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Abstract: During vertebrate embryogenesis, precise regulation of gene expression is crucial for proper
cell fate determination. Much of what we know about vertebrate development has been gleaned
from experiments performed on embryos of the amphibian Xenopus laevis; this review will focus
primarily on studies of this model organism. An early critical step during vertebrate development
is the formation of the three primary germ layers—ectoderm, mesoderm, and endoderm—which
emerge during the process of gastrulation. While much attention has been focused on the induction
of mesoderm and endoderm, it has become clear that differentiation of the ectoderm involves
more than the simple absence of inductive cues; rather, it additionally requires the inhibition of
mesendoderm-promoting genes. This review aims to summarize our current understanding of the
various inhibitors of inappropriate gene expression in the presumptive ectoderm.
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1. Germ Layer Formation

Triploblastic organisms form three germ layers—endoderm, mesoderm, and ectoderm—which
give rise to all tissue types in the adult organism with the exception of the germ cells. Elucidation
of the precise regulation of the mechanisms that specify cell fate in development is of the utmost
importance [1]. Understanding the regulation of cell fate specification has far-reaching implications for
various fields of study, including pluripotency, cancer, and gene regulation. While extensive work has
identified many genes necessary for inducing cell fates during embryogenesis, it has become apparent
that factors that prevent inappropriate germ layer expression are also crucial for normal development.
Utilizing data primarily from experiments performed in Xenopus laevis, this review will discuss the
restriction of mesodermal and endodermal gene expression in the ectoderm of developing vertebrate
embryos, and the multiple factors that regulate this process.

2. Mesendoderm Induction

During late blastula stages, the animal pole of a developing Xenopus laevis embryo consists of a
pluripotent population of cells that can be induced to differentiate into various cell fates (Figure 1) [2].
To describe the mechanisms through which mesendoderm is suppressed in the amphibian animal pole,
it is important that we first outline the pathways that specify mesendoderm induction. Mesendoderm
refers to a transient, precursor cell population from which both mesoderm and endoderm emerge
during gastrulation, and the molecular pathways that govern the formation of mesoderm and endoderm
overlap to some extent [3]. As we describe below, many mesendodermal suppressors function by
inhibiting the intracellular signal transduction pathways that specify mesendodermal induction. In the
amphibian embryo, the differentiation of the germ layers initiates when VegT, a maternally supplied
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factor, stimulates expression of transcription factors, such as Bix4, to specify cells located in the vegetal
pole to differentiate into endoderm (Figure 1) [4–6]. VegT also activates nodal and nodal-related gene
expression; these transcripts encode proteins that induce cells in the region above the vegetal pole,
called the marginal zone, to differentiate as mesoderm (Figure 1) [6,7]. The induction of mesoderm via
the Activin/Nodal signaling pathway is known to be conserved across vertebrate species including
zebrafish, Xenopus laevis, chicken, and mouse [8].
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Figure 1. Diagram of Xenopus laevis embryo during early gastrulation. During gastrulation, the three
primary germ layers, endoderm, mesoderm, and ectoderm, begin to differentiate. The vegetal pole
refers to the lower hemisphere of the embryo and will give rise to the endoderm. The marginal zone
refers to the equatorial region of the embryo between the animal and vegetal poles and will give rise to
the mesoderm. The mesoderm contains a dorsal organizer region which secretes Bone Morphogenetic
Protein (BMP) antagonists. The animal pole refers to the upper hemisphere of the embryo which will
give rise to the ectoderm. The drawing of the cavity in the animal hemisphere depicts the fluid-filled
blastocoel. As described in the text of the review, foxI1e, along with many other germ layer-enriched
factors, is expressed in the cells of the animal pole. chordin and goosecoid are expressed in the dorsal
marginal zone. wnt8 is expressed ventrolaterally and brachyury is expressed throughout the marginal
zone. VegT, an activator of nodal and nodal-like genes, is expressed in the cells of the vegetal pole.

