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Abstract: Islands have been used as model systems for studies of speciation and extinction since
Darwin published his observations about finches found on the Galapagos. Amazon parrots inhabiting
the Greater Antillean Islands represent a fascinating model of species diversification. Unfortunately,
many of these birds are threatened as a result of human activity and some, like the Puerto Rican parrot,
are now critically endangered. In this study we used a combination of de novo and reference-assisted
assembly methods, integrating it with information obtained from related genomes to perform genome
reconstruction of three amazon species. First, we used whole genome sequencing data to generate
a new de novo genome assembly for the Puerto Rican parrot (Amazona vittata). We then improved the
obtained assembly using transcriptome data from Amazona ventralis and used the resulting sequences
as a reference to assemble the genomes Hispaniolan (A. ventralis) and Cuban (Amazona leucocephala)
parrots. Finally, we, annotated genes and repetitive elements, estimated genome sizes and current
levels of heterozygosity, built models of demographic history and provided interpretation of our
findings in the context of parrot evolution in the Caribbean.
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1. Introduction

The Bird 10,000 Genomes (B10K) Project resulted in a large number of genomic sequences that
are being quickly assembled and incorporated into studies on evolution, ecology, population genetics,
neurobiology, development and conservation [1–3]. Genome-wide sequencing and assembly has
expanded to the point that it allows for completion of the genome-based phylogeny of all birds.
Attention has recently started to shift away from representation of the overall bird phylogeny to
instead filling in gaps and resolving specific lineages. A narrowed focus on speciation and adaptation
processes on the species level can allow for decoding of the links between genotypes and phenotypes;
determining genetic, evolutionary, biogeographical and biodiversity relationships across species;
and evaluation of how various ecological factors affect avian evolution [4]. Finally, by focusing
on groups that include endangered species, genome studies provide the means to elucidate the
conservation issues that would help in our efforts to preserve biodiversity. Neotropical parrots
represent a fascinating group that includes many species with endangered conservation status that
have not yet been represented in whole-genome phylogenetic analyses [2,3].

Islands became an important source of evolutionary ideas [5–7]. Since Darwin’s Voyage on the
Beagle, they provided valuable model systems for fundamental studies of migration, diversification
and extinction [5,8]. Amazon parrots (Amazona sp.) that inhabit the Greater Antillean Islands are
a fascinating example of speciation on islands, in many ways similar to that of Darwin’s finches in the
Galapagos [9]. Several attempts have been made in the past to shed light on evolution and speciation
of these birds based on morphological [10,11] and molecular data [12] but the picture still falls shy of
full resolution. Considering the significance of parrots to these islands’ history and ecology [13–16],
we believe it is important to understand how these species came to be and how they adapted to specific
island environments. In this article, we focus on the clade of amazon parrots that originated in Central
America and spread across the Caribbean islands of Cuba, Hispaniola and Puerto Rico [10,11].

Parrots have long been thought to have first originated in and diversified from, Gondwana,
based on current distribution across the southern continents that formerly composed this giant ancient
supercontinent [17]. Initial biogeographic analyses, based on multi-loci phylogenies, extensive taxa
sampling and different analytical approaches, support a hypothesis of origin and initial diversification
in Gondwana during the Cretaceous [18]. Consequently, separation of Arinae (New World parrots that
include amazons, macaws, conures and parakeets) from other groups of parrots was associated
with drift of major Gondwana plates around 35 Mya [18]. Accordingly, Amazona parrots were
thought to have split from all the other neotropical parrots around 23 Mya. Other, more recent and
robustly supported independent phylogenomic analyses [3,19,20], as well as fossil evidence [21,22],
support post-Gondwana divergence of stem Psittaciformes from Psittacopasseres between 55–60 Mya.
These studies estimate the earliest divergence of crown group Psittaciformes (Nestor-Psittacidae) to
have occurred between 42–32 Mya and the divergence of New World parrots from others as recently
as 14 Mya [3,19–23].

