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Abstract: Polymyositis (PM) and dermatomyositis (DM) are both classified as idiopathic inflammatory
myopathies. They share a few common characteristics such as inflammation and muscle weakness.
Previous studies have indicated that these diseases present aspects of an auto-immune disorder;
however, their exact pathogenesis is still unclear. In this study, three gene expression datasets (PM: 7,
DM: 50, Control: 13) available in public databases were used to conduct meta-analysis. We then
conducted expression quantitative trait loci analysis to detect the variant sites that may contribute to
the pathogenesis of PM and DM. Six-hundred differentially expressed genes were identified in the
meta-analysis (false discovery rate (FDR) < 0.01), among which 317 genes were up-regulated and
283 were down-regulated in the disease group compared with those in the healthy control group.
The up-regulated genes were significantly enriched in interferon-signaling pathways in protein
secretion, and/or in unfolded-protein response. We detected 10 single nucleotide polymorphisms
(SNPs) which could potentially play key roles in driving the PM and DM. Along with previously
reported genes, we identified 4 novel genes and 10 SNP-variant regions which could be used as
candidates for potential drug targets or biomarkers for PM and DM.
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1. Introduction

Idiopathic inflammatory myositis (IIM) is an extremely rare inflammatory myopathy, whose
incidence was reported to be 7.98/million/year in literature based on meta-analysis using the data
between 1966 and 2013 [1]. Polymyositis (PM) and dermatomyositis (DM) are the two most common
types of IIM in developed countries, presenting muscle weakness and inflammation [2,3]. PM and
DM are usually categorized together since the disease progression and muscle lesions are the same,
irrespective of whether skin lesions are presented [4]. Serological features and clinical manifestations
such as myositis-specific auto-antibodies were also reported for both PM and DM in clinical studies [5,6].
The two diseases exhibit features of an auto-immune disorder; however, their exact pathogenesis has
not been clearly demonstrated yet.

IIM comprises subtypes other than PM and DM; there are also juvenile dermatomyositis (JDM)
and inclusion body myositis (IBM) [7], which are characterized separately from PM and DM on the
basis of several clinical features. For example, even though JDM shares commonalities with adult
DM, recent studies reported that JDM is associated with diseases which are not associated with PM or
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DM [8]. IBM is known to have a slow onset and have very distinctive asymmetric patterns of muscle
weakness, particularly in the quadriceps [9].

Some evidence indicates that PM and DM are strongly associated with severe complications
such as numerous cancers, cardiac, or vascular diseases. Previous population-based cohort studies
and observational studies indicated that the overall risk of malignant disease is increased among
patients with PM or DM [10,11]. In addition, venous thromboembolism and coronary artery disease
(CAD) can appear as complications of PM and DM with an 11.1-fold and 2.24-fold increased risk,
respectively, compared with those in non-IIM patients [12–14]. Therefore, it is important to understand
the biological mechanisms of PM and DM that can potentially result in detrimental complications.

Previous studies demonstrated that there is a relationship between the muscle lesion and
auto-antibodies and muscle-infiltrating immune cells [15]. There are also several reports on
the correlations between the two diseases and several genes involved in immune system and/or
inflammatory responses such as nuclear factor kappa B (NF-κB), tumor necrosis factor a (TNF-a), interleukin
1 a (IL-1a), interleukin 22 (IL-22), toll-like receptor 2 (TLR-2), toll-like receptor 4 (TLR-4), toll-like receptor 9
(TLR-9), interferon alpha (IFNA), interferon gamma (IFNG), and retinoic acid inducible gene 1 (RIG-1) [16–20].

Recently, the importance of genetic variants in gene expression has been emphasized [21].
Genetic variants directly act as expression quantitative trait loci (eQTL) regions affecting adjacent
genes are named eGene of the cis-eQTL [22]. Studies demonstrated that some cis-eQTL of transcription
regulatory regions can also indirectly alter the expression levels of genes that lie far from the variant
regions or even genes in other chromosomes [23]. These eQTL variants which can regulate the activities
of genes over greater distances are called trans-eQTL. Therefore, examining both cis- and trans-effects
of the genetic variant regions can expand our understanding of transcriptomic data.

This study is the first meta-analysis to combine multiple microarray datasets from different studies
on the two diseases. Our study includes two different tissue sources, skin for DM and muscle for both
PM and DM. Thus, we were able to investigate robust genetic expression patterns and detect single
nucleotide polymorphic (SNP) variants that covered a broad scale. By combining a meta-analytical
and cross-tissue approach, we identified genetic markers which may be potential candidates for new
druggable targets.

