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Abstract: With the continuous accumulation of biological data, more and more machine learning
algorithms have been introduced into the field of gene function prediction, which has great
significance in decoding the secret of life. Recently, a multi-label supervised topic model named
labeled latent Dirichlet allocation (LLDA) has been applied to gene function prediction, and obtained
more accurate and explainable predictions than conventional methods. Nonetheless, the LLDA
model is only able to construct a bag of amino acid words as a classification feature, and does
not support any other features, such as hydrophobicity, which has a profound impact on gene
function. To achieve more accurate probabilistic modeling of gene function, we propose a multi-label
supervised topic model conditioned on arbitrary features, named Dirichlet multinomial regression
LLDA (DMR-LLDA), for introducing multiple types of features into the process of topic modeling.
Based on DMR framework, DMR-LLDA applies an exponential a priori construction, previously with
weighted features, on the hyper-parameters of gene-topic distribution, so as to reflect the effects of
extra features on function probability distribution. In the five-fold cross validation experiment of a
yeast datasets, DMR-LLDA outperforms the compared model significantly. All of these experiments
demonstrate the effectiveness and potential value of DMR-LLDA for predicting gene function.

Keywords: multi-label classification; topic model; gene function; probability distribution;
Dirichlet-multinomial Regression

1. Introduction

As the main component of a cell, proteins are the most essential and versatile material of life.
Thus, the research on protein functions is of great importance for the development of new drugs,
better crops, and the development of synthetic biochemical [1]. In recent years, new protein function
prediction methods using machine learning algorithms have proliferated, based on various known
information about proteins, and have increasingly become important long-standing research works in
the post-genomic era. From the point of molecular biology, a protein is the product of a gene after the
process of transcribing, translating, and post-translational modifying. Even though the real function of
a gene is to encode one or more proteins executing practical functions, the function of a gene product
has usually been regarded as the native function of the gene in gene-level experiments. Therefore,
we do not distinguish between gene function and protein function in this paper, which are known
collectively as gene function.

The most common computational approach for gene function prediction is to transfer the gene
function into some specific features from their sequence or structure similarity, such as BLAST [2].
In addition to sequence similarity, many gene function prediction methods have been exploited in

Genes 2019, 10, 57; doi:10.3390/genes10010057 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0003-2211-2006
http://dx.doi.org/10.3390/genes10010057
http://www.mdpi.com/journal/genes
http://www.mdpi.com/2073-4425/10/1/57?type=check_update&version=2


Genes 2019, 10, 57 2 of 20

recent years as the additional information extracted from proteins, such as protein structure [3], protein
motif, biophysical properties [4], and integrated heterogeneous data sources [5]. In reference [3],
Evangelia et al. extract novel shape features from protein structures in the form of local (per
amino acid) distribution of angles and amino acid distances, respectively. Each of the multi-channel
feature maps is introduced into a deep convolutional neural network (CNN) for function prediction,
and the outputs are fused through support vector machines or a correlation-based k-nearest neighbor
classifier. In addition, automatic prediction using protein–protein similarity information can be
further supplemented by experimental data [6,7]; this kind of method assumes that the closely related
proteins (or genes) share similar functional annotations on the basis of network structure information.
Researchers have made the relevant literature reviews of computational methods on gene function
prediction in references [8–10].

From the point of machine learning algorithms, predicting gene function based on various
data sources is a problem of classification in nature. A gene can be viewed as an instance to
be classified—various kinds of data sources (such as an amino acid sequence, textual repositories,
and motifs) can be organized into a feature space, so that each gene is represented as a set of attribute
values; a function (such as a gene ontology (GO) term [11]) is regarded as a label. As a gene is always
annotated by several functions, gene function prediction is actually a process of multi-label classification:
a multi-label classifier is trained firstly on constructed attribute features and annotated genes, and then
is used to predict function annotations for unannotated genes. From the above analysis, we believe
that many multi-label classification algorithms have great potential to predict gene function, such as a
support vector machine (SVM), neural network, and decision tree. In reference [12], Celine Vens et al.
proposed three multi-label classifiers based on a hierarchical decision tree, and the experimental results
from 24 datasets show that these classifiers are powerful and effective for gene function prediction.

In addition to traditional machine learning algorithms, a topic model is a kind of probabilistic
generative model that has been applied into gene function prediction. In reference [13], Liu et al.
introduced a typical multi-label supervised topic model into gene function prediction, which was
called labeled latent Dirichlet allocation (LLDA) and is proposed in reference [14] for text mining.
This research is the first effort to apply a multi-label supervised topic model into gene function
prediction. Compared with traditional multi-label classification models, LLDA can model a function
label as a topic, and thus can not only work out the function probability distributions over gene
instances effectively, but can also directly provide the word probability distributions over functions.
Nonetheless, the direct application of LLDA on a gene function dataset can only utilize protein
sequence data by formalizing the sequences into a bag of words (BoW), and then the constructed bag
of words is used for topic modeling. In other words, due to the restrictions of BoW construction in
topic modeling, the feature space was constructed on sequence data rather than multiple biological
data. However, we can see from the above paragraph that there are various protein features, such as
hydrophobicity and the polarity of amino acids, which have a profound impact on gene structure and
function. Apparently, the introduction of multiple kinds of gene features in a multi-label supervised
topic model can improve the accuracy of gene function prediction.

Inspired by the application of a multi-label topic model in gene function prediction and a topic
model conditioned on arbitrary features named the Dirichlet multinomial regression latent Dirichlet
allocation (DMR-LDA) [15], we propose a DMR-LLDA model, which introduces a DMR framework into
an LLDA model. Firstly, we describe DMR-LLDA for gene function prediction problem formulation.
Then the generative process and the inference algorithm of DMR-LLDA are described. This model is
fully compatible with both discrete and continuous features, whose inference is relatively simple. In a
five-fold cross validation experiment on verified gene function prediction, DMR-LLDA significantly
outperformed LLDA. In addition, the impact of feature variables on prior parameters and the comparison
between two kinds of inference algorithms are shown in experimental data. All these experimental
results demonstrate the effectiveness and potential value of DMR-LLDA for predicting gene function.
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2. Methods

2.1. Related Definitions and Notations

In this paper, the topic modeling method of gene function prediction reported by reference [13] is
utilized. We consider each gene to be a document [16], and GO terms (topics) are shared by a document
collection. Meanwhile, we view the extra gene features, except for the bag of amino acid words, as the
metadata, such as authors and dates of documents. Therefore, the introduction of extra gene features
into topic modeling is similar to introducing metadata into the topic modeling of documents, and the
type of metadata may be discrete or continuous. To better understand the practical application of our
method, the relationship of text topic modeling and gene function predicting is illustrated by Figure 1.
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Figure 1. The relationship between protein function prediction and text topic modeling. IP, CP, TS,
MS and so on, represent ‘words’, each of which is composed by two amino acid alphabets. Each GO
term is started by ‘GO:’.