The parrots on the Greater Antilles appear closely related to the small A. albifrons of Central
America (Figure 1) and there may have been two separate dispersal events to these islands, one directly
to Jamaica and one to Cuba, followed by the stepping stone dispersal from island to island, as far
as to Puerto Rico [10,11,24]. Unfortunately, the sequence and timing of many of these significant
evolutionary events are inferred from limited molecular or geological data. With the arrival of genome
sequencing and new fossil data, the history of speciation is being refined using the additional evidence.
Evolutionary history of the Amazona clade was previously assessed using a small set of genetic markers
(cytochrome B gene, COI gene etc.) producing the first molecular phylogeny [11,23]. This analysis
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did not provide speciation times and left other unresolved issues due to the insufficient amount of
information: at least two contradicting colonization scenarios for the speciation order among the four
major Caribbean islands (Cuba, Hispaniola, Jamaica and Puerto Rico) have been proposed [10,11].
Even if the full mitogenomic sequences were used, an analysis based solely on mtDNA may not have
been sufficient due to the incomplete lineage sorting and subsequent gene flow between the islands,
which can interfere with proper interpretation of phylogenetic trees [25]. Nuclear genomes or at least
multiple nuclear genes, along with mitochondrial data, should be incorporated into the analysis to
rule out misinterpretations and to reconstruct events leading to parrot speciation on islands.

Figure 1. Amazon parrots included in this study (Amazona leucocephala, A. ventralis and A. vittata) may
all have originated from Central America, where the white-fronted amazon (A. albifrons) can be found
today (modified from Kolchanova (2018) [26]).

So far, the only publicly available genome from the Caribbean amazon clade (Figure 1) has been
from the Puerto Rican parrot (Amazona vittata): a short-read assembly with only 76% coverage that
probably included a number of mis-assemblies [27]. The critically endangered A. vittata is the only
surviving indigenous parrot species anywhere in the U.S. [27]. Once abundant throughout the island
of Puerto Rico, its drastic population decline followed the decimation of the old-growth forest [28].
Despite early DNA fingerprinting efforts [29,30], the genetic consequences of the severe population
bottleneck, as well as the population expansion associated with the recent recovery, have not been fully
evaluated and a more comprehensive analysis of the genome on the population and species levels is
needed. Further detailed research on A. vittata conservation genomics is necessary to provide data and
better tools to study inbreeding depression, mutation and adaptation to captivity [31,32].

In the current study, we used additional genome wide and transcriptome data to improve that
assembly, as well as to assemble and annotate the genomic sequences of two additional amazon species
from the Caribbean: the Cuban amazon (A. leucocephala) and the Hispaniolan amazon (A. ventralis).
Using both genome and transcriptome data we have generated the improved de novo assembly of
the A. vittata genome, performed reference-assisted assembly for two other closely related Caribbean
amazon species, annotated protein-coding genes and repeats, analyzed demographic history and
genomic levels of heterozygosity and discussed our results in the context of conservation biology of
these species.

2. Materials and Methods

2.1. Samples

Blood samples for DNA sequencing from female Puerto Rican (A. vittata) and Hispaniolan parrots
(A. ventralis) were obtained during routine veterinary procedures from birds housed at the US Fish and
Wildlife Service “Iguaca” Aviary, a captive-breeding facility for the Puerto Rican parrot near El Yunque
National Rainforest in Puerto Rico. All procedures were approved by the University of Puerto Rico at
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Mayagüez Institutional Animal Care and Use Committee (IACUC#201109.1) and were in accordance
with the guidance for the Endangered Species Act. The Cuban parrot (A. leucocephala) DNA sample was
extracted from the living cell cultures of the Frozen Zoo® collection, at the Institute for Conservation
Research at the San Diego Zoo.