2. Materials and Methods

2.1. Data Collection

Raw datasets were collected from EBI-ArrayExpress (E-MTAB-2141: https://www.ebi.ac.
uk/arrayexpress/experiments/E-MTAB-2141/; E-MEXP-2681: https://www.ebi.ac.uk/arrayexpress/
experiments/E-MEXP-2681/; E-GEOD-46239: https://www.ebi.ac.uk/arrayexpress/experiments/E-
GEOD-46239/), which contains data on PM and DM disease groups and healthy control groups.
The selected datasets were E-MTAB-2141, E-MEXP-2681, and E-GEOD-46239. Each selected dataset
included several disease subtypes; E-MTAB-2141 (PM:3, IBM:6, Control:4), E-MEXP-2681 (PM:4, DM:2,
JDM:4, Control:5), and E-GEOD-46239 (PM:48, Control:4). To maintain consistency throughout the
study, sample series for IBM or JDM were excluded.

2.2. Pre-Processing and Meta-Analysis

Pre-processing of datasets were performed using Oligo Bioconductor package, and the
robust multiarray average (RMA) normalization method was used for normalizing each dataset
separately [24–27]. Meta-analysis was carried out by GeneMeta Bioconductor package proposed by
Choi et al., in order to reduce the variation across individual datasets. False discovery rate (FDR) and
z-scores were computed to identify differentially expressed genes (DEGs) [28]. All steps above were
conducted in R (version 3.4.3) following Jung et al. with slight modifications [29].

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2141/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2141/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-2681/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-2681/
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-46239/
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-46239/
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2.3. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed using the pre-ranked method in GSEA Java
implementation [30]. The gene list, arranged by z-scores in descending order, were used as pre-ranked
gene sets and were converted to the ranked list file format following Jung et al. [31]. Hallmark genes
from molecular signatures database (MsigDB, http://software.broadinstitute.org/ gsea/msigdb) were
used as gene sets [32].

2.4. Network Visualization and Analysis

Core enrichment genes from two GSEA hallmark gene sets, protein secretion and unfolded
protein response, were used as the nodes of network. Subsequently, search tool for the retrieval of
interacting genes (STRING, https://string-db.org/) was applied for adding edges between the nodes [33].
The confidence level of edges was adjusted to 0.9 and the nodes which were not connected to other
nodes were deleted. Using the results from STRING and meta-analysis, a protein-protein interaction
(PPI) network was constructed by Cytoscape (version 3.7.0) [34]. Network analysis and subnetwork
clustering were carried out by using NetworkAnalyzer Cytoscape tool [35]. The annotation files for
the transcription factors were retrieved from transcriptional regulatory relationships unraveled by
sentence-based text mining (TRRUST, version 2) database (https://www.grnpedia.org/trrust/) [36].

2.5. cis- and trans-eQTL Region Analysis
Generalized analysis of molecular variance for mixed-model analysis (GAMMA), which can

determine the association of multiple phenotypes or expression data with multiple genotypes,
was applied to the up-regulated DEGs to analyze eQTL [37]. The analysis was permuted up to 106

times. Muscle data, sun-exposed skin, and not-exposed skin data in the genotype-tissue expression
(GTEx, version 6, https://gtexportal.org) project were retrieved for the analysis [38]. A distance of±1 Mb
was used as the margin to identify cis activity between SNPs and eGenes. Database for annotation,
visualization and integrated discovery (DAVID, http://david.ncif.org) was used to cluster the resulting
eGenes from GAMMA [39]. Analysis and interpretation were performed following Jung et al. [40].

3. Results

3.1. Data Collection and Identifying Differentially Expressed Genes by Meta-Analysis

A total of three microarray datasets including those of PM/DM and healthy control samples
were collected from EBI-ArrayExpress (Table 1). We then performed a meta-analysis by using the R
package GeneMeta and DEGs were detected by comparing the differential expression levels between
the merged (PM and DM) disease group and the control group. The results identified 600 genes as
DEGs (FDR < 0.01; up-regulated: z-score > 0; down-regulated: z-score < 0) (Supplementary Table S1).
Among these 600 genes, 317 genes were up-regulated and 283 were down-regulated in the merged
(PM/DM) disease group compared with that in the control group.

