNs, only qGR-13-2 located on Chr.13 was detected consistently in
all three environments, explaining 4.51%–6.62% of the phenotypic variation (PV). Furthermore, this
QTN were significantly associated with SNP marker Gm13_35324537, and displayed the largest effect of
PV = 6.62% in HY15. Additionally, qGR-13-3 and qGR-14 were identified in two different environments,
and these two QTNs accounted for 4.35%–6.38% of the PV. The remaining five QTNs has been identified
in only one environment (Table 2). For NSR, a total of six QTNs were detected and located on five
different chromosomes Chr.08, Chr.10, Chr.13, Chr.14 and Chr.20 (Table 2). Among them, qNSR-10,
qNSR-13-1 and qNSR-13-2 were identified in all three environments, and were considered as the stable
QTNs associated with NSR. Furthermore, these three QTN explained 4.81%–5.38%, 4.43%–6.02% and
4.37%–4.69% of the PV, respectively (Table 2). In addition, two QTNs related to NSR viz., qNSR-8
and qNSR-20 were detected in two different environments, explaining 4.38%–4.52 % and 4.76%–5.32%
of the PV, whereas the remaining qNSR-14 was only identified in single environment. For EC, we
identified 11 QTNs through MLM approach, and these QTNs were distributed on seven different
chromosomes viz., Chr.02, Chr.07, Chr.08, Chr.11, Chr.13, Chr.18 and Chr.19 (Table 2). Out of these
QTNs, only qEC-7-2 was consistently identified in all three environments (JP14, HY15 and Combined),
explaining 4.75%–5.87% of the PV (Table 2), and this QTN was significantly associated with the same
SNP marker Gm07_2942021 on Chr.07. Furthermore, qEC-8, qEC-11 and qEC-13-1 were detected in two
different environments, explaining 4.37%–4.62%, 4.76%–4.81% and 4.67%–4.95% of the PV, respectively.
The remaining seven QTNs associated with EC were only identified in a single environment, and
accounted for 4.38%–5.10% of the PV.

3.5. GWAS Analysis via mrMLM, and Comparative Analysis of MLM and mrMLM Results

To confirm the reliability of the QTNs identified by MLM method and detect more QTNs associated
with GR, NSR and EC, a multi-locus random effect MLM (mrMLM) method was used to conduct
GWAS analysis. As shown in Table 3, a total of eight, seven and six QTNs associated with GR, NSR
and EC were detected via mrMLM (Table 3). For GR, one QTN qGR-13-2 associated with marker
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Gm13_35324537 was consistently identified in all three studied environments, and this QTN displayed
large effects with PV ranged from 5.44%–7.22%. The remaining seven QTNs of GR were only detected
in a single environment, explaining 3.96%–7.17% of the PV. In the case of the NSR trait, seven QTNs
were detected and distributed on seven different chromosomes. Among these QTNs, only qNSR-13
was identified in all environments and exhibited large effects. However, qNSR-10 was detected in
two environments (JP14 and HY15). Moreover, the remaining five QTNs for NSR were detected in
single environments. For EC, a total of six QTNs were identified, accounting for 4.55–6.81% of the PV.
Out of these QTNs associated with EC, two QTNs qEC-7 and qEC-13 were detected in two different
environments (JP14 and HY15). However, the remaining four QTNs qEC-3, qEC-10, qEC-12 and qEC-19
were only identified in single environment (Table 3).

In summary, a total of 25 and 21 QTNs associated with all three traits related to seed-flooding
tolerance were identified via MLM and mrMLM, respectively (Tables 2 and 3). For MLM, five
major QTNs, viz., qGR-13-2, qNSR-10, qNSR-13-1, qNSR-13-2 and qEC-7-2 were detected in all three
environments. Among them, both qGR-13-2 and qNSR-13-1 were significantly associated with SNP
marker Gm13_35324537 and designated as QTN13. Although qEC-13-1 was only detected in two
environments (HY15 and Combined), this QTN (QTN13) was also closely linked with Gm13_35324537.
As expected, for mrMLM, one major QTN associated with Gm13_35324537 for all traits (qGR-13-2,
qNSR-13-1 and qEC-13-1) was identified, indicating that this critical QTN (QTN13) on Chr.13 can be
detected by both MLM and mrMLM. Furthermore, qNSR-10 and qEC-7-2 were also identified by both
MLM and mrMLM (Table 3). Nevertheless, the qNSR-13-2 identified by MLM could not be verified
by mrMLM. Based on the above results, we obtained one major and stable QTN13 associated with
Gm13_35324537 for all traits, and this QTN was identified in all environments as well as in both MLM
and mrMLM models. Thus, this major QTN13 on Chr.13 was potentially utilized as the hotspot region
for fine mapping and candidate gene analysis of seed-flooding tolerance in soybean.
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Table 2. Quantitative trait nucleotides (QTNs) associated with germination rate (GR), normal seedling rate (NSR) and electric conductivity (EC) via MLM.

