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Abstract: DNA methylation patterns have been shown to change throughout the normal aging
process. Several studies have found epigenetic aging markers using age predictors, but these
studies only focused on blood-specific or tissue-common methylation patterns. Here, we constructed
nine tissue-specific age prediction models using methylation array data from normal samples.
The constructed models predict the chronological age with good performance (mean absolute error of
5.11 years on average) and show better performance in the independent test than previous multi-tissue
age predictors. We also compared tissue-common and tissue-specific aging markers and found
that they had different characteristics. Firstly, the tissue-common group tended to contain more
positive aging markers with methylation values that increased during the aging process, whereas
the tissue-specific group tended to contain more negative aging markers. Secondly, many of the
tissue-common markers were located in Cytosine-phosphate-Guanine (CpG) island regions, whereas
the tissue-specific markers were located in CpG shore regions. Lastly, the tissue-common CpG
markers tended to be located in more evolutionarily conserved regions. In conclusion, our prediction
models identified CpG markers that capture both tissue-common and tissue-specific characteristics
during the aging process.
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1. Introduction

Aging is often defined as an overall functional decline over time that affects all living organisms [1].
In addition, the human aging process is an important health factor that is still not fully explainable,
thus understanding what happens when people age is of great interest [2,3]. In recent years, many
cellular and molecular hallmarks of aging have been discovered, including cellular senescence [4],
gene expression changes [5,6], and telomere attrition [7–9]. Moreover, biological markers of aging
involving epigenetic changes have been studied, and DNA methylation has emerged as a promising
biomarker of healthy human aging [10].

DNA methylation is a representative epigenetic modification that involves the addition of methyl
groups to the DNA molecule. DNA methylation is considered to be a crucial epigenetic change because
it can alter the activity of genes and is a biomarker that has been implicated in various human diseases,
including cancer. Furthermore, many studies revealed that DNA methylation patterns in specific
regions have been shown to change along with the aging process [11,12].

As aging-related methylation pattern research has progressed, some studies have identified
epigenetic markers that accurately predict the chronological age of healthy people. Bocklandt et al.
identified an age predictor using DNA methylation patterns derived from saliva samples [13].
Hannum et al. identified a more accurate age predictor using blood methylation data and reported
71 age-related Cytosine-phosphate-Guanine (CpG) sites known as “Hannum’s clock” [14]. Similarly,
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a study showed the accurate prediction of age using only three CpG markers in DNA derived from
blood [15]. It is important to note that these studies only used DNA from single tissues and primarily
focused on blood [16]. On the other hand, Hovarth et al. reported a multi-tissue age predictor that
could be applied to all tissues and cell types [17]. This study revealed 353 age-related CpG sites known
as “Hovarth’s clock”. Due to its high performance in almost all tissue types, Hovarth’s clock has been
widely used as a standard for estimating biological age using reliable epigenetic markers [18,19]. Since
the epigenetic clock has emerged, many studies are still underway for methylation-based human aging
prediction based on various machine learning techniques. More recently, Li et al. applied a gradient
boosting approach to methylation age predictors, which provided even better accuracy for predicting
human age [20]. However, these studies did not consider the tissue-specific characteristics of DNA
methylation and only revealed CpG sites that explained common aging-related methylation patterns
across all tissue types.

Age-related DNA– methylation shows distinct patterns in different tissues [21]. A comparison of
methylation in adipose and liver tissues from young and old mice revealed that the age-related
methylation sites in these two tissues showed distinctly different patterns [22]. Furthermore,
tissue-common and tissue-specific methylation sites that are significantly correlated with age clearly
show different characteristics [23]. These studies indicate a need for new epigenetic age estimators
reflecting the specific characteristics of different tissue types.

Thus, to address the tissue-specific characteristics of DNA methylation changes corresponding
to the aging process, in this study, we constructed tissue-specific chronological age predictors using
DNA from the same tissues (Figure 1). Here, we hypothesized that DNA methylation pattern may
be changed in different manners per each tissue over the aging process. Using DNA methylation
data from nine distinct tissues, we constructed tissue-specific age predictors with different epigenetic
markers. The validity of the suggested epigenetic markers is tested on the independent test dataset.