Samples for the RNA sequencing were obtained from five different A. ventralis individuals
(4 females, 1 male) with an average age of 17 years (±7.4 years) and weight ranging from 234–410 g
(median of 262 g) at the School of Veterinary Medicine, University of California, Davis. One liver
(sample 336) and four blood samples (sample 335, 140, 341 and 13) were obtained. All birds were
part of a research flock and were housed individually in wire cages (61 × 58 × 66 cm) in a room
maintained at 23 ◦C (73.4 ◦F) with a photoperiod of 12 h. They were fed a pelleted diet (ZuPreem
FruitBlend, Premium Nutritional Products, Shawnee, KS, USA) ad libitum and had constant access to
water. This study was approved by the University of California, Davis, Institutional Animal Care and
Use Committee.

2.2. DNA and RNA Extraction

DNA was extracted from whole blood using the Qiagen QIAmp Mini Kit following manufacturer’s
protocol. Total RNA was extracted from blood cells and liver tissue using a column method (RNeasy Kit;
Qiagen, Hilden, Germany). RNA quality concentration was determined by a fluorometric technique
(Qubit, Thermo Fisher Scientific, Waltham, Massachusetts, U.S.A.) and quality was verified by a small
fragment analyzer (Bioanalyzer 2100, Agilent, Santa Clara, California, U.S.A.). The globin mRNA
content of blood RNA samples (only) was first reduced using a commercial kit (Globin-Zero, Illumina,
San Diego, California, U.S.A).

2.3. Genome and Transcriptome Sequencing

Genomes of all three species included in this study (A. vittata, A. ventralis and A. leucocephala) were
sequenced using the Illumina HiSeq2000 platform. For A. vittata one PE (paired-ends) library with
300 bp target IS (insert size) and 2 MP (mate-pairs) libraries with 3 kbp and 8 kbp target IS, respectively,
were generated using TruSeq DNA PCR-Free Library Prep Kits. For A. ventralis and A. leucocephala
only one PE library with 300 bp target IS was sequenced (Table S1).

RNA sequencing was performed by the Genomics Core facility at Washington State University
(Spokane, WA, USA) using one liver and four blood samples from five different A. ventralis individuals.
Then, RNA libraries were generated using Illumina TruSeq RNA Library Prep Kit v2 for each sample
using 100 ng of input total RNA. Obtained libraries were sequenced using Illumina’s HiSeq2500 machine.

2.4. Data QC and Filtering

The initial QC of NGS data was performed using FastQC [33]. Both genomic and transcriptomic
reads were filtered in a two-stage process. First, long fragments of Illumina adapters were trimmed using
Cookiecutter [34]. Then Trimmomatic v0.36 [35] was used to remove short adapter fragments and perform
filtering by quality (Trimmomatic options: ILLUMINACLIP: TRIMMOMATIC_ADAPTERS:2:30:10:1
SLIDINGWINDOW:20:20 MINLEN:50). The resulting output is shown in the Table S1.

2.5. Genome and Transcriptome Assembly

The new A. vittata genome was assembled from 1 PE library and 2 MP libraries (3 kbp and
8 kbp, see Table S1) followed by scaffolding using A. ventralis de novo transcriptome assembly
(see Supplementary Figure S1 for the assembly pipeline) and post-assembly filtration. De novo
transcriptome assembly for A. ventralis was performed using Trinity v2.8.2 [36] from filtered reads
for each RNAseq library independently and for merged library including reads from all five
libraries generated.

Initial genome contigs were generated from the PE library using Fermi v 1.1 assembler [37].
Then reads from all libraries were aligned to the initial contigs using BWA [38] to estimate actual insert
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sizes. Only alignments to contigs whose length was equal to or greater than, 3× target IS were used for
estimation in order to avoid bias introduced by alignment artifacts. For actual IS see Table S1. At the
following step, initial contigs were scaffolded by SSPACE [39] using all read libraries, followed by gap
closing with GapCloser [40] using only the PE library. Next, all scaffolds with length of less than 100 bp
(i.e., less than read length from PE library) were removed as assembly artifacts. Finally, transcripts
from A. ventralis transcriptome assembly were aligned to the scaffolds by BLAT [41] and the obtained
alignment was used for scaffolding with L_RNA_scaffolder [42]. Finally, all scaffolds of length lower
than 1000 bp were discarded. Genome size and actual coverage of PE libraries were estimated using
the Jellyfish 2 [43] and KrATER [44] for each species. Assembly integrity was verified using BUSCO v3
and aves_odb9 gene set [45] (Table S2).