In Figure 1, the right part describes the topic modeling concept of text data, and the left part
describes the related concept of gene function data. For all topic models, there are three key concepts:
“documents”, “words”, and “topics”. In addition, the supervised topic model introduces “labels”
for each document, and the proposed DMR-LLDA model introduces “features” for each document.
Therefore, these concepts can now be reformulated with more detail, as follows.

2.1.1. Documents

For text data (right part of Figure 1), document collection is composed of several documents
numbered D1 to Dn. In the other side (left part of Figure 1), the gene dataset is composed of several
protein sequences, numbered G1 to Gn. Therefore, a document is equivalent to a gene in our model.
We suppose that there are D genes in a gene set, which compose the gene space D = {1, . . . , D},
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and the gene sample set X including D genes can be represented as X = {Xd}D
d=1, and Xd denotes a

gene sample.

2.1.2. Labels

For text data (right part of Figure 1), each document is labeled by one or more tags, such as
“programming” and “language”. On the other side (left part of Figure 1), each gene is annotated by
several GO terms, such as “GO:0003012” and “GO:0003547”. Therefore, a document tag is equivalent
to a GO term in our model, and all of them are called “labels”. In this paper, the gene function label
space is expressed as L = {1, . . . , L}. Meanwhile, the observed labels of each gene are described by a
sparse binary vector Λd = {Λdl}L

l=1, which is defined as follows:

Λdl =

{
1, l ∈ Ld
0, l /∈ Ld

(1)

where, Ld represents the label sub-space of gene Xd: Ld ⊆ L.

2.1.3. Words

For text data (right part of Figure 1), word terms are the main component of a document,
such as the words “table” and “database”. On the other side (left part of Figure 1), we consider
a protein sequence to be a text string, which is defined by a fixed 20 amino acid alphabet (G,A,V,L,I,F,P,
Y,S,C,M,N,Q,T,D,E,K,R,H,W). Correspondingly, amino acid blocks are the main components of a
protein sequence, which is composed by two or more amino acid alphabets, such as “MS” and “TS”.
Therefore, a word term is equivalent to an amino acid block in our model, and all of them are called
“words”. Meanwhile, all of the words constitute a vocabulary. In this paper, the amino acid words
space is represented as W = {1, . . . , W}. For a gene Xd, Xd = {xdn}

Nd
n=1 denotes that the dth gene is

composed by Nd observed word samples, and xdn is one of word samples.

2.1.4. Topics

For text data (right part of Figure 1) and gene function data (left part of Figure 1), a “topic”
is viewed as a probability distribution over a fixed vocabulary. Taking the text data as an example,
the probabilities of the word “table” over “topic 1” are 0.05. For the gene function data, the probabilities
of amino acid block MS over “topic 1” are 0.21. Obviously, topics are latent and needed to be inferred
by topic modeling. In this paper, the global topic space includes T topics, which is represented as
T = {1, . . . , T}. According to the definition of an LLDA model, there is a one-to-one correspondence
between label and topic—therefore, L , T (, represents equivalent relationship between two space),
T =|T|= L =|L|.

2.1.5. Features

For text data (right part of Figure 1), the metadata of a document can be viewed as document
features, such as the tags “author” and “publish year of document”. On the other side (left part of
Figure 1), each gene has several extra features, except for its sequence string, such as molecular weight
and hydrophobicity. Therefore, the metadata of a document tag is equivalent to an extra feature of the
gene in our model, and all of them are called “features”. In this paper, the feature space composed by
gene features is expressed as F = {1, . . . , F}. Therefore, there is a set of observed features for gene Xd,

which can be represented as a feature vector: yd =
{

yd f

}F

f=1
.

2.1.6. Others

In addition to the above five concepts, there are three other concepts illustrated in Figure 1. Firstly,
the BoW, which is a word–document matrix and the input of the topic model. In an instance in the
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right part of Figure 1, the word “table” appears two times in document D1. Likewise, the word “MS”
appears one time in gene G1. In other words, the element of the BoW represents the times of each
word in each document. Meanwhile, there are two probability matrices that appear in Figure 1: one
is the topic (label)–word probability matrix, and the other is the document (gene)–topic probability
matrix. All of them are represented as parameter vectors for each topic or gene in the topic model.

A topic corresponds to a multinomial distribution of word space W, whose parameter vector
is θt = {θtw}W

w=1, and θtw is the probability of word w under topic t; a gene Xd corresponds to a
multinomial distribution of the topics space T, whose parameter vector is πd = {πdt}T

t=1, and πdt is

the topic weight of topic t under gene Xd. Finally, we utilize a feature parameter vector βt =
{

βt f

}F

f=1
to represent the relationship between features (f ) and topics (t) in making features influence the choice
of topic.

Note that the shared parameters of a whole gene set, such as topic–word parameter θ, are called
“global parameters” in this paper. Correspondingly, the parameter of one gene is called a local
parameter, such as gene–topic (label) parameter π.

2.2. Overview of the Dirichlet–Multinomial Regression Latent Dirichlet Allocation Topic Modeling Process

Based on the above notation, we can provide the description of a gene function dataset as follows.
The gene Xd is composed of Nd, which are observed samples, and the word index of each sample

xdn comes from the vocabulary wdn ∈Wd. Thus, the gene can also be represented asWd = {wdn}
Nd
n=1,

where Wd is the local word subspace of Xd. In addition, the latent variables of gene Xd is its topic
subset Td = {tdn}

Nd
n=1, where tdn ∈ Td, and Td is the local topic subspace, Wd ⊆ W, and Td ⊆ T.

Specifically, each gene shares the global topic space Td ≡ T, where d ∈ D. In this case, we suppose

that each word w ∈Wd of each gene Xd shares the same feature vector: ydw ≡ yd =
{

yd f

}F

f=1
.

Then, the topic modeling process of our model can be interpreted as follows: for the training set,
learning the unknown parameter θt, πd, and βt from the observed variablesWd, Td, and yd; for the
testing set, predicting Td and πd from known parameters θt and βt, and the observed variablesWd
and yd. Obviously, θt and βt are global parameters, which are shared by the whole dataset. The above
two steps are also called model training and predicting, and are realized by learning and inference
algorithms, such as Gibbs sampling [17] and variable inference [18].