Finally, we identified new aging-related epigenetic markers that exhibit tissue-specific methylation
patterns and methylation changes that were common across various tissue types. We further compared
the characteristics of tissue-common and tissue-specific aging-related methylation patterns and showed
that these patterns clearly differed.
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Figure 1. Overview. We collected DNA methylation data from nine healthy human tissues from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. We used both the 450 K
and 27 K platforms to obtain as much data as possible and integrated the two platforms using common
Cytosine-phosphate-Guanine (CpG) probes. To select informative features from the high-dimensional
array data, initially we filtered the aging-related probes using an F test. Then, we performed feature
selection using an elastic net regression and bootstrap analysis. Finally, we constructed tissue-specific
support vector regression models for each of the nine tissues. Additionally, we analyzed the selected
aging-related features by separating the data into two groups. We compared the characteristics of
the CpG probes from the two groups, including the correlation with age, the methylation location,
the conservation score, and gene ontology.

2. Materials and Methods

2.1. Tissue-Specific Methylation Datasets

All data were collected from publicly available databases, including The Cancer Genome Atlas
(TCGA) [24] and the Gene Expression Omnibus (GEO) [25]. Tissue types with more than 30 normal
samples were selected.

For the training dataset, most of the datasets used were collected from normal tissues in TCGA.
The brain dataset consists of cerebellum, frontal lobe, cortex, and pons tissues from 150 subjects [26].
The breast dataset consists of normal tissue from TCGA (Breast invasive carcinoma: BRCA data).
The colon dataset consists of adjacent normal tissue from TCGA (Colon adenocarcinoma: COAD
an d Rectum adenocarcinoma: READ data). The kidney dataset consists of adjacent normal tissue
from TCGA (Kidney renal papillary cell carcinoma: KIRP and Kidney renal clear cell carcinoma:
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KIRC data). The liver dataset consists of adjacent normal tissue from 62 Taiwanese Hepatocellular
carcinoma (HCC) patients [27] and adjacent normal tissue from TCGA (Liver hepatocellular carcinoma:
LIHC data). The lung dataset consists of adjacent normal tissue from TCGA (Lung adenocarcinoma:
LUAD and Lung squamous cell carcinoma: LUSC data). The saliva dataset consists of samples
from Khomani San individuals living in the South African Kalahari [28] and 197 alcohol-dependent
subjects [29]. The thyroid dataset consists of adjacent normal tissue from TCGA (Thyroid carcinoma:
THCA data). The uterus dataset consists of adjacent normal tissue from TCGA (Uterine Corpus
Endometrial Carcinoma: UCEC data) and 152 normal uterine cervix samples [30]. Detailed information
is summarized in Table 1.

Table 1. Training dataset. To train the model, we used DNA methylation data from healthy or normal
adjacent samples obtained from nine different tissues. We collected methylation array data obtained
using both the 27 K and 450 K platforms from TCGA and GEO datasets.

Data Set Tissue Type The Number of Patients Age Range Platform

GSE15745 [26] Brain 253 16–95 HumanMethylation 27 K

TCGA [24] Breast
95

122
28–90 HumanMethylation 450 K

27 35–88 HumanMethylation 27 K

TCGA [24] Colon
45

82
40–90 HumanMethylation 450 K

37 43–90 HumanMethylation 27 K

TCGA [24] Kidney 205
401

31–90 HumanMethylation 450 K
196 33–86 HumanMethylation 27 K

TCGA [24]
Liver

49
106

20–81 HumanMethylation 450 K
GSE37988 [27] 57 20–79 HumanMethylation 27 K

TCGA [24] Lung 74
125

40–86 HumanMethylation 450 K
51 51–83 HumanMethylation 27 K

GSE99029 [28]
Saliva

57
254

21–91 HumanMethylation 27 K
GSE34035 [29] 197 21–55 HumanMethylation 27 K

TCGA [24] Thyroid 56 56 15–81 HumanMethylation 450 K
TCGA [24]

Uterus
34

186
36–90 HumanMethylation 450 K

GSE30758 [30] 152 19–55 HumanMethylation 27 K

The independent dataset was derived from normal adjacent tissues from the GEO. The brain
dataset consists of 78 samples from the Brodmann area of the cerebral cortex [23]. The breast dataset
consists of 23 non-neoplastic breast tissue samples [30] and adjacent normal tissues from patients
with invasive breast cancer [31]. The colon dataset consists of 11 normal adjacent colon samples [32]
and 87 normal colon biopsies used to study normal aging in the colonic mucosa [33]. The kidney
dataset consists of 83 samples of normal adjacent resected kidney tissue [23]. The liver dataset consists
of 79 normal liver samples from Germany [34] and control samples from a non-alcoholic fatty liver
disease study [35]. The lung dataset consists of normal tissue obtained from smokers from a lung
adenocarcinoma study [36]. The saliva dataset consists of saliva samples from an aging study collected
from 54 males aged 18 to 73 years [37] and samples from identical twins aged 21 to 55 years [13].
The thyroid dataset consists of normal samples from a methylation study collected from 5 different
normal and cancer tissue samples [38]. The uterus dataset was obtained from 152 women involved in
a nested prospective case-control study [30]. Detailed information is summarized in Supplementary
Table S1.