Trait QTN Env.a Chr.b SNP Position (bp) P Value −log10 Pc MAF R2 (%) Effect Allele

GR

qGR-1 JP14 1 Gm01_380964 380964 9.83 × 10−5 4.01 0.07 4.49 -0.027 T/A
qGR-8-1 JP14 8 Gm08_9896483 9896483 5.67 × 10−5 4.25 0.29 4.52 -0.097 C/T
qGR-8-2 JP14 8 Gm08_10412475 10412475 9.37 × 10−5 4.03 0.25 4.26 -0.003 A/G
qGR-8-3 Combined 8 Gm08_14242918 14242918 9.71 × 10−5 4.01 0.07 4.28 -0.253 G/T

qGR-13-1 JP14 13 Gm13_34829465 34829465 7.42 × 10−5 4.13 0.09 4.48 -0.018 C/T
qGR-13-2 JP14 13 Gm13_35324537 35324537 4.75 × 10−5 4.32 0.07 4.51 -0.257 G/T
(QTN13) HY15 13 Gm13_35324537 35324537 2.44 × 10−6 5.61 0.07 6.62 -0.285 G/T

Combined 13 Gm13_35324537 35324537 2.65 × 10−5 4.58 0.06 4.97 0.197 C/T
qGR-13-3 HY15 13 Gm13_35826401 35826401 2.43 × 10−5 4.61 0.05 5.28 -0.267 A/T

Combined 13 Gm13_35776711 35776711 2.36 × 10−5 4.63 0.31 4.87 0.147 A/G
qGR-14 HY15 14 Gm14_46766676 46766676 3.71 × 10−6 5.43 0.31 6.38 0.172 A/G

Combined 14 Gm14_46766676 46766676 8.28 × 10−5 4.08 0.13 4.35 -0.175 C/T

NSR

qNSR-8 JP14 8 Gm08_9370630 9370630 7.92 × 10−5 4.1 0.12 4.38 -0.11 A/G
Combined 8 Gm08_9370743 9370743 9.72 × 10−5 4.01 0.08 4.52 0.229 A/G

qNSR-10 JP14 10 Gm10_4316320 4316320 2.17 × 10−5 4.66 0.08 5.38 0.242 A/G
HY15 10 Gm10_4314632 4314632 2.65 × 10−5 4.58 0.08 5.26 0.213 A/T

Combined 10 Gm10_4316320 4316320 3.73 × 10−5 4.43 0.07 4.81 -0.264 G/T
qNSR-13-1 JP14 13 Gm13_35324537 35324537 7.18 × 10−6 5.14 0.07 6.02 -0.282 G/T
(QTN13) HY15 13 Gm13_35324537 35324537 8.20 × 10−5 4.09 0.05 4.43 -0.248 G/T

Combined 13 Gm13_35324537 35324537 2.85 × 10−5 4.54 0.05 4.95 0.226 G/T
qNSR-13-2 JP14 13 Gm13_35776682 35776682 5.02 × 10−5 4.3 0.06 4.69 -0.213 C/G

HY15 13 Gm13_35826420 35826420 9.82 × 10−5 4.01 0.05 4.37 0.209 G/T
Combined 13 Gm13_35826420 35826420 7.12 × 10−5 4.15 0.05 4.41 0.238 C/T

qNSR-14 HY15 14 Gm14_46766676 46766676 2.45 × 10−5 4.61 0.31 5.31 0.146 A/G
qNSR-20 HY15 20 Gm20_42414884 42414884 2.41 × 10−5 4.62 0.05 5.32 0.24 C/T