Activin/Nodal signaling initiates when Nodal, Nodal-like, and other related Transforming Growth
Factor beta (TGFβ) ligands bind to the type II TGFβ receptor, which subsequently phosphorylates the
type I receptor [9]. The type I and type II receptors then form a heterotetrameric complex, containing
two of each receptor type. The activated type I receptor phosphorylates the receptor-activated Smads
(R-Smads), Smad2, and Smad3. Once phosphorylated, Smad2 and Smad3 form a heteromeric complex
with Smad4. This complex then translocates from the cytoplasm to the nucleus and, along with many
associated proteins such as FoxHI, CREB binding protein, and Mixer, mediates the transcription of
target genes [10–12]. Immediate-early targets of the Smad2/Smad4 complex include, among others,
goosecoid and mix.2 [10,11,13,14]. Through this signaling pathway, Activin/Nodal ligands induce
mesoderm during gastrulation.

In addition to the Activin/Nodal TGFβ pathway, several additional pathways are integral to
mesoderm induction and maintenance in the developing embryo. For example, Fibroblast Growth
Factor (FGF) signaling is required for the maintenance of mesoderm during gastrulation [15–17].
FGF and Brachyury function through an autocatalytic loop; FGF induces expression of brachyury, which
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in turn induces expression of eFGF [18]. Brachyury, a T-box transcription factor, is an immediate-early
response to mesoderm induction and functions as an activator to turn on additional mesodermal genes
(Figure 1) [19–21]. Additionally, β-catenin stabilization is necessary for proper FGF signaling in the
prospective mesoderm during gastrulation [22,23].

FGF induces mesoderm through various downstream signaling mechanisms. FGF signaling
leads to phosphorylation of the ERK mitogen-activated protein kinase (MAPK) pathway, which
subsequently leads to phosphorylation of P53 [24,25]. Once phosphorylated, P53 physically associates
with phosphorylated Smad2 to induce the expression of mesodermal genes [26,27]. Studies in mouse
and mammalian cell culture show that independent from P53 phosphorylation, ERK also activates
expression of many factors critical for mesodermal maintenance [28,29]. For example, ERK induces
expression of Egr1, a transcription factor that regulates expression of FGF target genes [30].

3. Differentiation and Patterning of Ectoderm

The cells of the ectoderm give rise to several distinct tissue types. Ventral ectoderm differentiates
into epidermal tissue, while neural tissue forms from the dorsal ectoderm; cells at the border between
these two populations develop into the sensory placodes and neural crest [31,32]. During development,
Bone Morphogenetic Protein (BMP) signaling gradients regulate dorsal/ventral patterning of the
mesoderm [25]. BMP signaling has been shown to also be critical for ectodermal patterning [33].
Studies have shown that an abundance of BMP-4, initially widely expressed throughout the blastula,
ventralizes the ectoderm which then differentiates into epidermis [33]. The Spemann organizer secretes
multiple BMP antagonists that inhibit BMP signaling dorsally and allow dorsal ectodermal cells to
adopt their “default” fate, neural tissue; when BMP signaling is inhibited throughout the prospective
ectoderm, all ectodermal cells differentiate into neural tissue [34–38]. Classical studies suggest that
the ectoderm forms because the cell population in the animal pole of the embryo does not receive
inducing signals from the endoderm/mesoderm [25]. Recent work, however, has demonstrated that
there are proteins expressed in the ectoderm necessary for active repression/restriction of mesodermal
and endodermal fates. Below, we will describe the function of these factors, in detail. The activity of
these factors has been examined in various biological pathways. A list of proteins with activity in one
or more pathways is provided in Table 1.

Table 1. Inhibitors of mesoderm in Xenopus laevis ectoderm.