To generate coherent methylation features, all tissue-specific methylation datasets were selectively
collected based on the use of either the Illumina 27 K or Illumina 450 K methylation chip as the assay
platform. The Illumina methylation platform is an array-based quantification method for methylation
levels at specific loci within the genome. Probes on the 27 K array target regions of the human
genome to measure methylation levels at 27,578 CpG dinucleotides in 14,495 genes [39]. The Infinium
HumanMethylation450 BeadChip array targets more than 450,000 CpG methylation sites within and
outside of CpG islands [40]. The subsequent analyses used CpG features that were commonly measured
in both the 27 K and 450 K platforms.
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2.2. Association Test

To construct the age predictors, CpG probes that commonly appeared in the 27 K and 450 K
platforms with less than 10 missing values were used. To combine two different datasets for training,
such as in the liver tissue datasets, the 27 K and 450 K datasets were normalized. We applied quantile
normalization using the “quantile_transform” function in the preprocessing module provided by
“Scikit-learn 0.19.1” [41]. Since more than 20,000 probes were too many to construct the aging models,
a linear regression model was constructed for each probe. We performed F-tests between the beta values
of each CpG probe and age and selected CpG sites with false discovery rate (FDR, Benjamini–Hochberg
procedure [42]) values less than 0.05. Here, the F value of the regression analysis is the test result of
the null hypothesis that the regression coefficients are all zero. Thus, CpG sites that passed the F-test
(have a significant FDR of less than 0.05) represented CpG features that could have chronological age
prediction power [43]. For this F-test, we used the “f_regression” function in the feather-selection
module provided by “Scikit-learn 0.19.1” [41].

2.3. Aging Model Construction

The feature selection process was performed using an elastic net algorithm [44], which is a
multivariate linear model implemented in Python 3.5 and the package “Scikit-learn 0.19.1” [41].
The elastic net algorithm uses a penalized regression method that combines the lasso and ridge
regression methods. This algorithm is ideal for high-dimensional data where the number of features is
greater than the number of samples. We employed a bootstrap analysis by sampling the dataset with
replacement and built elastic net regression models for each bootstrap cohort. We repeated this process
500 times and included markers that were present in more than 95% of all bootstrapping processes.
Using these selected features, we constructed the final model using a support vector regression (SVR)
algorithm. SVR is a regression method that maintains all the main features and characteristics of a
support vector machine (SVM) [45]. SVR aims to find a regression function that minimizes the error
and has a deviation from the target that is at most ε at all times. To train models using SVR model, we
should select several parameters like epsilon, degree of regularization, and kernel functions like linear
kernel or RBF kernel. Every optimal parameter was estimated via 10-fold cross-validation by grid
search [46–48].

2.4. Performance Comparison with Multi-Tissue Predictors

To validate the performance of the proposed models, we compared the models with two epigenetic
age predictors. The first model is a multi-tissue age predictor that uses 353 CpG markers applicable to
each tissue type [17]. For the comparison, we used 3931 methylation samples from 22 tissues and the R
function for training described in this study. The second model was a multi-tissue model with SVR.
We used the SVR algorithm to predict age using selected features. To validate that the selected features
explained the aging process in each tissue, we applied the SVR algorithm in the multi-tissue age
predictors. We collected the dataset specified by the study. Using 353 CpG markers as multi-tissue age
predictors, we applied the SVR algorithm with the linear kernel. For model construction, parameters
such as epsilon and C were selected by 10-fold cross-validation; the same procedure was applied for
the tissue-specific age predictors.