Comparing the DEGs obtained from single studies and our merged study revealed that the
meta-analysis could detect robust expression signatures which could not be detected in the single
studies (Figure 1a,b). The difference between the results from the meta-analysis and single studies
indicated that the meta-analysis successfully increased statistical power and sorted out false positive
signatures (Figure 1c and d).

We also found that the majority of DEGs obtained from single studies were from one dataset,
E-MEXP-2681. Among up-regulated DEGs, we were able to detect the genes associated with PM and/or
DM [16,17]. For example, RIG-1 (z-score: 3.44, FDR: 0.00) and TLR2 (z-score: 3.31, FDR: 0.00) were
significantly up-regulated in the merged-disease group. We examined the top 10 up-regulated DEGs
and the data showed that 6 out of 10 genes were related to inflammation or immune response (Table 2)
which were bone marrow stromal cell antigen 2 (BST2), alpha-2-macroglobulin (A2M), platelet and
endothelial cell adhesion molecule 1 (PECAM1), insulin like growth factor 1 (IGF1), serpin family
G member 1 (SERPING1), and CD163 molecule (CD163) [41–46]. By detecting the genes which are

http://software.broadinstitute.org/
https://string-db.org/
https://www.grnpedia.org/trrust/
https://gtexportal.org
http://david.ncif.org
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related with inflammation and/or immunity, we were able to validate that our results well conformed
with previous studies.
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Figure 1. Identification of the DEGs by meta-analysis and comparison with the single study. (a) The
number of DEGs in the log10 scale and their z-scores at false discovery rate (FDR) < 0.05 and (b) FDR <

0.01 were consistently increased in combined dataset. (c) A Venn-diagram of up-regulated DEGs. DEGs
from single studies were the genes which appeared to be significant in at least one dataset (FDR < 0.01).
(d) A Venn-diagram of down-regulated DEGs. All statistics for single studies and combined set were
computed by GeneMeta R package.

Table 1. Information on the datasets included in this study.

ArrayExpress ID PMID Source Platform Organism PM DM Control Total

E-MTAB-2141 24462217
[47]

Muscle
Biopsy

Affymetrix GeneChip
Human Exon 1.0 ST

Array version 2
Human 3 - 4 7

E-MEXP-2681 - Muscle
Biopsy

Affymetrix GeneChip
Human Genome

HG-U133A
Human 4 2 5 11

E-GEOD-46239 - Skin
Biopsy

Affymetrix GeneChip
Human Genome U133

Plus 2.0
Human - 48 4 52

Total - - - - 7 50 13 70

3.2. Identifying Enriched Biological Pathways Using GSEA

In order to examine the biological effects of the gene expression profiles of PM/DM, we performed
GSEA, which weighs each gene based on rank in the ordered gene set. This clustering method allows
the interpretation of the global gene-expression pattern without any loss in information. Entire 10,032
genes from the meta-analysis were ranked with the z-scores obtained from GeneMeta.

The ranked gene sets were tested on the hallmark gene sets, which provides the clusters of genes
in broad categories. By conducting GSEA with the hallmark gene sets, we successfully identified 25
positively enriched gene sets with FDR < 0.01 (Figure 2a). The majority of them were enriched in
the biological pathways which are directly associated with inflammation or immunity, such as the
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interferon alpha signaling pathway or immune response, respectively [48]. However, we obtained only
3 significantly down-regulated gene sets (FDR < 0.01), which were “KRAS signaling down”, “estrogen
response early”, and “estrogen response late”. Especially, negative enrichment of “KRAS signaling
down” implies that KRAS signaling pathway was up-regulated. The result agreed with our findings
that “KRAS signaling up” gene set was significantly positively enriched. This suggests that only two
gene sets were significant in down-regulated gene sets, thus were removed from this study.

Table 2. Top 10 up-regulated differentially expressed genes (DEGs) between the merged-disease group
and the control group.