Gene Name
Blocks Mesoderm via
Inhibition of TGFβ
Signal Transduction

Blocks Mesoderm
via Alternative

Pathway
Additional Comments References

Dand5 (Coco) + Blocks via ligand inhibition [39,40]

Ndp (Norrin) + Blocks via ligand inhibition [41]

Tomoregulin-1
(TMEFF1) + Inhibits Cripto/receptor complex [42]

Trim33
(Ectodermin) + Promotes degradation of Smad4 [43]

Smad7 + Inhibitory Smad [44,45]

BAMBI + Inhibits receptor/Smad association [46,47]

Serum Response
Factor (SRF) + Inhibits FoxH1/Smad2 association [48,49]

Eaf1/2 + + Associates with Smad2 and P53 [50]

ZNF585B
(XFDL156) + P53 inhibitor [51]

FoxI1e + Transcriptional activator [52]

Tbx2 + Transcriptional repressor [53]

Geminin + PRC2 dependent [54]

Ascl1 + Recruits HDAC1 [55]
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4. TGFβ Pathway Inhibitors

Several of the proteins identified as necessary for repression of mesoderm and/or endoderm in the
ectoderm are inhibitors of the Activin/Nodal signaling pathway. One such inhibitor of mesendoderm
expression in the ectoderm, Dand5 (Coco), belongs to the Cerberus/DAN/Gremlin superfamily.
Members of this superfamily were originally identified as antagonists of BMPs [56–58]. The BMP
signaling pathway, like the Nodal/Activin pathway, is a branch of the TGFβ signaling network; during
development, BMP signaling specifies dorsal/ventral axis formation [59–62]. It was subsequently
determined that some members of the Cerberus/DAN/Gremlin superfamily function as secreted
inhibitors of both BMP and Activin/Nodal ligands, many of which are present in the endoderm and
mesoderm [56–58]. In the ectoderm, Dand5, functions as a TGFβ ligand antagonist and, supplied
maternally, is one of the earliest expressed antagonists of TGFβ signaling (Figure 2) [39]. In animal cap
explants, Dand5 physically associates with both BMP4 and Xnr1, ligands of the BMP and Activin/Nodal
pathways, respectively [39,63,64]. A population of pluripotent cells can be isolated from the animal
pole of blastula stage Xenopus laevis embryos; this explant, called an “animal cap,” can be induced to
differentiate into various tissue types [65]. Dand5 inhibits the mesoderm-inducing abilities of Xnr1
misexpression as well as the ventralizing effects of BMP4 misexpression [39]. The knockdown of
dand5 in animal caps leads to increased levels of phosphorylated Smad2 and increased expression of
mesodermal markers [40]. Loss of Dand5 in whole embryos leads to increased endodermal marker
expression at the expense of mesoderm; the knockdown of dand5 in the presumptive mesoderm causes
a reduction of the dorsal marker chordin [40]. Loss of Dand5 in whole embryos also leads to loss of
Hoxb9, a spinal cord marker, suggesting a ventralizing effect [40]. Furthermore, these experiments
demonstrate that Dand5 inhibits both the BMP and Activin/Nodal branches of the TGFβ signaling
pathway and is necessary for repression of inappropriate mesendodermal gene expression in the
ectoderm during gastrulation [39,40].Genes 2019, 10, x FOR PEER REVIEW 5 of 14 

 

 

Figure 2. Extracellular regulation of mesendodermal gene expression. In this and subsequent figures, 

red boxes denote mesendoderm inhibitors. R-Smads refer to Smads1/5/8 or Smads2/3 for the BMP 

and Activin/Nodal pathways, respectively. TGF ligands (BMP4 and Activin/Nodal) bind the TGF 

receptor complex and activate signal transduction of the TGF signaling pathway. Dand5 (Coco) and 

Ndp (Norrin) physically associate with BMP and Activin/Nodal and inhibit signal transduction. 

At early cleavage stages, another maternal TGF ligand inhibitor, Ndp (Norrin), is expressed in 

the prospective ectoderm [41]. Ndp is a secreted protein characterized by a cysteine-knot motif and 

was initially shown to function as a ligand in the Wnt signaling pathway [66,67]. Misexpression of 

ndp in animal caps represses Activin-mediated mesendoderm induction, and promotes neural fate, 

suggesting a repression of BMP signaling [41]. Co-immunoprecipitation experiments show that Ndp 

physically associates with the BMP pathway ligand, BMP4, and, in cell culture experiments, the 

Activin/Nodal pathway ligand, Xnr1 [41]. These studies suggest that Ndp inhibits TGFsignaling 

via association with TGF ligands (Figure 2). 