Moreover, there are two steps before model training and predicting: BoW construction and model
description. Since we constructed the BoW of the gene in exactly the same way as reference [13], this step
will be not repeated in this paper. For model description, there are usually two ways to describe
a probabilistic graphical model, including the generative process and the graphic model, which are
discussed in the next sections. The overview of our topic modeling process is depicted in Figure 2.
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2.3. Description of the Dirichlet–Multinomial Regression Latent Dirichlet Allocation Model

This section provides the description of DMR-LLDA, including its generative process and graphic
model. It is worth noting that our DMR-LLDA introduces the DMR framework for gene features based
on the LLDA model, so this paper emphasizes the DMR part rather than the classic LLDA.

According to DMR framework, each word sample xdn of gene Xd is a “individual”, and all of the
samples {xdn}

Nd
n=1 are divided into |Wd| = Wd groups by word number |Wd| = Wd. A bag of words

{xdn}
Ndw
n=1 is composed by Ndw(the number of word w appeared in gene Xd) samples of the w-th group,

and corresponds to a feature vector ydw, which influences the latent topic t ∈ T choice of all samples.
We suppose that

α̃dwt = exp
(

ydwβ
T
t

)
≡ exp

(
ydβ

T
t

)
= α̃dt, w ∈Wd (2)

In Equation (2), βt =
{

βt f

}F

f=1
represents feature parameters that correspond to topic t. Likewise,

each bag of words w of gene Xd shares the same clustering random variable:

exp(ξdwt) ≡ exp(ξdt) = ζdt, w ∈Wd (3)

where πdt is the selecting probability of the n-th word sample of gene Xd, which chooses topic t and
maximizes the utility selection Udnt. In addition, πd = {πdt}T

t=1 is the topic weight vector of gene Xd,

which obeys the Dirichlet distribution of parameter
{

δ−1
d α̃dt

}T

t=1
:

p(πd) = p
(
{πdt}T

t=1

)
=

Γ
(

∑T
t=1 δ−1

d α̃dt

)
∏T

t=1 Γ
(

δ−1
d α̃dt

) T

∏
t=1

π
δ−1

d α̃dt−1
dt =

Γ
(

∑T
t=1 αdt

)
∏T

t=1 Γ(αdt)

T

∏
t=1

π
αdt−1
dt (4)

where αdt is the hyper-parameter of πdt:

αdt = δ−1
d α̃dt = δ−1

d exp
(

ydβ
T
t

)
(5)

The description of DMR-LLDA from the global and local perspective is shown below.
From the global perspective, each topic t ∈ T can be represented as a multinomial distribution

over vocabulary W, whose parameter is expressed as vector θt = {θtw}W
w=1, and we suppose that

θt obeys Dirichlet conjugate prior distribution. Each topic t ∈ T corresponds to a feature weight
parameter vector βt, which obeys the normal distribution of parameter (µ, σ2).

From the local perspective, each geneXd is composed by Nd observed samples, which corresponds
to local word number subsetWd = {wdn}

Nd
n=1 and local latent topic number subset Td = {tdn}

Nd
n=1,

where Td obeys multinomial distribution of parameter πd. The local observed word subspace of
gene Xd is Wd, the local observed label subspace is Ld, and the local observed feature subspace is Fd.
Each label l ∈ Ld corresponds to a topic t ∈ T, where Td ≡ Ld ⊆ T and Λd = {Λdt}T

t=1 = {Λdl}L
l=1.

The dimension of topic weight πd = {πdt}t∈Td
corresponds to Td, which is Td =|Td|=|Ld|6= T . At the

same time, the range of topics on feature weight parameter vector βt is limited to t ∈ Td. In addition,
ydβ

T
t decides the hyper-parameter αd = {αdt}t∈Td

= {αdt}t∈Ld
of πd, which is the dot-product of

feature vector yd, corresponding to feature subspace Fd and its weighted parameter vector βt.
Above all, the Dirichlet prior hyper-parameter αd of πd can be expressed as

αd = {αdl}l∈Ld
= {αdtΛdt}T

t=1, |αd| = Td = Ld (6)

where αdt is computed by Equation (5). The local topic weight πd can be also represented as

πd = {πdt}t∈Td
= {πdtΛdt}T

t=1, |πd| = Td = Ld (7)
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Given the above, the generative process of DMR-LLDA can be described as follows. The
corresponding graphical model is shown in Figure 3.

For each global topic t ∈ T = {1, . . . , T}, we can

(a) Generate a feature weighted parameter vector βt =
{

βt f

}F

f=1
of topic t from F dimension’s

normal distribution of parameter (µ, σ2):

βt =
{

βt f

}F

f=1
∼ N

(
µ, σ2 I

)
(8)

(b) Generate a multinomial parameter vectorθt = {θtw}W
w=1 from a W dimension Dirichlet distribution:

θt = {θtw}W
w=1 ∼ Dir(λ) (9)

For each gene Xd, d ∈ D = {1, . . . , D}. This means that
(a) We suppose that αdt = δ−1

d α̃dt (δd > 0) as the Dirichlet prior hyper-parameter of the
topic weight

αdt = δ−1
d exp

(
ydβ

T
t

)
= δ−1

d exp

(
F

∑
f=1

yd f βt f

)
(10)

(b) The binary vector Λd = {Λdt}T
t=1 limits the prior hyper-parameter αd of local topic weight

αdΛd = {αdtΛdt}T
t=1 (11)

(c) We can generate local weight topic vector of topic t from a Dirichlet distribution:

πd = {πdtΛdt}T
t=1 ∼ Dir(αdΛd) (12)

(d) For each word sample xdn, we can
i. Generate topic number tdn of xdn from T dimensions’ multinomial distribution of parameter πd:

tdn ∼ πd or Td = {tdn}
Nd
n=1 ∼ Mul(πd, Nd) (13)

ii. Generate word number wdn of xdn from W dimensions’ multinomial distribution of parameter θtdn :

wdn ∼ θtdn orWd = {wdn}
Nd
n=1 ∼ Mul

(
θtdn , Ntdn

)
(14)

As we can see from Figure 3, αd is computed by feature vector yd and its weighted parameter.
Therefore, αd is a parameter rather than a random variable in the LLDA.
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In our DMR-LLDA model, the unknown parameters to be estimated are the global feature
parameter β, the global topic–word multinomial distribution parameter θ, and the local topic weight
π. The hidden variable to be estimated is T . The known data are the observed word samplesW and
binary vector Λ. The joint distribution of (β,π,θ, T ,W) is shown in Equation (15):

p
(
β,π,θ, T ,W

∣∣µ, σ2, Λ,λ
)

= p
(
β
∣∣µ, σ2 ) · T

∏
t=1

p(θt|λ) ·
D
∏

d=1
p(πd|Λd,αd)∏Nd

n=1 p(tdn|πd)p(wdn|tdn,θ)
(15)

Above all, the proposed method utilizes extra features as the prior knowledge of the related
distribution, which is able to gain more reliable prior distribution for the LLDA; then a more precise
estimation of posterior distributions is obtained.

