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Abstract: Repetitive DNAs are ubiquitous in eukaryotic genomes and, in many species, comprise the
bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around
the genome and tandemly-repeated satellite DNAs that increase in copy number due to replication
slippage and unequal crossing over. Despite their abundance, repetitive DNAs are often ignored in
genomic studies due to technical challenges in identifying, assembling, and quantifying them. New
technologies and methods are now allowing unprecedented power to analyze repetitive DNAs across
diverse taxa. Repetitive DNAs are of particular interest because they can represent distinct modes of
genome evolution. Some repetitive DNAs form essential genome structures, such as telomeres and
centromeres, that are required for proper chromosome maintenance and segregation, while others
form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve
under purifying selection. In contrast, other repeats evolve selfishly and cause genetic conflicts with
their host species that drive adaptive evolution of host defense systems. However, the majority of
repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition
and unequal crossing over. However, even these “neutral” repeats may indirectly influence genome
evolution as they reach high abundance. In this Special Issue, the contributing authors explore these
questions from a range of perspectives.
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Repetitive DNAs include both short and long sequences that repeat in tandem or are interspersed
throughout the genome, such as transposable elements (TE), ribosomal rRNA genes (rDNA), and
satellite DNA. Repetitive DNA is ubiquitous in eukaryotic genomes, but despite this universality,
their possible functions and predictable patterns of evolution remain relatively poorly characterized
across taxa. Empirical evidence suggests important roles of repetitive DNA in chromosome stability
and segregation, as well as gene regulation. Theory predicts roles of both neutral processes (unequal
crossing over, gene conversion) and selection, as well as selfish (non-Mendelian) transmission, in
determining patterns of sequence variation in repetitive regions. Despite a wealth of theory, until
recently, this fraction of the genome has remained largely overlooked due to technological constraints
on sequencing and quantifying repetitive DNA genome-wide. With the advent of high-throughput
sequencing technologies, this portion of the genome has become more accessible, though inherent
biases due to sequencing chemistry and computational identification pipelines remain challenges.

In this special issue, 11 articles review the evolution and function of the different classes of
repetitive DNA and empirically investigate their predicted functions and evolutionary patterns from a
variety of perspectives. Two articles approach TE evolution from different angles—Blumenstiel [1]
describes the life cycle of a TE and uses this analogy to develop predictions for how TEs evolve, using
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known examples to describe persisting TEs as quickly proliferating genome invaders, long-lasting
residents, and even as “resurrectors” from previously “dead” copies. In another review, Bourgeois
and Boissinot [2] synthesize perspectives on the roles of adaptive and non-adaptive processes in TE
evolution and offer ways forward to model TE evolution at the population level.

Two studies test predictions about TE evolution using a macroevolution approach. Wu and Lu [3]
first develop a new pipeline for identifying transposable elements and then apply it to examine TE
proliferation and diversification across 500 million years of arthropod evolution. They introduce the
Arthropod TE database as a resource for TE consensus sequences for the community to use and build
on. Bohman et al. [4] provide a genome assembly for the Blue-capped Cordon-Bleu, a small East
African finch, whose karyotype and annotated transposon content enable new detailed examination
of TE evolution in birds, particularly relatives of the model zebra finch. Their results highlight the
utility of employing a comparative approach to investigate TE evolution. Together, these papers offer a
dynamic view of TE evolution.

Three papers examine the role of adaptive and non-adaptive processes in TE evolution using
genomic and functional approaches. Taking a computational approach, Pettersson and Jern [5] find a
greater role for neutral evolution rather than selection in endogenous retrovirus (ERV) diversification
across domestic chicken lineages. In contrast, Radion et al. [6] use functional and genomic analyses
to examine the transcriptional regulation of piRNA clusters and TEs and find evidence for selective
constraints. Lannes et al. [7] provide evidence for links between TE presence/absence and regulation of
their activity via epigenetic modifications, implicating selection on their regulation. Together, these
papers demonstrate the interplay of selection and neutral processes in different groups and emphasize
the need for more studies to test broadly applicable “rules” for TE evolution.

Four papers focus on the evolution and function of other less-studied repetitive DNA types.
Symonová [8] reviews studies of rDNA, from their function to their use in phylogeny and integrates
these perspectives to provide a wider view of rDNA importance and evolution. Benetta et al. [9]
synthesize recent work on the non-Mendelian transmission of repetitive facultative (B) chromosomes.
Miga [10] reviews recent work on the links between satellite DNA and disease, highlighting the
importance of their study to human health. Hartley and O’Neill [11] discuss the evolution and function
of satellite DNA and TEs in centromeres. These papers highlight overlooked types of repetitive DNA
and identify key challenges to move the field forward.

This special issue demonstrates the benefits of applying multiple perspectives to tackle questions
about repetitive DNA evolution, function, and adaptation. They paint a picture of the complex
processes involved and reveal the need for additional work. With more affordable sequencing, and a
growing arsenal of genetic tools and widely-available annotation databases, it is a promising time to
tackle fundamental questions about repetitive DNA with important implications for our understanding
of the fundamental rules of chromosome segregation, genome evolution, and human health. We would
like to thank all of the authors and reviewers for their contributions to this issue.
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