2.6. Repeat Masking in the A. vittata Genome

Repeat identification in the A. vitatta genome was performed de novo from the PE library and
the repeat library generated. It was then combined with aves repeats from the RepBase [46] and the
combined library was used to annotate repeats with RepeatMasker [47–49]. Finally, repeats in the
A. vittata genome were soft-masked using BEDtools [50] for prediction of protein-coding genes.

2.7. Annotation of Protein-Coding Genes in the A. vittata Genome

The annotation of protein-coding genes was performed using a combined approach that unifies
homology-based, transcriptome-based and de novo predictions. However, de novo predictions
were used only to fill gaps and to extend homology- and transcriptome-based predictions.
Proteins of three reference species: Gallus gallus (Gallus_gallus-5.0 (GCA_000002315.3)), Melopsittacus
undulatus (melUnd1) and Taeniopygia guttata (taeGut3.2.4) were aligned to the A. vittata assembly by
Exonerate [51] using the protein2genome model with a maximum of five hits per protein. The obtained
alignments were divided into the top (primary) and secondary hits; the coding sequence (CDS)
fragments were cut from each side by 3 bp for the top hits and by 9 bp for the secondary hits. Then,
A. ventralis RNAseq reads from all libraries were aligned to A. vittata genome by STAR [52] and the
obtained splice junctions alongside with CDS segments from protein alignments were clustered and
supplied as hints to the AUGUSTUS software package [53]. The CDS segments of genes were predicted
in a soft-masked A. vitatta assembly using chicken gene models. Proteins were extracted from the
predicted genes and aligned by HMMER v3.1 [54] and BLAST [55] to the Pfam [56] and Swiss-Prot [57]
databases, respectively. Only genes supported by both hints and hits to one of the protein databases
were retained; the rest were discarded.

2.8. Genome Read Alignment and Variant Calling

Filtered reads of A. vittata, A. ventralis and A. leucocephala were aligned to the assembled A. vittata
genome using BWA mem with default options, followed by duplicate marking using Picard [58]
MarkDuplicates. Next, a mask track was created for each genome using deduplicated alignments
and based on coverage. Only regions with coverage of 50–250% (10–50× for A. ventralis, 8–40× for
A. leucocephala, 6–34× for A. vittata) of mean coverage were retained unmasked. Then, HaplotypeCaller
from GATK pipeline [58] was used to call variants. Only the SNPs (Single Nucleotide Polymorphisms)
and indels passing hard filters from GATK Best Practice were retained (QD > 2.0, FS < 20.0, MQ > 40.0,
MQRankSum > −12.5, ReadPosRankSum > −8.0 for SNPs and QD > 2.0, FS < 20.0, ReadPosRankSum
> −20.0 for indels, respectively).

2.9. Reference-Assisted Assembly of A.ventralis and A. leucocephala Genomes

In all three species, filtered reads from PE libraries of all three amazons were aligned by the BWA
to the previously assembled A. vittata reference genome, followed by variant calling using GATK
Haplotype caller with extensive filtration in accordance with the GATK best practices. In the case of
a heterozygous position being encountered during reference assisted-assembly, the algorithm had to
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choose between two possible nucleotides. Therefore, several options would be available. First, if both
alleles were different from the reference, the algorithm could choose one randomly. Second, if one
allele is identical to the one in the reference genome, it would be reasonable to choose the reference
allele in the new genome as well. However, the tool for generation of genome sequence in the GATK
pipeline [58] chooses the alternative allele by default. Therefore, we had to remove SNPs with reference
alleles from the vcf file prior to the reference assisted assembly.