2.4. Inference Algorithm of Dirichlet–Multinomial Regression Latent Dirichlet Allocation

The core learning task of DMR-LLDA is to compute the parameters (π,θ,β) and posterior
distribution p(π,θ,β, T |W). The posterior estimation represents the estimating value of the parameter
under the training set. The prediction process of DMR-LLDA is that on the basis of the estimated three
parameters and a hidden variable, we update the unknown local parameter π and hidden variable
of the test gene by fixing the learned global parameters β and θ; then, we get the corresponding
relationship between the label and the topic. The Gibbs sampling algorithm and the variable Bayesian
algorithm are two essentially approximate inference algorithms of a probabilistic graphic model, and
the purpose of them is universal. In order to compare their impact on the model performance of
difference inference algorithms, we designed a collapsed Gibbs sampling algorithm (CGS), a collapsed
variable Bayesian algorithm (CVB), and a zero-order variational Bayesian algorithm (CVB0) for
DMR-LLDA, with detail as follows.

2.4.1. The Collapsed Construction of Dirichlet–Multinomial Regression Latent Dirichlet Allocation

First of all, after the integration of model parameters (π,θ) in a joint distribution, a semi-collapsed
(β, T ,W) joint distribution is obtained:

p
(
β, T ,W

∣∣Λ,α,λ, µ, σ2) = p
(
β
∣∣µ, σ2 )p(T |Λ,α)p(W|T ,λ)

∝
T
∏

t=1

F
∏
f=1

1√
2πσ2 e−

(βt f −µ)2

2σ2 ·
D
∏

d=1

Γ(∑T
t=1 αdtΛdt)

Γ(∑T
t=1 αdtΛdt+Nd)

T
∏

t=1

Γ(αdtΛdt+NdtΛdt)
Γ(αdtΛdt)

·
T
∏

t=1

Γ(∑W
w=1 λw)

Γ(∑W
w=1 λw+Nt)

W
∏

w=1

Γ(λw+Ntw)
Γ(λw)

(16)

The predictive probability distribution for the topic assignment of sample xdn is

p
(

tdn = t
∣∣∣T (\dn),W (\dn), Λ,α,λ

)
∝ p
(

tdn = t, wdn = w
∣∣∣T (\dn),W (\dn), Λ,α,λ

)
= p

(
tdn = t

∣∣∣T (\dn), Λ,α
)

p
(

wdn = w
∣∣∣tdn = t, T (\dn),W (\dn),λ

)
∝
(

αdt + N(\dn)
dt

)
Λdt

λw+N(\dn)
tw

∑W
w=1 λw+N(\dn)

t

(17)

N(\dn)
dt Λdt is the number of samples that are assigned to the corresponding topic t of gene Xd,

except for sample xdn. N(\dn)
tw is the number of samples that are assigned to the word w of topic t,

except for sample xdn; therefore, N(\dn)
t = ∑W

w=1 N(\dn)
tw .
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In Equation (17), αdt is optimized by local observed feature vector yd =
{

yd f

}F

f=1
and global

feature parameter βt =
{

βt f

}F

f=1
, whose updating equation is Equation (5). To simplify the updating

equation, we first suppose that log δ−1
d = yd fde f ault

βt fde f ault
, and then an item of hidden global feature

parameter βt fde f ault
is added for global feature parameter βt =

{
βt f

}F

f=1
, which corresponds to a “fake”

observed feature ydFde f ault
= 1. Thus, the updating equation of αdt is

αnew
dt = exp

(
ŷdβ̂

T
t

)
= exp

(
yd fde f ault

βt fde f ault
+

F

∑
f=1

yd f βt f

)
(18)

β̂t =
{
βt, βtFde f ault

}
=
{

βt1, βt2, . . . , βtF, βtFde f ault

}
ŷd =

{
yd, ydFde f ault

}
= {yd1, yd2, . . . , ydF, 1}

(19)

2.4.2. The Optimization of the Feature Parameters of Dirichlet–Multinomial Regression Latent
Dirichlet Allocation

For Gibbs sampling or variable Bayesian, we need to update the global feature parameter β̂t in
the inference process. We adopted the method of gradient descent for optimizing β̂t.

In Equation (16), the β̂-related section is

F
(
β̂
)

∝
T

∏
t=1

F+1

∏
f=1

e−
(βt f −µ)2

2σ2 ·
D

∏
d=1

Γ
(

∑T
t=1 αdtΛdt

)
Γ
(

∑T
t=1 αdtΛdt + Nd

) T

∏
t=1

Γ(αdtΛdt + NdtΛdt)

Γ(αdtΛdt)
(20)

Based on the logarithm of Equation (20), we take the derivative with respect to global feature
parameter βt f and adjust it to zero. The updated equation of βt f is

βnew
t f = σ2

D
∑

d=1
yd f αnew

dt Λdt{ Ψ
(

∑T
t=1 αnew

dt Λdt

)
−Ψ

(
∑T

t=1 αnew
dt Λdt + Nd

)
+Ψ

(
αnew

dt Λdt + NdtΛdt
)
−Ψ

(
αnew

dt Λdt
)
}+ µ

t ∈ T = {1, . . . , T} f ∈ F′ = {1, . . . , F, F + 1}

(21)

Finally, αnew
dt is updated by Equation (18).

2.4.3. The Collapsed Gibbs Sampling Algorithm of the Dirichlet–Multinomial Regression Latent
Dirichlet Allocation

To determine the initial state of the Markov chain, we initiate the hidden topic number tdn of each
sample xdn first; then, we utilize the predictive probability of hidden variable tdn from Equation (17)
as the state transition probability of the Markov chain. In the process of Gibbs sampling, the topic
number tdn of each sample xdn is updated, and the hyper-parameter αd = {αdtΛdt}T

t=1 is also updated
by Equation (18). Finally, the global feature parameter βt f is updated by Equation (21).