To evaluate model performance, we used three regression metrics. The first metric is a root-mean-
square error (RMSE). The RMSE represents the square root of the second sample moment of the
differences between predicted and observed values. The second metric is the mean absolute deviation
(MAD). The MAD represents the average vertical distance between each point and the Y = X line.
The third metric is Pearson’s correlation coefficient, which is also referred to as Pearson’s r. The r value
represents the measure of the linear correlation between predicted and observed values and has a
value between +1 and −1, where 1 is a total positive linear correlation, 0 is no linear correlation, and −1
is a total negative linear correlation.
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For comparison with the multi-tissue age predictor using other regression metrics, we used two
types of metrics. The first metric is the mean absolute percentage error (MAPE). The MAPE is a
measure of the prediction accuracy of a forecasting method in statistics. The absolute value in this
calculation is summed for every forecasted point in time and divided by the number of fitted points n.
Multiplying by 100% makes the value a percentage error [49]. The other metric is Theil’s U statistic.
This metric is a relatively accurate measure that compares the forecasted results with the results of
forecasting with minimal historical data [50].

2.5. Conservation Score Calculation

We examined the phastCons score of the CpG sites within the genomic regions provided by the
human methylation 450 K annotation file [51]. PhastCons score is a probability that each nucleotide
belongs to a conserved element through the evolution process. In this case, we used Phastcons score for
multi alignment fo 99 vertebrate genomes to the human genome. We calculated the average phastCons
score for each base of the genomic regions.

2.6. GO Analysis

The GO analysis was performed using the ClueGO plugin in Cytoscape 3.5.1 [52]. We used the
GO biological process database as a reference. Gene lists were selected using the closest gene to each
CpG marker that was provided by the Illumina human methylation 27 K platform annotation file.

3. Results

3.1. Tissue-Specific Age Prediction Model

In this study, we used 21,396 probes that could be measured using the Illumina Infinium II assay
and were common to both the 27 K and 450 K platforms.

Initially, the number of CpG features was more than 100 times greater than the average number of
samples. Therefore, to filter out features that are not related to aging, we performed association tests
between the β-values of each CpG site and age. As a result, we selected CpG sites that had a false
discovery rate (FDR) < 0.05. After the association test, the average number of features of each tissue was
reduced to 8800. Then, we selected features to be used in the age prediction model by using a penalized
multivariate regression method (Table 2). Additionally, we counted the number of occurrence in
features from each tissue-specific age predictors. cg22736354 methylation marker is found as common
marker of all nine tissue-specific age predictors. Detailed information is provided in Supplementary
Table S3. Finally, using these selected features, we constructed nine tissue-specific age prediction
models using a SVR algorithm (Figure 1). We used the SVR algorithm in the final regression modeling
because it showed lower mean absolute deviation (MAD) values than the elastic net regression in
almost all tissue types. The results are presented in Supplementary Figure S1. In addition, the SVR
method had better epigenetic age prediction performance than the multivariate regression method [53].
In previous epigenetic aging studies, elastic net regressions have been typically used for both feature
selection and age prediction [14–17]. As methylation array data are not abundant in normal samples,
use of the SVR algorithm instead of a simple multivariate linear regression appeared to perform well
in analyses of the high-dimensional bioinformatic data.

Table 2. The number of features of each tissue. This table lists the number of final features used for
model construction. We used these features for the subsequent feature analysis.

Brain Breast Colon Kidney Liver Lung Saliva Thyroid Uterus Total

Total 256 249 86 371 248 148 280 221 46 1460
Common 93 92 17 153 53 49 103 99 35 247
Specific 163 157 69 218 195 99 177 122 11 1213
Positive 170 202 54 281 186 67 232 151 35 989
Negative 86 47 32 90 62 81 48 70 11 471
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We validated the performance of the tissue-specific age predictors using several metrics, including
the root mean squared error (RMSE), mean absolute deviation (MAD), and Pearson’s correlation
coefficient (r), to compare the predicted age to the chronological age. According to these accuracy
measures, the tissue-specific age predictors performed well in all nine tissue types. We performed
10-fold cross-validation and external valiation to verify that the model was well trained. K-fold
cross-validation is a model validation technique that uses a partitioned original sample to test a
model trained with the remaining k-1 subsamples. We set the parameter k as 10 [47]. For the 10-fold
cross-validation, the RMSE was 4.679 (years), MAD was 3.519 (years), and r was 0.9619 on average
for the nine tissue models (Supplementary Figure S2). To test that nine tissue-specific age predictors
performed well in real-world methylation data, we also validated the model in an independent test
dataset for every nine tissues from GEO database. Regarding the external validation, the RMSE was
6.512 (years), MAD was 5.119 (years), and r was 0.845 on average (Figure 2).
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Figure 2. External Validation. We tested the tissue-specific age predictors listed in an independent
dataset and found that the mean absolute deviation (MAD) was 5.119 years and the correlation
coefficient was 0.845 on average for the nine models. The results in the brain (MAD = 5.358, r = 0.859),
breast (MAD = 4.412, r = 0.884), colon (MAD=5.836, r = 0.717), kidney (MAD = 4.757, R=0.899), liver
(MAD = 4.926, R = 0.898), lung (MAD = 5.459, R = 0.710), saliva (MAD = 4.866, R = 0.937), thyroid
(MAD = 6.14, R = 0.910), and uterus (MAD = 4.773, R = 0.796) are shown.
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3.2. Comparison with the Multi-Tissue Age Predictor