Combined 20 Gm20_42414884 42414884 6.29 × 10−5 4.2 0.22 4.76 272.188 C/G

EC

qEC-2-1 HY15 2 Gm02_5181577 5181577 3.63 × 10−5 4.44 0.22 5.09 285.2 C/T
qEC-2-2 JP14 2 Gm02_49796905 49796905 8.91 × 10−5 4.05 0.47 4.46 -90.75 C/T
qEC-7-1 HY15 7 Gm07_2485335 2485335 3.10 × 10−5 4.51 0.09 5.1 -519.94 A/G
qEC-7-2 JP14 7 Gm07_2942021 2942021 2.69 × 10−5 4.57 0.09 5.53 -465.45 A/G

HY15 7 Gm07_2942021 2942021 9.74 × 10−6 5.01 0.09 5.87 -532.98 A/G
Combined 7 Gm07_2942021 2942021 6.34 × 10−5 4.2 0.33 4.75 -106.07 A/G

qEC-8 JP14 8 Gm08_9896483 9896483 7.20 × 10−5 4.14 0.29 4.62 184.03 C/T
Combined 8 Gm08_9752396 9752396 9.25 × 10−5 4.03 0.16 4.37 310.06 A/G

qEC-11 JP14 11 Gm11_4188194 4188194 7.25 × 10−5 4.14 0.16 4.81 326.88 A/G
Combined 11 Gm11_4188194 4188194 8.70 × 10−5 4.06 0.13 4.76 247.19 A/G

qEC-13-1 HY15 13 Gm13_35324537 35324537 3.47 × 10−5 4.46 0.08 4.95 324.5 G/T
(QTN13) Combined 13 Gm13_35324537 35324537 7.12 × 10−5 4.15 0.08 4.67 333 G/T
qEC-13-2 HY15 13 Gm13_35648515 35648515 4.37 × 10−5 4.36 0.08 4.91 400.56 A/G
qEC-13-3 HY15 13 Gm13_36352911 36352911 6.55 × 10−5 4.18 0.11 4.72 41.08 C/T
qEC-18 JP14 18 Gm18_23932848 23932848 8.78 × 10−5 4.06 0.34 4.38 152.49 G/T
qEC-19 HY15 19 Gm19_35610187 35610187 8.87 × 10−5 4.05 0.4 4.58 272.19 A/G

a represents the different environments, JP14 represents Jiangpu2014, JP14 represents Huaiyin2015, Combined represents the Combined-environment based on JP14 and HY15; b represents
the chromosome; c represents the negative log10 transformed P-value; MAF represents minor allele frequency.
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Table 3. Quantitative trait nucleotides (QTNs) associated with germination rate (GR), normal seedling rate (NSR) and electric conductivity (EC) via mrMLM.

Trait QTL Env.a Chr.b SNP Position (bp) P Value −log10 Pc LOD MAF R2 (%) Effect Allele CIMd

GR

qGR-2 HY15 2 Gm02_46786754 46786754 4.14 × 10−5 4.38 3.58 0.47 4.74 0.118 C/T
qGR-7 HY15 7 Gm07_2485335 2485335 6.21 × 10−6 5.21 4.38 0.22 5.63 −0.145 C/G

qGR-8-1 JP14 8 Gm08_9896483 9896483 4.44 × 10−6 5.35 5.02 0.29 5.32 −0.097 C/T 1
qGR-10 JP14 10 Gm10_4163841 4163841 1.25 × 10-7 6.9 6.06 0.11 5.72 0.175 A/G

qGR-13-2 JP14 13 Gm13_35324537 35324537 1.53 × 10−6 5.82 5.02 0.07 5.94 −0.227 G/T 1
(QTN13) HY15 13 Gm13_35324537 35324537 1.87 × 10-7 6.73 5.8 0.07 7.22 −0.265 G/T 1