After several iterations in the burn-in time, the Markov chain is attracted to objective distribution,
and then the posterior distribution p

(
β, T

∣∣W , µ, σ2,α,λ
)

is estimated. The posterior estimation of the
local topic weight πd = {πdtΛdt}T

t=1 and topic–word multinomial distribution parameter is

π̂dt =
αdtΛdt +E[NdtΛdt]

∑T
t=1(αdtΛdt +E[NdtΛdt])

(22)

θ̂tw =
λw +E[Ntw]

∑W
w=1(λw +E[Ntw])

(23)
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2.4.4. The Collapsed Variable Bayesian Inference Algorithm of the Dirichlet–Multinomial Regression
Latent Dirichlet Allocation

The whole variational objective function before being collapsed is

F(η) = Eq[log p(β,π,θ, T ,W)]−Eq[log q(β,π,θ, T |η)]
= Eq[log p(T ,W)]−Eq[log q(T |η)]
= KL(q(T |η)||p(T ,W))

(24)

After margining the model parameters (π,θ), the objective function is

F = Eq(tdn)

[
Eq(T (\dn))

[
log p

(
tdn, wdn

∣∣∣T (\dn),W (\dn)
)]]

−Eq(tdn)
[log q(tdn)] + Constq(tdn)

(25)

where Constq(tdn)
represents the unrelated item with variational distribution q(tdn). There are two

kinds of construction below:

F = KL
(

q(tdn)
∣∣∣∣∣∣exp

{
Eq(T (\dn))

[
log p

(
tdn, wdn

∣∣∣T (\dn),W (\dn)
)]})

+ Constq(tdn)
(26)

F ≥ KL
(

q(tdn)
∣∣∣∣∣∣Eq(T (\dn))

[
p
(

tdn, wdn

∣∣∣T (\dn),W (\dn)
)])

+ Constq(tdn)
(27)

In Equation (26), the updating equation of optimal variational parameter η∗dnt by a CVB
algorithm is

η∗dnt = q∗CVB(tdn = t) ≈ exp
{
Eq(T (\dn))

[
log
(

αdt + N(\dn)
dt

)
Λdt

]}
+ exp

{
Eq(T (\dn))

[
log
(

λw + N(\dn)
tw

)]}
− exp

{
Eq(T (\dn))

[
log
(

∑W
w=1 λw + N(\dn)

t

)]} (28)

Each expectation of the above equation is

Eq(T (\dn))

[
log
(

αdt + N(\dw)
dt

)
Λdt

]
= log

(
αdtΛdt + µ

N(\dw)
dt

)
−

σ2
N(\dw)

dt

2
(

αdtΛdt + µ
N(\dw)

dt

)2 (29)


µ

N(\dw)
dt

= Eq(T (\dn))

[
N(\dw)

dt Λdt

]
=

W
∑

w=1
(Ndw − 1)ηdwtΛdt

σ2
N(\dw)

dt

= Vq(T (\dn))

[
N(\dw)

dt Λdt

]
=

W
∑

w=1
(Ndw − 1)ηdwtΛdt

(
1−∑W

w=1(Ndw − 1)ηdwtΛdt

) (30)

Eq(T (\dn))

[
log
(

λw + N(\dw)
tw

)]
= log

(
λw + µ

N(\dw)
tw

)
−

σ2
N(\dw)

tw

2
(

λw + µ
N(\dw)

tw

)2 (31)


µ

N(\dw)
tw

= Eq(T (\dw))

[
N(\dw)

tw

]
=

D
∑

d=1
(Ndw − 1)ηdwtΛdt

σ2
N(\dw)

tw

= Vq(T (\dw))

[
N(\dw)

tw

]
=

D
∑

d=1
(Ndw − 1)ηdwtΛdt(1− (Ndw − 1)ηdwt)Λdt

(32)

Eq(T (\dn))

[
log

(
W

∑
w=1

λw + N(\dw)
t

)]
= log

(
W

∑
w=1

λw + µ
N(\dw)

t

)
−

σ2
N(\dw)

t

2
(

∑W
w=1 λw + µ

N(\dw)
t

)2 (33)



Genes 2019, 10, 57 11 of 20


µ

N(\dw)
t

= Eq(T (\dw))

[
N(\dw)

t

]
=

D
∑

d=1

W
∑

w=1
(Ndw − 1)ηdwtΛdt

σ2
N(\dw)

t

= Vq(T (\dw))

[
N(\dw)

t

]
=

D
∑

d=1

W
∑

w=1
(Ndw − 1)ηdwtΛdt(1− (Ndw − 1)ηdwtΛdt)

(34)

In Equation (27), the updating equation of the optimal variational parameter η∗dnt by CVB0
algorithm is

η∗dnt = q∗CVB0(tdn = t) ≈
(

αdtΛdt +Eq(T (\dn))

[
N(\dn)

dt Λdt

]) λw +Eq(T (\dn))

[
N(\dn)

tw

]
∑W

w=1 λw +Eq(T (\dn))

[
N(\dn)

t

] (35)

The plenitude statistic of samples in Equation (35) are N(\dn)
dt ,N(\dn)

tw , and N(\dn)
t , and their

expectation under variational distribution q
(
T (\dn)

)
is

Eq(T (\dn))

[
N(\dn)

dt Λdt

]
=

Nd

∑
i=1,i 6=n

I(tdn = t)ηditΛdt (36)

Eq(T (\dn))

[
N(\dn)

tw

]
=

D

∑
d=1

Nd

∑
i=1,i 6=n

I(tdn = t)I(wdn = w)ηditΛdt (37)

Eq(T (\dn))

[
N(\dn)

t

]
=

D

∑
d=1

Nd

∑
i=1,i 6=n

NdiηditΛdt (38)

The \dn in the above equation can be adapted to \dw, because the bag of words dw not only
shares a similar word number wdn = w, but also shares the same topic number tdn = t. Then, optimal
variational distribution η∗dnt can be adapted to η∗dwt.

γdt = Eq(T (\dw))

[
N(\dw)

dt Λdt

]
=

W

∑
w=1

(Ndw − 1)ηdwtΛdt (39)

µtw = Eq(T (\dw))

[
N(\dw)

tw

]
=

D

∑
d=1

(Ndw − 1)ηdwtΛdt (40)

µt = Eq(T (\dw))

[
N(\dw)

t

]
=

D

∑
d=1

W

∑
w=1

(Ndw − 1)ηdwtΛdt (41)

The inference equation difference between CVB and CVB0 shows that CVB only retains the
zero-order information of the Taylor expansion; however, CVB0 is the re-collapse of a hidden variable
space based on Jensen inequality. Therefore, CVB0 is much more precise than CVB. The corresponding
algorithm of CVB and CVB0 are shown in Tables 1 and 2 respectively.
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Table 1. Collapsed variable Bayesian (CVB) algorithm of DMR-LLDA.