To validate the tissue-specific age predictors, we compared the performance of two models.
The first model was the multi-tissue age prediction model described by Hovarth, which used 353
aging-related CpG markers [17] The second model was a multi-tissue age predictor that applied the
SVR algorithm. In our results, generally, the tissue-specific age predictors had lower MAD values
than the multi-tissue age predictors (Figure 3). For comparison, we used the same test dataset that we
used for validating the proposed age predictors (see Methods 2.1 for details). Also these test datatsets
were not used in the training process of multi-tissue age predictor, which were also appropriate for
comparing the performance of multi-tissue age predictor(Supplementary Table S2).Genes 2019, 10, x FOR PEER REVIEW 9 of 18 
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Figure 3. Comparison with a previous study. The results were compared between the proposed
tissue-specific age predictors and multi-tissue age predictors for an independent dataset collected in
this study. For the abbreviations, TS means Tissue-specific age predictor we suggested, MT means
Multi-tissue age predictor and MT_SVR is Support Vector Regression Model constructed by using
features of multi-tissue age predictor for equitable comparison. MT(same # of features) means a
Multi-tissue age predictor using the same number of features in TS model. The numbers in parentheses
refer to the number of markers of each tissue-specific model. (a) When comparing MAD values,
the tissue-specific age predictors showed better performance except for the breast and thyroid tissue
datasets. (b) When comparing the R values as coefficient of correlation, some tissues showed better
performance in the multi-tissue age predictors, but the results were similar.
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Although the r values of the multi-tissue age predictors were slightly higher than those of the
tissue-specific age predictors in some tissues, the models exhibited similar results. We compared the
models using other metrics that are commonly used in regression problems, such as the mean absolute
percentage error (MAPE) and Theil’s U statistics, and found that the tissue-specific age predictors
tended to show better results (Supplementary Figure S3). As these improved results may be due to
the superiority of SVR and not the explanatory power of the selected features, we applied the SVR
algorithm to the dataset and features described by Hovarth. As a result, the proposed tissue-specific
age predictors generally showed better performance than the multi-tissue age predictors with the
SVR model. This result shows that tissue-specific age predictors can reflect the aging process well
despite the smaller numbers of training data and features. For some dataset like saliva (GSE92676),
or thyroid (GSE53051) multi-tissue age predictor showed better results in prediction error. However,
tissue-specific age predictors showed better or comparable results using a smaller number of training
samples and features. Considering that multi-tissue age predictors used about 4000 samples for
training the model, which also added plentiful blood dataset samples, tissue-specific age predictors
used only about 200 samples for each tissue on average for training and used a smaller number of
features to predict the age of the samples. Despite the unfair condition, tissue-specific age predictors
predicted age of samples with comparable level with multi-tissue age predictors by also considering
the tissue-specific properties. We also compared how many selected features overlap with Hovarth’s
clock (353 CpGs). Methylation sites used for features of multi-tissue age predictors more belonged to
tissue-common group (Supplementary Figure S4).

In addition, our results suggest that age-related DNA methylation changes have both tissue-specific
and tissue-common patterns, and we have selected the features that reflect both of these characteristics.

To determine whether the tissue-common and tissue-specific patterns had different characteristics,
we divided the selected features into two groups and analyzed their features. We defined the
“tissue-common group” as CpG sites that were commonly used in more than two tissue models.
In contrast, the “tissue-specific group” was defined as CpG sites that were uniquely used in only one
tissue model. In total, we found 247 tissue-common aging markers and 1,213 tissue-specific aging
markers. The number of aging markers in each tissue type is listed in Table 2.