Another repressor of aberrant gene expression in the ectoderm is Tomoregulin-1 (TMEFF1), a 

transmembrane protein [42,68]. Misexpression of TMEFF1 suppresses Nodal- and Vg1- induced 

mesendoderm expression; TMEFF1 does not inhibit Activin-induced mesendoderm [42]. The 

association of Nodal with the type II and type I TGF receptors and subsequent phosphorylation of 

Smad2 depends on a Cripto family co-receptor [69]. While important for signal transduction of the 

TGF pathway upon Nodal ligand binding, Cripto has not been implicated in Activin signaling [69]. 

Cripto physically associates with the TGF type I receptor and promotes the association of Nodal and 

the type I receptor. TMEFF1 inhibits Nodal signaling by physically associating with the type I co-

receptor and preventing the type I co-receptor from forming a complex with Cripto, an association 

necessary for signal transduction (Figure 3) [68]. 

BMP4

IIII II

PP

Crip
to

R-Smad P

Smad4

IIII II

PP

IIII II

PP

R-Smad Smad4

PR-Smad

BMP4 Activin/Nodal Nodal

Dand5 Ndp Dand5 Ndp

R-SmadR-SmadSmad4

PR-Smad

Nodal

Figure 2. Extracellular regulation of mesendodermal gene expression. In this and subsequent figures,
red boxes denote mesendoderm inhibitors. R-Smads refer to Smads1/5/8 or Smads2/3 for the BMP
and Activin/Nodal pathways, respectively. TGFβ ligands (BMP4 and Activin/Nodal) bind the TGFβ
receptor complex and activate signal transduction of the TGFβ signaling pathway. Dand5 (Coco) and
Ndp (Norrin) physically associate with BMP and Activin/Nodal and inhibit signal transduction.

At early cleavage stages, another maternal TGFβ ligand inhibitor, Ndp (Norrin), is expressed
in the prospective ectoderm [41]. Ndp is a secreted protein characterized by a cysteine-knot motif
and was initially shown to function as a ligand in the Wnt signaling pathway [66,67]. Misexpression
of ndp in animal caps represses Activin-mediated mesendoderm induction, and promotes neural
fate, suggesting a repression of BMP signaling [41]. Co-immunoprecipitation experiments show that
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Ndp physically associates with the BMP pathway ligand, BMP4, and, in cell culture experiments, the
Activin/Nodal pathway ligand, Xnr1 [41]. These studies suggest that Ndp inhibits TGFβ signaling via
association with TGFβ ligands (Figure 2).

Another repressor of aberrant gene expression in the ectoderm is Tomoregulin-1 (TMEFF1),
a transmembrane protein [42,68]. Misexpression of TMEFF1 suppresses Nodal- and Vg1-
induced mesendoderm expression; TMEFF1 does not inhibit Activin-induced mesendoderm [42].
The association of Nodal with the type II and type I TGFβ receptors and subsequent phosphorylation
of Smad2 depends on a Cripto family co-receptor [69]. While important for signal transduction of the
TGFβ pathway upon Nodal ligand binding, Cripto has not been implicated in Activin signaling [69].
Cripto physically associates with the TGFβ type I receptor and promotes the association of Nodal
and the type I receptor. TMEFF1 inhibits Nodal signaling by physically associating with the type I
co-receptor and preventing the type I co-receptor from forming a complex with Cripto, an association
necessary for signal transduction (Figure 3) [68].
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Figure 3. Transmembrane and cytosolic inhibition of mesendodermal gene expression. TMEFF1,
a transmembrane protein, prevents the association between Cripto, a Nodal-pathway specific coreceptor,
and the type I receptor. Smad7 inhibits TGFβ signaling by forming a complex with Smurf2, which
subsequently induces the degradation of the type I and type II TGFβ receptors. BAMBI, another
transmembrane protein, associates with Smad7 and the type I receptor and inhibits association between
the type I receptor and R-Smads. The “X” indicates the lack of a serine/threonine intracellular
kinase domain.