Joint 13 Gm13_35324537 35324537 4.23 × 10−6 5.37 4.45 0.07 5.44 −0.253 G/T 1
qGR-15 HY15 15 Gm15_11267976 11267976 2.57 × 10-7 6.59 5.68 0.07 7.17 0.212 A/T
qGR-18 JP14 18 Gm18_1336864 1336864 2.76 × 10-8 7.56 6.18 0.16 7.68 −0.179 G/T
qGR-20 HY15 20 Gm20_39515872 39515872 1.69 × 10−5 4.77 4.01 0.32 3.96 −0.115 A/G

NSR

qNSR-2 HY15 2 Gm02_46070310 46070310 5.28 × 10−5 4.28 4.01 0.14 3.89 −0.144 C/G
qNSR-7 JP14 7 Gm07_2584000 2584000 1.38 × 10-7 6.86 5.8 0.47 7.5 0.117 C/T
qNSR-10 JP14 10 Gm10_4316320 4316320 1.57 × 10-7 6.8 5.97 0.08 7.11 0.242 A/G 1

HY15 10 Gm10_4316320 4316320 8.89 × 10-8 7.05 6.08 0.08 7.61 0.219 A/G 1
qNSR-11 HY15 11 Gm11_36522210 36522210 1.69 × 10−5 4.77 4.11 0.08 4.28 −0.161 A/G

qNSR-13-1 JP14 13 Gm13_35324537 35324537 3.06 × 10-8 7.51 6.22 0.07 6.02 −0.328 G/T 1
(QTN13) HY15 13 Gm13_35324537 35324537 4.26 × 10-9 8.37 7.22 0.07 7.04 −0.312 G/T 1

Joint 13 Gm13_35324537 35324537 1.06 × 10-9 8.97 7.33 0.07 6.67 −0.284 G/T 1
qNSR-18 HY15 18 Gm18_59484809 59484809 1.98 × 10−5 4.7 3.95 0.08 3.09 0.197 G/T
qNSR-19 HY15 19 Gm19_48197396 48197396 2.16 × 10−6 5.67 5.31 0.1 6.83 −0.147 C/T

EC

qEC-3 JP14 3 Gm03_40169903 40169903 3.86 × 10−6 5.41 4.58 0.43 4.85 −229.140 A/G
qEC-7-2 JP14 7 Gm07_2942021 2942021 9.56 × 10-7 6.02 5.19 0.09 4.91 −465.450 A/G 1

HY15 7 Gm07_2942021 2942021 2.07 × 10-7 6.68 5.76 0.09 6.81 −532.980 A/G 1
qEC-10 Joint 10 Gm10_11026230 11026230 2.51 × 10−5 4.6 3.81 0.18 4.74 −297.270 G/T
qEC-12 HY15 12 Gm12_990925 990925 4.90 × 10−5 4.31 3.72 0.46 4.55 −192.640 A/G

qEC-13-1 JP14 13 Gm13_35324537 35324537 3.06 × 10−5 4.51 3.69 0.07 4.66 354.477 G/T 1
(QTN13) HY15 13 Gm13_35324537 35324537 7.99 × 10-7 6.1 5.12 0.07 6.37 317.55 G/T 1

Joint 13 Gm13_35324537 35324537 4.10 × 10−6 5.39 5.05 0.07 4.98 307.325 G/T 1
qEC-19 HY15 19 Gm19_35626216 35626216 1.92 × 10−5 4.72 4.14 0.08 5.35 400.562 G/T

a represents the different environments, JP14 represents Jiangpu2014, JP14 represents Huaiyin 2015, Combined represents the Combined-environment based on JP14 and HY15; b represents
the chromosome; c represents the negative log10 transformed P-value; MAF represents minor allele frequency; d 1 represents this QTN can be detected via MLM.
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Figure 5. Genome-wide association study utilized in the population, including Manhattan plots and
quantile-quantile (QQ) plots for (A) GR-JP14. (B) GR-HY15. (C) GR-Combined. (D) NSR-JP14. (E)
NSR-HY15. (F) NSR-Combined. (G) EC-JP14. (H) EC-HY15. (I) EC-Combined.
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3.6. Candidate Gene Prediction and qRT-PCR Analysis