Several studies have shown aging-related methylation patterns in blood. Thus, we aimed to
validate that the tissue-common group was consistent with the findings from these previous studies. In
a review on DNA methylation and healthy human aging, the authors filtered 11 CpG sites associated
with age in the blood that appeared in at least four of the eight studies [54]. Nine of the 11 CpG sites in
our derived tissue-common group were congruent with aging. Furthermore, compared with Hovarth’s
clock, 353 CpG sites were included in more of the tissue-common features than in the tissue-specific
features. These results show that the tissue-common markers in our models reflect epigenetic aging
patterns that generally appear throughout various tissues.

3.3. Tissue-Common and Tissue-Specific Features of Age-Dependent Methylation in Tissues

We hypothesized that tissue-specific aging signatures would show methylation patterns that
differed from those commonly observed. To validate this assumption, we compared the tissue-common
methylation patterns with the tissue-specific methylation patterns. First, we compared the direction
of methylation that accompanied the aging process. We defined “positive ageCGs” as CpG sites
whose methylation increased during the aging process and “negative ageCGs” as CpG sites whose
methylation decreased during the aging process. Generally, more positive ageCGs were found, but the
tissue-specific group had more negative ageCGs than the tissue-common group (Supplementary Figure
S5). Interestingly, as the number of markers that appeared in the tissue types increased, the ratio of
positive ageCGs also increased (Figure 4a). This finding could suggest that general methylation patterns
increase with age; however, decreasing methylation patterns that were associated with tissue-specific
aging were also observed.
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Figure 4. Different patterns between the tissue-common and tissue-specific groups. Different
characteristics of the methylation direction and location between the tissue-common and tissue-specific
groups (a–c) (a) When the correlation coefficient of the beta values of each methylation site and age
were compared, more positive ageCGs were found in aging-related CpG sites. However, the ratio of
negative ageCGs was higher in the unique groups defined as tissue-specific. In addition, the ratio of
positive ageCGs increased as the number of appearances in the tissue model increased. (b) When the
methylation locations based on the gene structure were compared, no significant changes were found
between the two groups (p = 0.4059). We compared the methylation location sites in the 27 K platform
and found more gene body regions that contained aging-related CpG sites (p < 10−6). (c) We compared
the locations of the methylation sites in the CpG islands and CpG shores and found more CpG island
regions in the tissue-common group (p < 10−6) and more CpG shore regions in the tissue-specific group
(p = 0.0001).
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Also, to compare the general methylation patterns that emerged during aging, we divided the
data into a younger group and an older group. For the training data, we selected the five oldest and
five youngest samples from each tissue type. For each tissue, the age difference between the two
groups was greater than 40 years. No significant difference was observed in the total 27 K methylation
patterns between the two groups. However, by comparing the methylation patterns of the selected
aging-related features, we observed that the older group tended to be more highly methylated than the
younger group in each tissue type except for the lung tissue (Supplementary Figure S6). This result is
consistent with the abundance of positive ageCGs found in aging-related methylation sites.

Next, we compared the ratio of the gene structures in which each CpG marker was located.
The distribution of the locations in the gene structures in both the common and unique CpG groups
did not significantly differ (Fisher’s exact test, p = 0.4059). However, the aging-related methylation
markers were more likely to be located in the gene bodies than the location distribution of all CpG sites
in the 27 K platform (Fisher’s exact test, p < 10−6) (Figure 4b). Although the result was not significant,
the tissue-common group included more exon regions than the tissue-specific group (Fisher’s exact
test, p = 0.1303) (Supplementary Figure S7). In addition, we compared the ratios of the CpG islands to
the CpG shore regions in which each CpG marker was located. The tissue-common group tended to be
located in the CpG island regions, whereas the tissue-specific group tended to be located in the CpG
shore regions (Fisher’s exact test, p < 10−6, p = 0.0001) (Figure 4c). These results are consistent with
results from a previous study comparing age-related tissue-common and tissue-specific patterns in
four tissues [23]. The results show that tissue-specific and tissue-common methylation patterns appear
in different locations and that each tissue type may have distinct mechanisms that operate during the
normal aging process.