Another identified mechanism of mesoderm repression is via Smad4 inhibition. Smad4,
an intracellular mediator of TGFβ signaling, forms a heteromeric complex with Smad1/5/8 or Smad2/3 in
the BMP and Activin/Nodal pathways, respectively. In the ectoderm, Trim33 (Ectodermin), a RING-type
ubiquitin ligase, physically associates with Smad4 (Figure 4) [43]. This association promotes the
degradation of Smad4 [43]. As a downstream mediator of both BMP and Activin/Nodal signaling,
degradation of Smad4 inhibits signaling in both pathways [70]. Loss of Trim33 in the prospective
marginal zone of Xenopus laevis embryos expands the expression of endodermal markers, and loss
of Trim33 in animal cap explants induces expression of mesodermal markers [43]. Misexpression
of Trim33 in the prospective mesoderm represses mesodermal and ventral markers and increases
the expression of neural markers [43]. These data show that Trim33 is necessary for inhibition of
mesodermal and endodermal gene expression in the ectoderm.
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Figure 4. Nuclear regulation of mesendodermal gene silencing. Trim33 (Ectodermin) functions in the
nucleus and, via ubiquitination, promotes the degradation of Smad4. At the transcriptional level, SRF
prevents the association between FoxH1 and the Smad2-Smad4 complex, repressing Smad2 target
genes. Eaf1/2 are repressors that inhibit Activin-mediated mesoderm induction via P53-dependent
and P53-independent mechanisms. Eaf1/2 physically associates with P53, Smad2, Smad3, and FoxH1.
ZNF585B (XFDL156) reduces the amount of P53 bound to P53 target sites and represses P53-induced
mesodermal gene expression. FoxI1e is an activator that likely indirectly inhibits mesendodermal gene
expression in the ectoderm. Tbx2, a T-box transcription factor, also represses mesendodermal gene
expression. Geminin is a chromatin modifier that represses gene expression by recruiting the PRC2
complex. The PRC2 complex then trimethylates H3K27 to silence gene expression. Ascl1, another
chromatin modifier, recruits HDAC1 to deacetylate H3K27 and H3K9, a mechanism that silences
gene expression.

An additional potent inhibitor of TGFβ signaling is Smad7, an “anti-Smad” [44]. Misexpression
experiments in Xenopus laevis demonstrate that Smad7 is sufficient to reduce mesodermal markers in
both the mesoderm and in Activin-treated animal cap explants [45]. Smad7 also inhibits the expression
of ventral markers [45]. This indicates that Smad7 inhibits the Activin/Nodal and BMP pathways
during gastrulation [44,45]. The molecular mechanisms through which Smad7 inhibits TGFβ signaling
have been demonstrated in cell culture experiments. Smad7 physically associates with Smurf2 via a
PPXY sequence in its linker region. Smad7 regulates the localization of Smurf2; the Smurf2-Smad7
complex translocates from the nucleus to the cytosol where it associates with a heteromeric type I and II
receptor complex (Figure 3) [71]. Once associated with the TGFβ heteromeric complex, Smurf2 induces
degradation of the TGFβ receptors via both proteasomal and lysosomal pathways [71]. These data
from cell culture experiments provide insight into how Smad7 may function to inhibit mesodermal and
endodermal gene expression during gastrulation. Smad6, another anti-Smad, blocks BMP signaling
in Xenopus laevis [72–74]. Studies in Xenopus laevis have shown that smad6 overexpression partially
inhibits Activin-mediated mesoderm induction; however, the extent of this repression is not well
studied [74].