As the stable QTN13 located on Chr.13 was consistently identified to be associated with all three
studied traits by both methods as well as in multiple environments, we performed the candidate
gene prediction analysis in the genomic region surrounding the QTN13. Based on the LD distance,
we extended and selected the region of 500 kb upstream and downstream of the peak SNP marker
Gm13_35324537/QTN13 on both sides, and a total of 131 genes were located within this 1.0 Mb
region. Moreover, the haplotype block analysis of all SNPs present in this 1.0Mb candidate region
was conducted using Haploview 4.2 software (Figure 6), and a total of 37 SNPs were included in
this candidate region (Supplementary Table S4). Based on the gene functional annotations from the
Phytozome (https://phytozome.jgi.doe.gov) and Soybase (http://www.soybase.org) databases and the
available literature, nine candidate genes were predicted from these 131 genes for possibly regulating
the seed-flooding tolerance in soybean (Table 4). To further investigate the expression levels of these
nine candidate genes under flooding treatment, we conducted the qRT-PCR analysis. Based on the
evaluation of 347 lines of association panel for seed-flooding tolerance in two different environments
using GR, NSR and EC parameters, three seed-flooding tolerant lines (L018, L422, and L488) and
three seed-flooding sensitive lines (L217, L230 and L260) were screened, and utilized to examine the
differential expressions of these above nine genes (Supplementary Table S5). Four candidate genes
Glyma.13g244800, Glyma.13g246500, Glyma.13g248000 and Glyma.13g249800 exhibited relatively high
expression levels in all six lines after 3d of flooding treatment compared with control, suggesting that
these four genes were induced under flooding stress treatment (Figure 7). Among these four genes,
only Glyma.13g248000 displayed relatively higher expression levels in tolerant lines (L018, L422, and
L488) than that in sensitive lines (L217, L230, and L260), which suggested that Glyma.13g248000 was
probably involved in the seed-flooding tolerance in soybean.
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Glyma.13g241900 35181812-35182687 Dof-type zinc finger DNA-binding family protein
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3.7. Sequence Analysis and Subcellular Localization of GmSFT

Based on the results of qRT-PCR analysis, the relative expressions of four candidate genes
(Glyma.13g244800, Glyma.13g246500, Glyma.13g248000 and Glyma.13g249800) were induced under 3d
flooding stress treatment. To further clarify the nucleotide mutation/polymorphism in these four
candidate genes, we carried out the sequence analysis. By comparing the nucleotide differences of these
genes between seed-flooding tolerant and sensitive lines, Glyma.13g248000 revealed one base mutation
(T–A) at 145bp position in two seed-flooding tolerant lines L422 and L488, and this nonsynonymous
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mutation resulted in the single amino acid change (Cys-Ser) in protein (Figure 8). However, no base
mutations/polymorphisms were observed in the other three candidate genes between tolerant and
sensitive lines. Furthermore, sequence analysis of the 2 kb promoter region upstream of these four
genes was performed. However, no nucleotide mutation was observed among these six tolerant and
sensitive genotypes. Although no base mutation of Glyma.13g248000 was identified at 145 bp position
in the seed-flooding tolerant line (L018), but the confirmation of this mutation in the remaining two
seed-flooding tolerant line L422 and L488 suggested that Glyma.13g248000 was the most possible
candidate gene associated with seed-flooding tolerance identified in this study, and this gene was
designated as GmSFT.

To further explore the localization of GmSFT, we performed the subcellular localization of GmSFT
by generating the recombinant plasmid 35S-GmSFT::GFP, which were transiently transformed in N.
benthamiana leaves using Aagrobacterium-mediated transformation. Based on the online prediction of
subcellular localization via SoftBerry(http://linux1.softberry.com/), GmSFT was probably localized in
the extracellular region. However, based on wet lab experiment, as shown in Figure 9, the 35S-GFP
(as control) was located in the nucleus, membrane and portions of cytoplasm. However, the green
fluorescence of 35S-GmSFT::GFP was mainly distributed in the nucleus and cell membrane rather than
in the extracellular region at 36h of post-transfection, which confirmed that 35S-GmSFT::GFP was
localized in the nucleus and plasma membrane.
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4. Discussion