Furthermore, we assumed that the methylation patterns appearing in various tissues might
be more evolutionarily conserved than the patterns from tissue-specific mechanisms. To test this
assumption, we calculated the average evolutionary conservation (phastCons) score of the chromosome
region of each CpG marker from the Illumina annotation file (see Methods for details). As expected,
the distribution of the conservation scores of the tissue-common and tissue-unique groups differed
(Kolmogorov-Smirnov test, p = 0.00413). The aging-related CpG markers tended to be located in more
conserved regions than randomly selected CpG sites (Figure 5a). This result may be due to the original
conservation score differences in the CpG island regions. Thus, we compared the conservation score
distributions of the whole CpG island and shore regions provided by the Illumina 27 K annotation
file but found few differences (p = 0.09) (Figure 5b). However, when we compared the conservation
score distributions of the CpG islands and shore regions of the aging markers, we found significant
differences (p = 0.04) (Figure 5c). We thought that this conservation score difference was not due to the
known evolutionary conserveness difference in CpG Island and Shore region. However, it is because
of tissue-specific and common methylation differences throughout the aging process.
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Figure 5. Conservation scores. (a) Comparison of the cumulative distribution of the average
conservation scores between the tissue-common and tissue-specific groups. The two distributions of the
tissue-common and tissue-specific group show significant differences using the Kolmogorov-Smirnov
test (p = 0.004). (b) As the two groups showed differences in the methylation locations based on CpG
islands, we compared the conservation score of each CpG site in the CpG island and shore regions
from the 27 K methylation platform but did not find a significant difference (p = 0.09). (c) However, the
conservation scores of the aging-related CpG island and shore regions slightly differed (p = 0.04).

3.4. The Functionality of Tissue-Common and Specific Methylation Regions

Finally, we performed a gene ontology (GO) analysis to validate the function of the closest gene
to the selected markers. We assumed that the selected methylation markers affected the function of
the gene closest to the site. To analyze the gene ontology, the markers were divided into the positive
ageCG and negative ageCG groups, since we suspected that the functions of the positive ageCGs and
negative ageCGs might differ.

In the tissue-common group, GO terms such as cell-cell adhesion and cardiac muscle contraction
appeared in the positive direction, and GO terms such as regulation of behavior and snRNA transcription
appeared in the negative direction. In the tissue-specific group with positive ageCGs, tissue-specific GO
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terms were associated with brain and breast tissue, including neural crest cell migration and mammary
gland lobule development. In the tissue-specific group with negative ageCGs, immune-related terms
were found, such as regulation of T cell migration. The number of T cells and the distribution of
lymphocyte subsets have been shown to vary with age [55]. The GO terms for each group are shown
in Figure 6, and the top lists of GO terms for tissue-common and tissue-specific group are provided in
Supplementary Tables S4 and S5.
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Figure 6. Gene ontology (GO) analysis. GO terms for the closest gene of each methylation group are
shown. Because we conducted the gene ontology analysis by separating the sites into positive and
negative ageCGs, red color indicates the GO terms from the positive ageCGs and blue color indicates
the negative ageCGs.

4. Discussion

Although many studies have investigated aging-related epigenetic markers using methylation
arrays, these studies are limited by only considering the common characteristics of aging across tissues.
In this study, we constructed nine tissue-specific age prediction models to study the tissue specificity of
DNA methylation. Using a penalized regression model, reliable features that affect aging were selected.
We selected fewer than 400 epigenetic markers for each tissue that may reflect the aging processes of
that tissue. The number of selected features differed for each tissue, and these differences may reflect
the different aging processes of each tissue. For instance, tissue models with more CpG features may
suggest that the tissues have undergone more biological changes during the aging process. However,
these differences could also be the result of the different numbers of features derived from the model
training process.
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Generally, the tissue-specific age predictors showed better performance than the multi-tissue
predictors despite the smaller number of features and the smaller training dataset. However, obtaining
better results in the comparison does not necessarily mean that the tissue-specific age predictors
represent a better biological age prediction method. The multi-tissue age predictors estimated the
chronological age of each tissue with high accuracy. However, this model was limited because the
specificity of DNA methylation patterns in different tissues was not considered. Moreover, tissue-specific
age predictors have an advantage in providing tissue-specific biomarkers. By constructing a model for
each tissue type, we found different aging markers that did not appear in other tissues. This method
was limited because the feature selection was time-consuming. Moreover, because this method was
applied to only nine tissues, finding aging-related methylation markers in other tissues could prove to
be difficult.