BMP and Activin membrane-bound inhibitor (BAMBI) is a transmembrane protein with an
extracellular domain that is similar to the BMP type I receptor but lacks an intracellular serine/threonine
kinase domain [46]. Misexpression of BAMBI in Xenopus laevis animal caps is sufficient to repress
the effects of both BMP4 misexpression and Activin treatment [46]. BAMBI inhibits TGFβ signaling
by associating with the type I and type II receptor complex (Figure 3) [46]. BAMBI decreases the
phosphorylation level of the type I receptor, and the dimerization of the type I receptor, a necessary
component of the TGFβ signaling pathway [75]. Cell culture experiments show that BAMBI promotes
the formation of a ternary complex composed of Smad7, BAMBI, and the BMP type I receptor
(Figure 3) [47]. In this case, BAMBI does not induce Smurf-mediated receptor degradation [47]. Instead,
the Smad7-BAMBI-type I receptor complex inhibits the physical association between the type I receptor
and R-Smads [47].

Regulation of TGFβ signaling also occurs downstream of the Smad2-Smad4 complex. The serum
response factor (SRF) belongs to the MADS-box family of transcription factors [76]. MADS-box
transcription factors contain a conserved 56 amino acid MADS-box which confers DNA-binding
activity [76]. During gastrulation, SRF transcripts are present predominantly in the ectoderm of Xenopus
laevis embryos, with low levels detected in the marginal zone and no expression of SRF detected in
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the endoderm [48]. Loss-of-function studies demonstrate that SRF is necessary for the repression
of mesodermal markers in the ectoderm. Consistently, expression of a dominant-negative form of
SRF in animal cap explants of Xenopus laevis embryos leads to ectopic expression of mesoderm [48].
The knockdown of SRF in whole embryos leads to an expansion of mesodermal markers towards
the ectoderm [48]. An investigation into the mechanism of action of SRF revealed that SRF represses
mesoderm in the developing embryo by inhibiting the association between Smad2 and Fast1 [49]. Fast-1
(FoxH1) is a winged-helix transcription factor that physically associates with Smad2 and functions as a
co-activator to turn on target genes [10,49]. Through this mechanism, SRF functions in the ectoderm to
limit mesendoderm expression (Figure 4) [48].

Initially identified as tumor suppressors, Eaf1/2 have also been shown to inhibit phosphorylated
Smad2 activity during germ layer specification [50,77]. Eaf1/2 are ELL-associated factors that were
initially shown to function as antagonists of Wnt/β-catenin signaling during development [78].
During development, Wnt/β-catenin plays an important role in establishing the dorsoventral
and anteroposterior axes of the embryo [79]. Consistent with this, misexpression experiments in
zebrafish demonstrate that Eaf1/2 increase dorsal markers during gastrulation [78]. Eaf1/2 function as
transcriptional repressors to inhibit Wnt/β-catenin signaling [78]. Eaf1/2 were later studied for their
role in germ layer specification during gastrulation. Misexpression of Eaf1/2 reduce the expression
of mesodermal and endodermal markers in zebrafish embryos. Loss of function experiments show
that the ectodermal marker foxi1 decreases in eaf1/2 morphants [50]. Studies in cell culture show that
Eaf1/2 co-localize and physically associate with Smad2. Chromatin immunoprecipitation experiments
reveal that Eaf1/2 occupy promoters of TGFβ targets, suggesting that Eaf1/2 function as transcriptional
repressors, as they function in the Wnt/β-catenin pathway, to repress the mesoderm-inducing activities
of the Activin/Nodal branch of the TGFβ signaling pathway, and specifically the function of Smad2
(Figure 4) [50].

5. P53 Inhibitors in Mesoderm Repression

P53 has been shown to induce mesoderm when overexpressed in animal cap explants of Xenopus
laevis embryos; phosphorylated P53 physically associates with phosphorylated Smad2 to induce
mesodermal marker expression [24,26]. Knockdown of P53 in eaf1/2 morphant zebrafish embryos
reduces levels of mesodermal marker expression, suggesting that Eaf1/2 may partially suppress
mesodermal markers through a P53-dependent mechanism [50]. However, Eaf1/2 are still able to
repress TGFβ targets whose induction is independent of P53 function: Eaf1/2 suppress P53-independent
targets of TGFβ signaling in P53 mutant embryos [50]. Studies also show that Eaf1/2 physically associate
with P53 and repress P53 response elements and P53-required TGFβ Luciferase reporters (Figure 4) [50].
These data suggest that Eaf1/2 function at the transcriptional level to repress P53-mediated mesoderm
induction [50].