Plants, being sessile, are subjected to various abiotic stresses, among which flooding stress has
received increased attention in recent decades as it severely inhibits plant growth and development,
and in turn affects the grain yields and agricultural production. Hence, achieving soybean varieties
with improved flooding tolerance was one of primary goals in soybean breeding programs [44]. As an
economically important crop, soybean is relatively susceptible to flooding stress at early germination
stage. Seed germination is an important growth stage that determines crop establishment and final crop
yields. Besides, seed germination is accompanied by various metabolic activities and physiological
changes [45]. In this context, GR and NSR are the two most important parameters that can be used to
evaluate seed germination of crop species, and hence were utilized in the present study. Furthermore,
strong positive correlations of r = 0.90 in JP14 and r = 0.92 in HY15 (P < 0.001) were observed between
GR and NSR in the YHSBG association population (Supplementary Table S6). Previous study has
reported that flooding stress resulted in the intracellular seed substance leakage due to rapid water
imbibition [12]. Therefore, to better evaluate the seed-flooding tolerance of soybean, we measured the
electric conductivity (EC) of this association population. The results of correlation analysis revealed
that EC was negatively correlated with both GR and NSR. Overall, the comprehensive analysis of GR,
NSR and EC is an effective way for the evaluation of seed-flooding tolerance at germination stage.

So far, several studies have been conducted to reveal the genetic basis and underlying genetic
mechanism of flooding tolerance in soybean, and many QTLs associated with flooding tolerance have
been detected in multiple environments [8–10,12]. However, most of these QTL mapping studies
were carried out using linkage mapping analysis based on low-density genetic maps. It is clear that
flooding tolerance is a complex quantitative trait governed by multiple minor genes, and is highly
influenced by environmental factors. Hence, most of the earlier reported QTLs were not both stable
and confirmed, and therefore had not been successfully utilized in marker-assisted selection (MAS)
for breeding soybean cultivars with enhanced flooding tolerance. To overcome these limitations of
linkage mapping, a linkage disequilibrium (LD)-based genome-wide association study (GWAS) was
used in the present study. The earlier studies proved that the application of GWAS is an alternative
and powerful strategy to precisely detect and define the genomic position of loci/genes associated
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with complex traits [46,47]. The LD is the non-random association of alleles at two or more different
loci. However, the degree of genome-wide LD plays an important role in the application of GWAS,
and it is affected by many forces, including relatedness, population stratification, genetic drift, and
linkage [48]. Moreover, the extent of LD is one of the critical factors determining the resolution of
association mapping [49]. In this study, the LD decay of the soybean genome was approximately
estimated at 1.6Mb, which was substantially higher than other plants, such as rice (75 kb in indica) [41],
Arabidopsis thaliana (10 kb) [40] and cultivated sunflower (1.1 kb) [50]. Previous studies have revealed
that the typical self-pollinated crops such as soybean showed relatively higher LD level than that of
cross-pollinated species [51,52]. Furthermore, based on the resequencing of 31 soybean genomes, Lam
et al. (2010) demonstrated that both wild and cultivated soybeans displayed high LD, whereas the LD
level of cultivated soybean was higher [43]. Additionally, in the present study the average Fst value of
the GWAS population was 0.1707, which was low, as expected. Hence, both the high LD and low Fst
value indicated the low genetic diversity of this GWAS population [53], and this can be explained by
the fact that majority of the genotypes of GWAS population has common parentage, which was derived
from the crosses among less than 80 domestic or exotic cultivated soybean elite lines. Moreover, the
same geographical origin, viz., the Yangtze-Huai valley, of most of these genotypes also contributed to
the low genetic diversity of this GWAS population. Hence, an effective way of improving the genetic
diversity of the GWAS population would be to select the genotypes with various genetic background
(including cultivars, landraces and wild species) from different geographical regions. In the present
study, the RADseq strategy was utilized for the sequencing of whole GWAS population. The RADseq
approach uses restriction enzymes to cut genomic DNA into small fragments, and then these short
fragments are sequenced [54]. However, compared with whole genome resequencing (WGRS), the
coverage of RADseq is low, and the overall coverage of soybean genome in this study was 4.57%.
Presently, the cost of WGRS is still high to re-sequence the large population, hence till the WGRS
become cost-effective and feasible, targeted sequencing seems to be more cost-effective option for large
scale marker discovery and association mapping, particularly in case of large sized genomes such as
soybean [55]. Thus, RADseq is considered to be a fast and economical strategy for population genetic
studies within relatively low budgets [56]. In addition, previous study demonstrated that RADseq
is an effective way for population genotyping by detecting thousands of polymorphisms [57]. The
average number of SNPs on each chromosome (3005) and the average distance between SNPs (15.75
kb) in this study also indicate relatively rich SNPs detected by RADseq for GWAS.