CVB algorithm of DMR-LLDA

1 Initialize global variational parameters
2 While the number of iterations r < rmax or F is not converged do
3 For d = 1 : D do
4 Initialize local variational parameters to constant
5 Repeat (the local variational inference of gene d)

6
η
(r)
dwt ∝

(
Λdtαdt+µ

(r−1)
Ndt

)(
λw+µ

(r−1)
Ntw

)
(

∑W
w=1 λw+µ

(r−1)
Nt

) e
−

(σ
(r−1)
Ndt

)
2

2(αt+µ
(r−1)
Ndt

)
2

e
−

(σ
(r−1)
Ntw

)
2

2(λw+µ
(r−1)
Ntw

)
2

e
−

(σ
(r−1)
Nt

)
2

2(∑W
w=1 λw+µ

(r−1)
Nt

)
2

7 Update µ
(r)
Ndt

and σ
(r)
Ndt

by Equations (29)~(30)

8 α
(r)
dt = exp

(
ŷdβ̂

(r−1)
t

)
9 Until γ

(r)
dt is converged: (1/Nd)∑T

t=1

∣∣∣γ(r)
dt − γ

(r−1)
dt

∣∣∣ < 0.00001
10 End For
11 µ

(r)
Ntw

, σ
(r)
Ntw

, µ
(r)
Nt

and σ
(r)
Nt

by Equations (31)~(34)

12 Update β
(r)
t f by Equation (21)

13 End while

Table 2. Zero-order variational Bayesian (CVB0) algorithm of DMR-LLDA.

CVB0 algorithm of DMR-LLDA

1 Initialize global variational parameters
2 While the number of iterations r < rmax or F is not converged do
3 For d ∈ D do
4 Initialize local variational parameters to constant
5 Repeat: (the local variational inference of gene d)

6 η
(r)
dwt ∝

(
αdtΛdt + γ

(r−1)
dt

)
λw+µ

(r−1)
tw

∑W
w=1 λw+µ

(r−1)
t

7 γ
(r)
dt = ∑W

w=1(Ndw − 1)η(r)
dwt

8 α
(r)
dt = exp

(
ŷdβ̂

(r−1)
t

)
9 Until γ

(r)
dt is converged: (1/Nd)∑T

t=1

∣∣∣γ(r)
dt − γ

(r−1)
dt

∣∣∣ < 0.00001
10 End For
11 µ

(r)
tw = ∑D

d=1(Ndw − 1)η(r)
dwt, µ

(r)
t = ∑D

d=1 ∑W
w=1(Ndw − 1)η(r)

dwt
12 Update β

(r)
t f by Equation (21)

13 End while

3. Materials and Results

This section provides a concise and precise description of the experimental results, their interpretation,
and the experimental conclusions that can be drawn.

3.1. Dataset

In this paper, the validity and accuracy of proposed models are tested on the S.cerevisiae (S.C)
dataset, which is introduced in reference [12]. This dataset includes several aspects of the yeast genome,
such as sequence statistics, phenotype, expression, secondary structure, and homology. Meanwhile,
two kinds of function annotation standard, including FunCat and GO, are used to annotate gene
function. Due the universality of GO, the dataset depends on the GO that is adopted in our experiments.
As described in Section 2.1, the construction of the BoW is based on amino acid composition, so we
mainly use one of datasets that depends on the sequence statistics. In addition, we construct a dataset
named S.C-CC from S.C, which only includes the GO terms belonging to the cellular component
(CC). Therefore, there are fewer GO terms in the S.C-CC dataset when compared with the S.C dataset,
and both of them are used in our experiments for investigating the influence of different label numbers



Genes 2019, 10, 57 13 of 20

on prediction performance. The statistics of the S.C and S.C-CC dataset is shown in Table 3. In this
set, F denotes the number of GO terms, D denotes the number of genes, and W denotes the size of
the vocabulary.

Table 3. The statistics of the S.cerevisiae (S.C) and S.cerevisiae-cellular component (S.C-CC) datasets.

Dataset D W F L

S.C
1692 400

4133 1538
S.C-CC 547 319

As shown in Table 3, there are 1692 genes and 4133 function labels in the S.C dataset; in the
S.C-CC dataset, there are 1692 genes and 547 function labels. Due to the large number of GO
terms in the gene function dataset, we utilized a Boolean matrix decomposition (BMD) method
to reduce the dimensionality of the function labels. BMD is a kind of label space dimension
reduction (LSDR) method [19], which addresses the multi-label classification problem with many
labels. LSDR approaches use a compression step to transform the original high dimension label space
into a lower dimension label space, and then multi-label classifiers are trained on a dataset with fewer
labels, which can reduce the computation burden of the classifier. The existing studies about LSDR
show that LSDR approaches are useful for optimizing the running time and accuracy of multi-label
classification. In our BMD process, original label matrix Y ∈ {0, 1}D×F (D denotes the number of genes,
and F denotes the number of features) is decomposed into the product of two matrices, C ∈ {0, 1}D×L

(L denotes the number of labels) and B ∈ {0, 1}L×F, where Y = C ◦ B (◦ denotes Boolean product) is
satisfied. We also called it exact BMD and adopted this algorithm, which is proposed in reference [20].
Compared with other LSDR algorithms, an exact BMD can retain the interpretability of low dimension
label space and restore the low dimension-predicted label matrix to the original label matrix by matrix
B. At last, the number of function labels is reduced into a smaller dimension, and L denotes the
number of GO terms after label space dimension reducing. Then DMR-LLDA actually needs to process
1358 GO terms of the S.C dataset and 319 GO terms of the S.C-CC dataset. Nonetheless, the lower
dimensional label space can be recovered by a Boolean product after predicting, so we still get the
whole function labels sets in the prediction results.

DMR-LLDA’s advantage here over LLDA lies in the introduction of extra features. In the S.C and
S.C-CC dataset, there are six extra gene features for each gene, including the molecular weight of the
gene, the isoelectric point, the average coefficients of hydrophilic, the number of exons, the adaptability
index of the codon, the number of motifs, and the open reading frame (ORF) number of chromosomes.
The statistics of extra features are shown in Table 4.

Table 4. The statistics of extra features in the S.C dataset.

Feature Name Notation Type

molecular weight mol_wt Integer
isoelectric point theo_pI Real numbers

average coefficients of hydrophilic hydro Real numbers
number of exons position Integer

adaptability index of codon Cai Real numbers
number of motifs motifs Integer

ORF number of chromosomes chromosome Integer

ORF: Open reading frame

As the max word length of the S.C dataset is two amino acid alphabets (G,A,V,L,I,F,P,
Y,S,C,M,N,Q,T,D,E,K,R,H,W), a human dataset constructed by ourselves is adopted to evaluate the
impact on the topic model performance of word length. This human dataset is constructed in a similar
way as in reference [13]. In addition, we also constructed two human datasets for different word
lengths, where the max word length of the Human1 dataset is two amino acid alphabets, and that of
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the Human2 dataset is three amino acid alphabets. For the Human2 dataset, the original number of
words is 8400, but we filtered several words that have a high frequency. Then, the statistic of the S.C
and S.C-CC dataset is shown in Table 5.