Gene Symbol Full Name Entrez ID z-Score FDR

TMSB10 thymosin beta 10 9168 5.62 0.00

SPCS3 signal peptidase complex subunit 3 60559 5.58 0.00

BST2 bone marrow stromal cell antigen 2 684 5.31 0.00

A2M alpha-2-macroglobulin 2 5.14 0.00

PECAM1 platelet and endothelial cell adhesion molecule 1 5175 5.07 0.00

IGF1 insulin like growth factor 1 3479 5.07 0.00

SERPING1 serpin family G member 1 710 4.95 0.00

SLC25A24 solute carrier family 25 member 24 29957 4.84 0.00

CD163 CD163 molecule 9332 4.84 0.00

TM4SF1 transmembrane 4 L six family member 1 4071 4.83 0.00

The top two positively enriched gene sets were those of interferon gamma response (Figure 2b,
FDR: 0.00 and normalized enrichment score, NES: 3.54) and interferon alpha response (Figure 2c,
FDR: 0.00, NES: 3.34). These pathways are representatives of auto-immune inflammatory diseases [49].
From our analysis, we also identified 2 gene sets which were not previously mentioned in single
study: protein secretion (Figure 2d, FDR: 0.00, NES: 2.24) and unfolded protein response (Figure 2e,
FDR: 0.00, NES: 1.97). Grootjans et al. suggested that endoplasmic reticulum (ER) stress is associated
with unfolded protein response, which may be related to inflammatory responses and auto-immune
diseases [50]. In addition, a recent review by Manole et al. suggested that there may be a possible
relationship between unfolded protein response and IIM [51]. In this study, we newly identified
that the ER stress was related to unfolded protein response in PM and DM. Together, our GSEA plot
indicated that the merged-disease group not only showed expression patterns which can be regarded
as common characteristics of auto-immune diseases but also presented abnormally up-regulated
pathways involved in ER stress (Figure 2).

3.3. Network Construction of Protein Secretion and Unfolded Protein Response Gene Sets

As an extension of functional annotation and the GSEA study, we constructed a gene network
using 150 core enrichment genes of protein secretion and unfolded protein response gene sets, which
were rarely highlighted in previous studies (Figure 3 and Supplementary Table S2). Among the total
150 genes retrieved from STRING, only 107 genes had a corresponding probe in the merged PM/DM
data and were incorporated into the final network. We observed that the two separate gene sets
(protein secretion and unfolded protein response) were linked to each other via interaction of MAPK1
and EIF4EBP1.
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found 3 genes that were not mentioned in previous studies, thus seemed to be novel. The genes were 
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Figure 2. Gene set enrichment analysis results with hallmark gene sets. Whole genes ordered by the
z-scores from the meta-analysis were used as ranked genes for analysis. (a) Top positively enriched
biological pathways from gene set enrichment analysis (GSEA) hallmark gene sets. Normalized
enrichment score (NES) is a relative value of enrichment which indicates how positive or negative
the enrichment of gene set is, compared to other gene sets. GSEA plots of gene sets of intereset are
displayed. (b) Interferon gamma response, (c) interferon alpha response, (d) protein secretion, and (e)
unfolded protein response gene sets were positively enriched.

Next, we narrowed down the genes by two steps. First, we selected the genes which were both
included in the up-regulated DEGs and the PPI network. Then, the genes listed as the top 10 genes
with the most positive fold-changes (Table 2) or those that had the highest degrees on the network
among the 107 genes were selected (Figure 3a and b), because both characteristics are equally important
in revealing the pathogenesis of PM and DM. Among the genes that were selected, we found 3 genes
that were not mentioned in previous studies, thus seemed to be novel. The genes were YKT6 v-SNARE
homolog (YKT6, z-score: 3.48, FDR: 0.00, Degree: 29), NSF attachment protein alpha (NAPA, z-score:
3.38, FDR: 0.00, Degree: 34), and coatomer protein complex subunit beta-2 (COPB2, z-score: 3.33,
FDR: 0.01, Degree: 24). In addition to these genes, we selected signal peptidase complex subunit 3
(SPCS3, z-score: 5.58, FDR: 0.00, Degree: 4). Even though it only had 4 degrees in the pathway, SPCS3
showed a 5.58 fold-change in z-score, which were the second highest value among those of up-regulated
DEGs. These 4 genes were marked with double circles in the PPI-network (Figure 3c). All novel genes
we proposed were both enriched in either protein secretion or unfolded protein response and were
statistically significantly up-regulated (FDR < 0.01). These significant genes could be suggested as
novel genes because they were not mentioned as causal genes for PM or DM in previous studies.
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Figure 3. A protein-protein interaction (PPI)-network and its information obtained from protein
secretion and unfolded protein response gene sets. (a) A Scatter plot showing the degree distribution.
The nodes with the top 10 highest degrees were annotated with red dots. (b) The profiles and the
degrees of the top 10 nodes. The color of the bar indicates the degree of the genes in PPI-network.
(c) The PPI-network of protein secretion and unfolded protein responses and their link. The colors of
nodes indicate up- or down-regulated genes. Red nodes indicate up-regulation and blue nodes indicate
down-regulation. The sizes of the nodes are proportional to the degrees of the nodes. The identified
novel genes were marked with double circles.