Although the two models have pros and cons, the better performance of the tissue-specific
age predictors suggests that aging-related DNA methylation patterns have both tissue-specific
and tissue-common characteristics. Therefore, we compared the tissue-common and tissue-specific
aging-related DNA methylation patterns to determine whether the two groups showed different
characteristics. First, more positive ageCGs were positively correlated with age, suggesting that
generally aging-related methylation regions increased throughout an individual’s lifetime. Interestingly,
the tissue-specific groups had more negative ageCGs than positive ageCGs; this phenomenon showed
that decreasing methylation patterns also existed in tissue-specific aging mechanisms. In addition,
these two groups are located in remarkably different regions based on their proximity to CpG islands.
The tissue-common methylation regions involved in aging tended to be more conserved than the
tissue-specific regions. This result suggests that the tissue-specific and tissue-common groups show
different patterns because biologically important regions are more conserved throughout evolution.

Finally, the two groups showed different functionalities. To determine the differences in each
methylation group, we performed a GO analysis by separating the data into positive and negative
ageCGs. Interestingly, the genes in regions of both positive and negative tissue-common groups
tended to show GO terms such as muscle contraction and behavior. Furthermore, each tissue showed
different functions, although not all tissues showed the same tissue-specific ontology terms. Although
tissue-specific terms typically appeared in the negative ageCGs, tissue-specific terms in the positive
ageCGs were found from brain and breast tissue. We believe that this finding is the result of the
small number of negative ageCGs; thus, many tissue-specific terms were not statistically significant.
In addition, determining which tissue is aging at the fastest rate is an important question in aging
studies. Some studies have investigated different aging rates in specific tissues [56,57]. However,
comparing different biological ages predicted by age predictors of each tissue is inappropriate, because
the prediction may be the result of the bad performance of the model. We did not directly address
the rate of aging between tissues. We investigated that the degrees of the slope between age and
methylation level of cg22736354, which is one of the tissue-common markers. According to the aging
process, we noted that the slopes of the methylation level of this single cg22736354 were different for
each tissue type. We confirmed that the slope of colon tissue is smallest, and in the brain tissue, the
slope value is higher than other tissues. These results suggest that aging marker in colon tissue more
slowly than other tissues (supplementary Table S6).

5. Conclusions

This study revealed epigenetic age predictors that reflect the characteristics of DNA methylation
and tissue-specific aging mechanisms. The tissue-common markers found in this study may be used as
reliable epigenetic aging markers that reflect aging-related DNA methylation changes that commonly
appear in many tissues. Furthermore, these tissue-specific markers may be used as targets to identify
tissue-specific epigenetic aging signatures. However, the cellular mechanisms of DNA methylation
require further investigation. Since a clear description of the relationship between DNA methylation
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and aging is lacking, each tissue type may have different biological mechanisms, and thus, both
tissue-common and tissue-specific aging mechanisms need to be considered in future studies.

Although the proposed tissue-specific age-prediction model showed remarkable performance,
the method still has room for improvement. First, with the development of next-generation sequencing
(NGS) technology, non-CpG methylation has been measured and observed, and the role of non-CpG
methylation in specific cells has been interpreted to some extent in recent years. In this sense,
non-CpG methylation can also be considered an aging-prediction marker [58]. Additionally, with the
accumulation of datasets, more sophisticated machine learning models [59–61], such as deep neural
networks (DNN) [62,63], can be applied to identify and interpret age-related features that cannot be
captured with simple linear or non-linear regression models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/11/888/s1,
Figure S1: Comparison of SVR and Elastic Net regression method; Figure S2: Internal validation; Figure S3:
Comparison with other metric Comparison with other metric; Figure S4: Number of common features with
hovarth; Figure S5: Ratio of positive and negative ageCGS; Figure S6a: General methylation pattern difference in
young and old group; Figure S6b: Aging-related methylation pattern difference in young and old group; Figure
S7: Exon and intron ratio in tissue-common and tissue-specific group, Table S1: Independent dataset; Table S2:
Common dataset with Hovarth et al; Table S3: Number of Common features in tissue-common CpG groups; Table
S4: Gene Ontology Analysis of tissue-common group; Table S5a: Gene Ontology Analysis of positive ageCGs of
tissue-specific group; Table S5b: Gene Ontology Analysis of negative ageCGs of tissue-specific group; Table S6:
The comparison with cg22736354 methylation and age in each tissue, Supplementary_Aging_marker_list.xlsx
contains detailed CpG marker information.
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