Table 5. The statistic of two human datasets.

Dataset D W L

Human1
4962

5297
1477Human2 400

3.2. Parameter Settings and Evaluation Criterias

The DMR-LLDA learning framework involves four different parameters: µ, σ2, α, and λ. The α

and λ are the parameters of the two-Dirichlet distribution, where the larger the value of λ, the more
balanced the probability of a word in a topic. The setting of the λ value has been discussed in
reference [13]. Nonetheless, the value of α is optimized by a protein feature, so its initial value does not
have a big effect on model performance. According to the experience, we set α = 50/T as the initial
value, and set λ = 200/W, with T = L. In addition, µ and σ2 are respectively the mean and variance
of normal distribution, obeyed by feature weighted parameter β, and we set µ = 0, σ2 = 1.

In the Gibbs sampling process of model training, we set the number of the Markov chain as
1 and the maximum number of iterations is 2000 times, where the number of iterations of burn-in
time is set to 1000. We record the state space at intervals of 50 times on the converged Markov chain,
and 20 times per record is conducted. In the process of model predicting, we set the number of
iterations as 1000 times. After 500 iterations for the burn-in time, we record the state space at intervals
of 50 times. In the variable Bayesian inferring process of model training, we initialize the global
variable parameter µtw through random number s and hyper-parameter λw: µtw = λw + (s ∗ λw)/10;
in each local variable inference, we set the converged threshold as 0.00001, and the maximum number
of times of the local variable inference as 100. The number of global scanning iterations is 1000.

The five-fold cross validation is conducted to measure and compare the performance of
DMR-LLDA and the comparative algorithms. Five representative multi-label learning evaluation
criteria are used in this paper, including hamming loss (HL), average precision (AP), one error,
and micro-averaged and macro-averaged F1 scores (Micro-F1 and Macro-F1). In addition, three kinds
of areas under a precision–recall curve are also used, including AUPRC, AU(PRC), and AUPRCw,
which is proposed in reference [12]. Finally, we repeat the random partition and evaluation in five
independent rounds, and report the average results.

3.3. The Impact of Word Length on Model Performance

Firstly, the performance comparison of the LLDA model between the Human1 and Human2
datasets is shown in Figure 4. As shown in Figure 4, we find that the value of AUPRC and AUPRCw in
Human1 is higher than that in Human2; the value of the AP on Human1 is lower than that of Human2;
and the value of one error, HL, and AU(PRC) is almost equal to that of Human1 and Human2.
These results show that the classification performance of the LLDA on Human1 and Human2 is almost
the same, which reveals that the larger word space might not obtain a better classifying performance.

Moreover, related studies suggested that a word length of more than four amino acid
alphabets would not improve the classification accuracy, and would only increase the complexity of
computation [21]. Therefore, in the following experiments, we only adopt the S.C and S.C-CC datasets
whose word length is two amino acid alphabets.
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3.4. Gene Function Prediction with Cross Validation

In addition to LLDA, we also adopted three widely adopted methods: multi-label k-nearest
neighbor (MLKNN) [22], back propagation for multi-label learning (BPMLL) [23], and support
vector machines (SVMs) for performance comparison. MLKNN and BPMLL are two representative
multi-label classifiers, and can be performed by an open source tool called Mulan [24]. SVMs adopt a
“one-versus-all” scheme, which trains each label by a binary SVM independently and is implemented
using the LibLinear software package [25]. These five models are trained and used to predict with
the S.C and S.C-CC datasets. Figure 5 shows the HL, AP, one error, Micro-F1, Macro-F1, AU(PRC),
AUPRC, and AUPRCw values of all models in the two datasets, respectively. For AP, Micro-F1,
Macro-F1, AU(PRC), AUPRC, and AUPRCw, the larger the value, the better the performance.
Conversely, for HL and one error, the smaller the value, the better the performance. The red asterisk of
Figure 5 represents the best results in each dataset. It is worth noting that the experimental results of
this section are obtained by a CGS inference algorithm.

As shown in Figure 5, DMR-LLDA can achieve better results in almost all evaluation criteria for
the two datasets. The concrete analysis is introduced as follows.

For the S.C dataset, the DMR-LLDA achieves the best performance for AP, AU(PRC), AUPRC,
AUPRCw, Micro-F1, and Macro-F1. For example, with AP, the DMR-LLDA achieves 94%, 3.3%, 96%,
and 26% improvements over MLKNN, LLDA, BPMLL, and SVMs, respectively. With AU(PRC),
the DMR-LLDA achieves 109%, 2.3%, 89%, and 24% improvements over MLKNN, LLDA, BPMLL,
and SVMs, respectively. For AUPRC, the DMR-LLDA achieves 31%, 39%, 44%, and 25% improvements
over MLKNN, LLDA, BPMLL, and SVMs, respectively. For AUPRCw, the DMR-LLDA achieves
33%, 8.1%, 48%, and 10% improvements over MLKNN, LLDA, BPMLL, and SVMs, respectively.
With Micro-F1, the DMR-LLDA achieves 116%, 6.1%, 123%, and 29% improvements over MLKNN,
LLDA, BPMLL, and SVMs, respectively. On Macro-F1, DMR-LLDA achieves 22%, 2.9%, 24%, and 25%
improvements over MLKNN, LLDA, BPMLL, and SVMs, respectively. Nevertheless, for one error and
HL, SVMs get better results than the DMR-LLDA.