3.4. Identifying Potential cis- or trans-eQTL Regions

In addition to the gene expression profiles, the role of genetic variants such as eQTL loci in
the pathogenesis of various diseases has been recently emphasized [52,53]. In order to determine
the eQTL regions that could potentially affect the pathogenesis of the two diseases, we performed
GAMMA, which is a powerful multiple-phenotype regression analysis to correct population structure
in multi-variate analysis with high accuracy in detecting variants that reduce false positives [37].
GAMMA allows inference of the potential genetic variants from the gene expression data or phenotype
information. By conducting an analysis against multiple tissues, we were able to identify SNPs that
could specifically contribute to the pathogenesis of PM and DM.

Because our target diseases usually present symptoms in muscle and/or skin, we used the data
of muscle tissue, sun-exposed skin tissue, and not-sun-exposed skin tissue from GTEx version 6.
We then performed GAMMA on the 317 up-regulated DEGs and obtained 170 potential regulatory
SNPs for 42 eGenes in muscle tissue (Supplementary Table S3), 112 SNPs for 40 eGenes in sun-exposed
skin tissue (Supplementary Table S4), and 154 SNPs for 27 eGenes in not-sun-exposed skin tissue
(Supplementary Table S5). Because the analyses were permuted to detect 1.0 × 10−5 in maximum
significance, we determined the significance as p < 1.0 × 10−4 and p < 5.0 × 10−4 for GTEx and GAMMA,
respectively. The p-value of GTEx indicates the association between detected SNPs and eGenes,
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whereas that of GAMMA indicates the significance of variant detection. Together, we suggest that the
identified SNPs may be possible regulatory eQTLs affecting the expression of the up-regulated DEGs.

In order to clarify the causal relationship between the eGenes from each tissue and DEGs, we
clustered eGenes using the DAVID functional clustering method. Functional category which involved
most large number of gene were selected from each tissue. Genes and their eQTL loci from selected
functions were presented (Tables 3 and 4). As a result, we obtained at least one significant cis-eQTL site
each from muscle and sun-exposed tissues, but none from the not-exposed tissue. The enriched term was
“regulation of transcription, DNA-templated” from the muscle tissue, which contained 7 variants for 4
genes (Table 3). Three SNPs, rs587638658, rs115256213, and rs12925855, were located on chromosome
1, 6, and 16, respectively. The other 4 variants, rs61916118, rs59992343, rs11221871, and rs11221861,
which were associated with NFRκB, were all located on chromosome 11. From the sun-exposed skin
tissue, 3 variants for 7 genes were clustered to “immunoglobulin-like domain” (Table 4). Two variants,
rs9269294 and rs75364579, were located on chromosome 6, showing significant association with various
human leukocyte antigen (HLA) alleles and one variant, rs397600, on chromosome 19 was associated
with the eGene LILRB2.

Table 3. Single nucleotide polymorphisms (SNPs) and eGenes significantly detected from muscle
tissue, genotype-tissue expression (GTEx) version 6.

Refsnp ID GAMMA p
Value

GTEX p
Value ENSEMBL ID Gene Symbol Description

rs61916118 9.00 × 10−5 2.06 × 10−6

ENSG00000170322 NFRκB
nuclear factor related to kappaB

binding protein
rs59992343 9.00 × 10−5 3.60 × 10−6

rs11221871 1.01 × 10−4 1.42 × 10−6

rs11221861 10.9 × 10−4 3.88 × 10−6

rs115256213 2.10 × 10−4 5.00 × 10−8 ENSG00000204644 ZFP57 ZFP57 zinc finger protein

rs12925855 2.40 × 10−4 6.10 × 10−5 ENSG00000166669 ATF7IP2 activating transcription factor 7
interacting protein 2

rs587638658 3.10 × 10−4 9.95 × 10−5 ENSG00000143067 ZNF697 zinc finger protein 697

Table 4. SNPs and eGenes significantly detected from sun-exposed skin tissue detected in GTEx
version 6.