Another inhibitor of P53-induced mesoderm expression is ZNF585B (XFDL156). ZNF585B
is a zinc finger nuclear factor present in Xenopus laevis embryos in the ectoderm during early
gastrulation [51]. Misexpression experiments in animal cap explants reveal that ZNF585B specifically
represses mesodermal, and not endodermal, marker expression, suggesting that ZNF585B does not
function as a TFG pathway signaling inhibitor [51]. This led to the discovery that ZNF585B functions
as a P53 inhibitor; it physically associates with P53 and decreases the level of P53 binding to target
promoter sites (Figure 4) [51]. The C-terminus of P53 is referred to as the regulatory domain (RD);
removal of this domain increases the mesoderm-inducing ability of P53 [26,27]. The deletion of the RD
reduced the ability of ZNF585B to effectively inhibit mesoderm induction via P53, indicating that the
P53 RD is necessary for ZNF585B suppressor activity [51].

6. Additional Transcriptional Regulators of Inappropriate Germ Layer Expression

The transcription factor, FoxI1e (Xema) is required for the suppression of mesendodermal
expression in the ectoderm during gastrulation (Figure 4). The Fox transcription factors are
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characterized by a conserved winged-helix DNA-binding domain, and many are present during early
embryogenesis [80]. Misexpression of FoxI1e represses both Activin and FGF-mediated mesoderm
induction, suggesting that FoxI1e may not act directly, or at least not only, as a TGFβ pathway
inhibitor [52]. FoxI1e functions as a transcriptional activator during early development [52]. Expression
of a chimeric protein consisting of the FoxI1e coding region fused to an Engrailed repressor domain
induces mesodermal marker expression in animal cap explants, suggesting that repression of FoxI1e
transcriptional targets is sufficient to induce mesoderm; knockdown of foxi1e similarly results in
ectopic mesodermal marker expression [52]. Misexpression of FoxI1e in the endoderm induces the
expression of both epidermal and neural ectodermal markers [81]. FoxI1e also plays a role in the
spatial regulation of ectodermal cells: loss of FoxI1e causes ectodermal cells to lose adhesive properties
and relocate to other germ layers [81].

As a transcriptional activator, it is likely that FoxI1e suppresses mesoderm indirectly, possibly
through activation of a transcriptional repressor responsible for suppressing mesodermal and
endodermal gene expression in the ectoderm. tbx2, a gene encoding a T-box family transcription factor,
has been identified as a target of FoxI1e (Figure 4) [53]. The structure of T-box proteins is conserved
across five subfamilies [82]. All T-box proteins contain a highly conserved region of 180–200 amino
acids, called the T-box, which confers DNA-binding specificity [83]. T-box proteins can function as
activators or repressors of transcription [84,85]. Like foxi1e, tbx2 is expressed at high levels in the
animal pole during gastrulation [53]. Also, like FoxI1e, Tbx2 represses Activin and FGF-mediated
mesoderm induction [53]. However, unlike FoxI1e, Tbx2 functions as a transcriptional repressor [53].
Misexpression experiments show that Tbx2 also represses ventral fate in animal cap explants and
induces expression of the “default” dorsal fate—neural tissue [53]. Ectopic expression of Tbx2 in the
marginal zone represses mesodermal and ventral markers [86]. To further demonstrate the repressive
effect of Tbx2, the promoter region of bix4, a target of the T-box transcription factors Brachyury and
VegT, was fused to a Luciferase reporter gene. Bix4-promoter/Luciferase experiments suggest that Tbx2
requires the T-box sites on the Bix4 promoter for repression [53]. The ability of tbx2 to repress both
BMP and Activin/Nodal pathways suggests that Tbx2 may function through the TGFβ pathway and/or
TGFβ target gene inhibition; however, the ability of Tbx2 to repress FGF-mediated mesoderm induction
suggests that Tbx2 may additionally repress transcription through TGFβ-independent mechanisms.