For the S.C-CC dataset, the DMR-LLDA obtains a better performance in terms of AP, AU(PRC),
AUPRC, AUPRCw, Micro-F1, and Macro-F1. For AP, the DMR-LLDA achieves 36%, 1.7%, 39%,
and 30% improvements over MLKNN, LLDA, BPMLL, and SVMs, respectively. For AU(PRC),
the DMR-LLDA achieves 68%, 4%, 64%, and 20% improvements over MLKNN, LLDA, BPMLL,
and SVMs, respectively. For AUPRC, the DMR-LLDA achieves 73%, 35%, 62%, and 34% improvements
over MLKNN, LLDA, BPMLL, and SVMs, respectively. For AUPRCw, the DMR-LLDA achieves
67%, 6.4%, 92%, and 23% improvements over MLKNN, LLDA, BPMLL, and SVMs, respectively.
For Micro-F1, the DMR-LLDA achieves 101%, 4.1%, 114%, and 26% improvements over MLKNN,
LLDA, BPMLL, and SVMs, respectively. For Macro-F1, the DMR-LLDA achieves 18%, 1.8%, 16%, and
20% improvements over MLKNN, LLDA, BPMLL, and SVMs, respectively. Nevertheless, for one error,
BPMLL gets better results than the DMR-LLDA; for HL, SVMs gets better results than the DMR-LLDA.
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Figure 5. The comparisons between DMR-LLDA, LLDA, back propagation for multi-label learning
(BPMLL), support vector machines (SVMs), and multi-label k-nearest neighbor (MLKNN) in two
datasets. The red asterisk represents the best results in each dataset.

For both of the datasets, we can find that the improvements on AUPRC are more significant than
AU(PRC) and AUPRCw, which indicates that the DMR-LLDA has a stronger effect on improving the
overall accuracy of gene function prediction without respect to label weights. In the comparisons of the
S.C and S.C-CC datasets, we find that the values of AP, AU(PRC), AUPRC, and AUPRCw in the S.C
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dataset is lower than in the S.C-CC dataset, and the value of one error and HL in the S.C is higher than
in the S.C-CC dataset. This is due to the same word space and different label number between these
two datasets. The fewer labels of the S.C-CC dataset can promote a higher classifying performance.

Above all, these results indicate that the DMR-LLDA can further improve the accuracy of gene
function prediction by introducing the DMR framework into the LLDA model, which optimizes the
hyper-parameters of the topic weight. Meanwhile, the DMR-LLDA has an apparent advantage in
improving the overall prediction accuracy.

3.5. The Impact on Prior Parameters of Feature Variables

In the DMR-LLDA model, the introduction of gene features is realized by feature weight parameter
β. Then the operation on topic parameter vector βt and feature vector yd are reflected in Dirichlet
hyper parameter αd. Table 6 shows the impact of different feature values on prior parameters αd.

Table 6. The impact on prior parameters of feature variables.

αd
The words under topic when mol_wt = 49629.3, theo_pI = 8.96, hydro = 0.1,

position = 1, Cai = 0.17, motifs = 2, chromosome = 16

1.88 GM IH LH VH LK IG GC IC AK VM FG AM LW IK VG VW FC IG FH GK
1.32 LM ST SM LT KM LL IM KL LF SL EM LP DM IT LK EF KT LE SK SP
0.79 GH VC AC KC GC AL GM LH AH AF AM VW AW GW EC KH TH GF AT GT
0.64 IL VG GE FM YK QW YM VW GP TL KT LW RP LQ IR FH NW NX FS PM
0.23 TT SV TV ST SW SQ TQ PT PV IV SP TM CT QT AV TP TC SC VV NV

αd
The words under topic when mol_wt = 85873.7, theo_pI = 9.74, hydro=0.664

position = 1, Cai = 0.1, motifs = 2, chromosome = 16

4.23 KR TF KE QS LW EW DM YF QT SM LX SF IN QW LR VL VS QG MC QC
3.77 LM SM LS RC DW EM LE QT LV EW FM QI RM NE DT IE FT AR QC GP
0.23 QM KR AP EF LF QR HP EC RE RF DS VE EW KF FE LT TL QV QC AR
0.11 CF PI ED QY GQ HN RI HD HI SN YQ TQ PW RH YL PQ PN SI QE RS
0.09 SW VF NW AC DF TW EQ LW EH MC DM AW PS GV VQ AQ ID TG RF VE

For the LLDA, the hyper-parameter value is set as a fixed value. However, Table 6 shows
that only the different values on mol_wt, theo_pI, hydro, and Cai make a significant difference of
hyper-parameter value in the DMR-LLDA, which is also the main way for gene features to impact
label allocation.

3.6. The Comparison Results of Inference Algorithms

We designed three kinds of inference algorithm for the DMR-LLDA, including CGS, CVB, and
CVB0. This section compares CGS with CVB0 in the S.C dataset. The experimental results are shown
in Figure 6. As shown in Figure 6, the overall performance of CVB0 is better than the performance of
CGS. Concrete analysis is represented as follows.

For the S.C dataset, CVB0 achieves the best results in AP, AUPRC, AU(PRC), and AUPRCw,
and achieves almost similar results in HL. However, CVB0 has a worse value in one error.

For the S.C-CC dataset, CVB0 achieves the best results in AP, one error, AUPRC, AU(PRC),
and AUPRCw, and achieves almost similar results in HL. The above results demonstrate the validity
of the designed inference algorithms for the DMR-LLDA. Meanwhile, the experimental results indicate
that the CVB0 inference algorithm can obtain more precise prediction results by the re-collapse of
hidden variable space based on Jensen inequality.
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Above all, due to the lack of prior knowledge, the prior distributions of the Bayesian model
are usually set for convenience. Meanwhile, the parameters of prior distribution are also set as a
fixed value based on experience, which makes the inaccurate estimation of posterior distributions.
In our DMR-LLDA model, the gene feature information is introduced into the LLDA as the prior
knowledge by the DMR framework. The hyper-parameter of the prior distribution is updated in
the inference process rather than by a fixed constant, which can improve the estimation precision of
posterior distributions, so as to improve the accuracy of gene function prediction.

4. Conclusions

In this paper, we introduce multiple types of features into gene function prediction based on a
multi-label surprised topic model, and propose a multi-label supervised topic model conditioned on
arbitrary features named the DMR-LLDA. By applying an exponential a priori constructed previously
with weighted features on the hyper-parameters of gene-topic (or label) distribution, this model
can utilize the observed features of each gene in multi-label topic modeling. Furthermore, three
learning algorithms are designed for this model, including CGS, CVB inference, and CVB0 inference.
The predictive performance of this model is measured by the AP, one error, Hamming loss, AUPRC,
AU(PRC), AUPRCw, Micro-F1, and Macro-F1. Experiments on a standard dataset show that the
DMR-LLDA is superior to the LLDA, MLKNN, BPMLL, and SVM models. Meanwhile, experimental
results show that the DMR-LLDA can get a much more accurate estimation of posterior distribution,
due to using the gene feature information in addition to the amino acid sequence.

Author Contributions: Conceptualization: L.L. and W.Z.; methodology: L.L.; software: L.L., L.T., and X.J.;
validation: L.L. and L.T.; formal analysis: L.L.; writing (original draft preparation): L.L. and L.T.; writing (review
and editing): L.T. and X.J.
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