For the GWAS analysis, we used two different methods of MLM and mrMLM to identify the
QTNs associated with seed-flooding tolerance. By using the genotypic data of 60,109 SNPs with MAF
> 0.05, a total of 25 and 21 QTNs associated with all three traits (GR, NSR and EC) were identified
via MLM and mrMLM at the significance threshold (–log10P = 4) in YHSBG association population
(Tables 2 and 3). Among these QTNs, four stable QTNs, viz., QTN13, qNSR-10, qNSR-13-2, and qEC-7-2,
were detected in all environments (JP14, HY15, and Combined) via MLM, explaining 4.37%–6.62% of
the phenotypic variation (PV), whereas three QTNs (QTN13, qNSR-10, and qEC-7-2) were identified
by mrMLM. Interestingly, we identified one stable QTN (QTN13) on Chr.13 that was associated with
SNP marker Gm13_35324537 for all traits (qGR-13-2, qNSR-13-1 and qEC-13-1), and this QTN was
detected in all environments. Moreover, this stable QTN13 on Chr.13 was successfully detected through
mrMLM. As shown in Table 3, three major QTNs, viz., qGR-13-2, qNSR-13-1 and qEC-13-1 identified
in all environments were consistently associated with Gm13_35324537. Previous study has reported
one QTL related to flooding tolerance near marker Satt269 on Chr.13 within the genetic interval of
16.08-23.56cM [9]. Based on the genomic sequence information of this QTL associated with Satt269
from Soybase (http://www.soybase.org), this QTL was located in 15.31Mb of physical interval on Chr.13,
but the physical position of Gm13_35324537 was at 35.32Mb of Chr.13. Therefore, this stable QTN13
identified on Chr.13 in our study is a newly QTN associated with seed-flooding tolerance in soybean.
Although the other three stable QTNs viz., qNSR-10, qNSR-13-2 and qEC-7-2 identified via MLM were
detected in all environments, all these three QTNs were only related to a single trait. Among them,
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qNSR-13-2 associated with Gm13_35776682 was mapped at the position of 35.78Mb on Chr.13, which
was only 452 Kb away from Gm13_35324537, indicating that this region containing qNSR-13-1 and
qNSR-13-2 on Chr.13 was potentially a hotspot possessing large effects on seed-flooding tolerance.
The qNSR-10 identified via MLM was also verified via mrMLM, and was tightly linked with marker
Gm10_4316320 at 4.30 Mb on Chr.10. Additionally, previous study reported two QTLs on Chr.10 related
to flooding tolerance in soybean, which are located at the genetic intervals of 81.08–85.08 cM and
106.02–108.02 cM [10]. However, the corresponding physical position of these two QTLs was around
40.6 Mb and 44.7 Mb, suggesting that these two QTLs and qNSR-10 were separated at considerable
physical distance. Moreover, qEC-7-2 was associated with Gm07_2942021 and located at 2.94 Mb on
Chr.07. Furthermore, a QTL on Chr.07 at the genetic distance of 72.37–74.37 cM was reported [10], with
the corresponding physical position of 17.76 Mb. Thus, based on the above results, we can conclude
that all these four stable QTNs identified in the present study were novel QTNs for seed-flooding
tolerance in soybean, and most of them displayed large phenotypic effects.