Refsnp ID GAMMA p
Value

GTEX p
Value ENSEMBL ID Gene Symbol Description

rs397600 6.20 × 10−5 5.47 × 10−7 ENSG00000131042 LILRB2
Leukocyte immunoglobulin-like

receptor, subfamily B (with TM and
ITIM domains), member 2

rs9269294 2.50 × 10−4

3.77 × 10−6 ENSG00000204305 AGER Advanced glycosylation end
product-specific receptor

4.13 × 10−14 ENSG00000196735 HLA-DQA1 Major histocompatibility complex,
class II, DQ alpha 1

3.53 × 10−11 ENSG00000223534 HLA-DQB1-AS1 HLA-DQB1 antisense RNA 1

1.35 × 10−12 ENSG00000179344 HLA-DQB1 Major histocompatibility complex,
class II, DQ beta 1

1.54 × 10−22 ENSG00000196126 HLA-DRB1 Major histocompatibility complex,
class II, DR beta 1

rs75364579 3.30 × 10−4 2.82 × 10−5 ENSG00000179344 HLA-DQB1 Major histocompatibility complex,
class II, DQ beta 1

We subsequently examined the biological meanings of the detected eGenes in muscle tissues
(Table 3). The variants detected from the muscle tissues could be interpreted as trans-eQTL regulatory
regions for PM and DM. For example, NFRκB co-expresses with NF-κB in various inflammatory or
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auto-immune symptoms [54,55]. Therefore, it seems possible to stipulate that the variants for NFRκB
might act as the trans-eQTL region for PM and DM [56]. The protein encoded by ATF7IP2, another
eGene from the muscle tissue, is known to play a role in protein folding and act as the transcriptional
regulator [57]. Therefore, the genetic variant for ATF7IP2 may abnormally regulate unfolded protein
response in patients with PM/DM. The protein encoded by ZFP57, a previously reported potential
repressor of unfolded protein response, was also detected as an eGene for the variant rs115256213 [58].
Even though the function of ZNF697 is not clearly identified, numerous studies have suggested that
it may play a key role in various biological processes such as DNA recognition, RNA packaging,
transcriptional activities, apoptotic regulation, protein folding process, and lipid binding, similar to
other zinc finger protein families [59].

The detected eGenes from sun-exposed skin tissue were emphasized in previous studies and
could be interpreted as potential cis-eQTL candidates (Table 4). HLA alleles play an important role in
auto-immune diseases and the HLA families detected as eGenes from sun-exposed skin tissues were
HLA-DQA1, HLA-DRB1, and HLA-DQB1. These alleles are reported as genetic risk factors associated
with myositis phenotypes such as PM and DM [60]. However, the SNPs resulted from our study
were not reported before [60]. Similarly, HLA-DQA1 was reported to have a positive association with
DM [61]. Another eGene from sun-exposed skin tissue was LILRB2, which is genetically associated
with several auto-immune conditions. Previous studies showed that LILR families bind to HLA class
1 and our analysis also showed that LILRB2 may bind to HLA-B [62]. Therefore, altered LILRB2
could be a contributing factor to auto-immune disease. Additionally, the advanced glycosylation end
product-specific receptor (AGER) gene encodes the receptor for advanced glycation end products
protein, which is a multi-ligand receptor involved in inflammation.

4. Discussion

Meta-analysis provides reliable results by combining multiple studies [28,29]. By using
meta-analysis, we were able to attain more precisely pooled results from multiple individual studies
compared with that from single studies (Figure 1). The data we used for this study originally contain
other subtypes such as IBM or JDM. However, they were excluded for analyses due to following reasons.
Although IBM and PM have similar morphological appearance, there are critical differences between
IBM and PM/DM with respect to clinical features [63]. PM/DM patients are usually treated with
anti-inflammatory or immunosuppresive therapies, whereas those with IBM do not respond to such
treatments. The weakness patterns observed in IBM also differ from those observed in PM/DM [7,63].
In addition, there are some differences between JDM and PM/DM. The major difference between JDM
and PM/DM is the age of onset. JDM usually manifests around the age of 6, whereas general onset
of PM/DM is around the age of 20 [8,64]. Since the source of samples for JDM are much younger in
age than those for PM and DM, the overall gene expression level may be different due to the variance
between children and adults, not just by the presence of the disease itself. Because we believed that
including the data on IBM or JDM may distort the genuine disease signatures, we only used the two
most representative subtypes of IIM, PM and DM [65].