7. Epigenetic Suppressors of Mesendoderm

In addition to the TGFβ pathway inhibitors and transcription factors described above, epigenetic
modifiers have been implicated in mesoderm and endoderm suppression. Geminin, a nuclear protein,
was initially identified as a regulator of DNA replication [87]. During gastrulation, Geminin promotes
the expression of neural markers at the expense of epidermal markers [88]. Misexpression of geminin
suppressed both mesodermal and endodermal markers in Activin- and FGF- treated animal cap
explants. [54]. The knockdown of Geminin expands the expression patterns of mesodermal and
endodermal genes; however, the knockdown of Geminin in the animal pole of whole embryos is
insufficient to induce expression of mesodermal and endodermal markers [54]. Geminin has been
shown to repress transcription through the Polycomb Repressive Complex (PRC2); PRC2 is a cluster
of proteins that act as an epigenetic modulator to suppress transcription and has been implicated in
many biological processes including development (Figure 4) [89,90]. Specifically, PRC2 functions as
a methyltransferase to trimethylate H3K27 and repress transcription [91]. PRC2 is comprised of the
proteins Ezh2, Suz12, and Eed [92]. Knockdown of either Suz12 or Ezh2 inhibits the repressive effects
of Geminin misexpression, suggesting that an intact PRC2 is necessary for Geminin function [54].

Another chromatin modifier implicated in repression of inappropriate gene expression in the
ectoderm is Ascl1. Ascl1 has been shown to neuralize mouse embryonic fibroblasts [93]. In Xenopus
laevis, Ascl1 inhibits VegT-mediated mesendoderm induction, but not Activin/Nodal-mediated
mesoderm induction. During gastrulation, VegT directly activates various Nodal-related mesendoderm
inducers [25,94]. Ascl1 is expressed maternally, and during gastrulation is detected at high levels in the
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ectoderm and at lower levels in the marginal zone [55]. Experiments in both mammalian cell culture
and Xenopus laevis embryos reveal that Ascl1 functions to recruit HDAC1 to reduce H3K27 acetylation,
a marker of actively transcribed promoters (Figure 4) [55,95]. Microinjection of VegT increases levels of
H3K27ac and H3K9ac (also a hallmark of active promoters) on mesodermal and endodermal genes
such as Nodal, and these levels are reduced by misexpression of Ascl1 [55,95,96].

8. Conclusions

Vertebrate germ layer formation and patterning is a complex process that involves the suppression
of multiple signaling pathways. Highlighted in this review are several inhibitors of TGFβ signaling,
necessary for repression of mesendodermal gene expression in the presumptive ectoderm. These
antagonists function at many steps in the pathway, from ligand-receptor complex formation to
TGFβ-mediated regulation of transcription. The requirement for additional transcriptional repressors
and chromatin modifiers demonstrates that inhibition at multiple network nodes is necessary to restrict
mesendoderm during gastrulation.

The restriction of mesendodermal gene expression in the animal pole and inhibition of BMP
signaling in the dorsal ectoderm during early development are sufficient to give rise to neural tissue.
These instances of gene repression are examples of a common theme found throughout developmental
biology, whereby localized repression of gene expression within the developing embryo gives rise
to “zones of plasticity” allowing distinct cell fates to arise. A somewhat analogous process occurs
during early post-implantation stages of mouse development. Initially nodal is expressed throughout
the epiblast and is necessary for proximal-distal patterning [97]. Subsequently, during gastrulation, the
anterior epiblast, fated to become ectoderm, exhibits little Nodal signaling due to localized repression
by multiple extracellular Nodal antagonists [98]. Studies in cell culture show that inhibition of Nodal
signaling specifies a transient ectodermal progenitor population that can give rise to either neural
or epidermal ectodermal fates [99]. This review highlights the process by which multiple factors,
via inhibition at multiple signaling nodes, specify a region devoid of mesendoderm-inducing and
ventralizing signals during gastrulation.
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