To date, a total of 27 QTLs related to flooding tolerance in soybean have been documented in the
Soybase (http://www.soybase.org). However, not all of these QTLs have been physically mapped, and no
further efforts have been made to mine candidate genes for flooding tolerance underlying these genomic
loci. In this study, we identified a highly stable QTN13 on Chr.13 that was consistently associated
with all three studied traits (GR, NSR, and EC). In addition, this QTN13 displayed large phenotypic
contribution and effects on seed-flooding tolerance. Therefore, we performed candidate gene prediction
analysis within 1.0Mb region surrounded the QTN13/Gm13_35324537, and subsequently qRT-PCR
analysis was used to validate the predicted candidate genes. Based on the functional annotations and
predictions, a total of nine candidate genes directly or indirectly associated with flooding tolerance
were screened (Table 4). The qRT-PCR results further revealed that four candidate genes out of
above nine genes were significantly induced under seed-flooding stress treatment. Among them,
Glyma.13g248000 displayed relatively higher expression levels in all three tolerant genotypes (L018,
L422 and L488) relative to three sensitive genotypes (L217, L230 and L260). Furthermore, sequence
alignment analysis of these four candidate genes between tolerant and sensitive genotypes revealed
that only Glyma.13g248000 showed the nonsynonymous mutation in two seed-flooding tolerant lines
(L422 and L488), which leads to single amino acid change (Cys-Ser) in protein. However, no mutations
of Glyma.13g248000 were observed in the tolerant line (L018), and this might be attributed to their
different genetic background. In conclusion, Glyma.13g248000 was considered to be the most likely
possible candidate for gene regulating seed-flooding tolerance in soybean, and was named as GmSFT.
Moreover, based on the wet lab experiment GmSFT was localized in the nucleus and cell membrane.

Based on the functional annotation of GmSFT, it encodes a B-box type zinc finger protein. In rice,
previous study has reported that a CCCH-type zinc finger was significantly induced by hypoxia stress
(lack of oxygen) caused by water submergence, indicating the potential roles of zinc finger in flooding
tolerance [58]. Moreover, several studies have also demonstrated that the B-box type zinc finger protein
was involved in multiple abiotic stresses in plants. For example, as the transcription factor of B-box
type zinc finger, AtCOL4 plays critical roles in response to ABA and salt stress. One grape B-box ZFP
family, VvZFPL, has been reported to show increased tolerance to cold, drought and salt stresses in
transgenic Arabidopsis plants. Additionally, as a B-box type zinc finger protein, MdBBX10 has been
revealed to exhibit enhanced tolerance to salt and drought stresses in Arabidopsis [59–61]. Therefore, all
the above findings support that GmSFT might be the candidate gene regulating seed-flooding tolerance
in soybean. However, further functional evidence and validation is still required to prove its actual
involvement in governing the seed-flooding tolerance in soybean.

5. Conclusions

In this study, we used the GWAS strategy to identify the QTNs associated with three traits related
to seed-flooding tolerance GR, NSR and EC in the YHSBG population using genotypic data of 60,109
SNPs in soybean. A total of 25 and 21 QTNs associated with GR, NSR and EC were identified via MLM
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and mrMLM methods in three different environments (JP14, HY15, and Combined). Among these
QTNs, four major and stable QTNs, viz., QTN13, qNSR-10, qNSR-13-2, and qEC-7-2, were detected
via MLM in all three environments, and three of them (QTN13, qNSR-10, and qEC-7-2) were also
identified via mrMLM. Based on the comparative analysis of MLM and mrMLM, the stable QTN13
was reported to be associated with all three traits as well as has been verified in both methods and
multiple environments. Subsequently, the 1.0 Mb region around QTN13/Gm13_35324537 was used
for candidate gene prediction as well as qRT-PCR analysis. Based on the results of qRT-PCR and
sequence analysis, GmSFT(Glyma.13g248000) was considered to be the most likely candidate gene
regulating seed-flooding tolerance in soybean. However, further functional validation is required to
determine its roles in seed-flooding tolerance of soybean. In summary, these findings extended our
understanding of the genetic basis of seed-flooding tolerance in soybean, and will be highly useful in
breeding soybean varieties with enhanced seed-flooding tolerance through marker-assisted breeding
as well as for gene cloning.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/2073-4425/
10/12/957/s1, Table S1: List of 347 soybean lines and the evaluation of GR, NSR and EC in two environments
JP14 and HY15, Table S2: Primers used in this study, Table S3: Analysis of variance (ANOVA) of GR and NSR
among four lines under different times of flooding treatment, Table S4: SNPs contained in the candidate region on
Chr.13, Table S5: Phenotypic data of three selected seed-flooding tolerant and sensitive lines used in qRT-PCR and
sequencing analysis, Table S6: Phenotypic correlations (r) among GR, NSR and EC in two different environments.
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