Our results showed that PM and DM were closely related to inflammatory responses or
immune mechanisms such as interferon signaling responses which correspond with previous studies
(Figure 2a) [15–20]. The GSEA results also showed that interferon gamma and interferon alpha gene
sets were enriched, which also supports the previous findings (Figure 2b–e).

Although PM and DM are inflammatory myopathies, we sought to reveal non-inflammatory
contributions of these diseases by using meta-analysis. As a result of meta-analysis, we identified
that genes involved in protein secretion and unfolded protein response pathways are associated with
PM/DM (Figure 3). Notably, thymosin beta 10 (TMSB10, z-score: 5.62, FDR: 0.00, Entrez ID: 9168) showed
the largest difference in expression levels among statistically significant up-regulated DEGs. There is
ample evidence suggesting that TMSB10 is one of the key regulators of malignancy and metastasis in
various types of cancers and PM and DM are well-known for its association with malignancy [66,67].
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Together, our results suggest that the acquired malignancy in PM and DM may be the result of the
abnormal expression of TMSB10.

Previous studies suggested that the pathogenesis of PM and DM is influenced by reactive oxygen
species (ROS) and mitochondrial damage [68]. It has been suggested that there is a correlation
between interferon-induced ROS, unfolded protein response, ER stress, and mitochondrial activity
in inflammatory diseases [69]. Heat shock protein family A (Hsp70) member 5 (HSPA5, z-score: 2.94,
FDR: 0.02, Entrez ID: 3309), which is included in our gene network, is known to play a role in ER stress
(Figure 3c) [70]. In addition, a previous study detected that HSPA5 level were increased in the patients
with PM or DM, which participates in ER stress [71]. Because HSPA5 was included in our PPI-network
using genes from protein secretion and unfolded protein response and was up-regulated marginally
significantly (FDR < 0.05), the data support our hypothesis that the two pathways may contribute to
pathogenesis of PM and DM. Previous studies mentioned that protein metabolism pathways may
indirectly be involved with pathogenesis of PM and DM [50,51]. The three newly identified genes
in this study, YKT6, NAPA, and COPB2, encode proteins that are involved in the transportation from
ER to Golgi structure, vesicle docking, and Golgi budding, respectively [72–74]. Another novel gene,
SPCS3, encodes a component of microsomal signal peptidase [75]. These genes are all involved in the
pathways of protein secretion or unfolded protein response. Together, we suggest that PM and DM are
highly related with protein secretion and unfolded protein response pathways.

All eGenes in Tables 3 and 4 have been previously mentioned to have a positive correlation
with malignancy or some other severe complication of PM and DM [75–85]. NF-κB signaling and
zinc finger proteins are known for their activity in key mechanisms of cancers such as migration,
autophagy, apoptosis, cytokine processing, and metastasis [76–79]. Unfolded protein response, in which
one of the eGenes ATF7IP2 was involved, is also reported to contribute to tumor progression and
carcinogenesis [80]. LILRB2 was proposed as a key player in the signaling pathway of lung cancer
development [81]. HLA families are reported to have an association with various cancer types [82].
In addition, Liu et al. demonstrated that HLA families might play a protective role against CAD,
which is one of the major complications of PM and DM [83]. Another eGene AGER is expressed
primarily in the lung and has polymorphisms that may potentially increase the risk of lung cancer [84].
Detecting AGER as eGene agrees with the previous finding of the association between lung cancer
and PM/DM [85]. Collectively, our analysis successfully captured several known genes implicated in
complications of PM and DM patients, which may validate the soundness of our study.

This study, however, has some limitations. First, because our results were only derived from
in silico analysis, they might not be ensured under physiological conditions. Further in vivo or
in vitro studies are necessary to validate the actual underlying biological mechanisms of inflammatory
myopathies. Second, down-regulated DEGs were excluded after examining the functional annotation
using GSEA due to their ambiguous annotations. Third, because we could not retrieve enough data
for each tissue sources, the eQTL analyses were performed with integrated result. Therefore, this
result may need to be reconfirmed by further analysis conducted using separate tissue sources in large
sample size. Despite of these limitations, our study successfully identified potential genetic markers
of PM and DM using meta-analysis. These genetic signatures, if confirmed in a larger independent
data set or through functional studies, could be applied to the development of targeted therapy or
genetic diagnosis.
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