2.10. Phylogeny Reconstruction and Divergence Time Estimation

Ortholog identification for the longest proteins corresponding to each predicted gene of A.vittata,
A. ventralis, A. leucocephala and other species from songbird, parrot and falcon groups was performed
using Emapper V 1.0.1 [59] and veNOG subset (dataset for vertebrate orthologs) from the eggNOG
database of orthologous groups [59]. Other species included: Serinus canaria [60], Ficedula albicollis [61],
Parus major [62], Zonotrichia albicollis [63], Manacus vitellinus [4], Cyanistes caeruleus [64], Melopsittacus
undulatus [65], Geospiza fortis [66], Taeniopygia guttata [67], Aquila chrysaetos [68] and Falco peregrinus [69].

Single-copy orthologs were extracted from the obtained groups and corresponding CDSs
(coding sequences) were aligned by codon using PRANK [70], followed by removal of hypervariable
regions with Gblocks [71,72]. Obtained alignments were concatenated, being treated as a single
partition and used to reconstruct a maximum likelihood tree with RAxML v8.2 [73] under the
GTRGAMMA with 1000 bootstrap replications. The reconstructed tree was rooted with Falconiformes
species (Falco cherrug, Falco peregrinus) as an outgroup. The resulting tree was drawn using FigTree
software [74].

2.11. Demographic History Inference

Based on the variation data from the genomes, we estimated population dynamics using the
pairwise sequentially Markovian coalescent (PSMC) model [75]. The PSMC approach uses the
coalescent model to estimate changes in population size, which allowed us to create a TMRCA
(Time to the Most Recent Common Ancestor) distribution across the genome and estimate the effective
population size (Ne) in recent evolutionary history (e.g., from 10,000 to 1 million years). Demographic
history was inferred separately for each species using a generation time of six years calculated by the
captive breeding program for Puerto Rican parrot [76] and mutation rates recently estimated from bird
pedigrees available in the literature [77].

2.12. Amazona Genome Browser Hub

To provide convenient access to our data, we organized the UCSC genome browser hub [78]
containing annotated genomic features of A. vitatta, A. ventralis and A. leucocephala genomes.
The features available on the hub include protein-coding genes and RepeatMasker-detected repeats of
A. vitatta, as well as genomic variants (SNVs and indels) of the three related to A. vitatta species
as a reference. Also shown are the BigWig tracks [79] that visualize coverage of the reference
genome by aligned reads of the three genomes. The track hub file is publicly available online
at: http://public.dobzhanskycenter.ru/AmazonaHub/hub.txt. To view the Amazona hub in the
UCSC Genome Browser, the user must add the track hub file to the Track Hubs web page: http:
//genome.ucsc.edu/cgi-bin/hgHubConnect.

3. Results

3.1. Assembly and Annotation

In this study we used a combination of short read paired-end (PE) read sequences, mate pairs (MP)
and transcriptomes to assemble genomes of three closely related amazon species from the Caribbean:
Amazona vittata, A. leucocephala and A. ventralis. Among these, A. vittata was chosen as reference species
for genome assembly. Recent demographic history inadvertently shaped the genome of A. vittata

http://public.dobzhanskycenter.ru/AmazonaHub/hub.txt
http://genome.ucsc.edu/cgi-bin/hgHubConnect
http://genome.ucsc.edu/cgi-bin/hgHubConnect
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into an ideal candidate for a de novo sequencing project: its relatively small (1.58 Gb, less than
half of the human) genome [80] was expected to be highly invariable due to the recent population
bottleneck [26,27]. In addition, this was the only assembly with the long reads: one PE and two MP
libraries available for this species. For the two other parrots, only one PE library per species was
generated (Table S1).

Genome size estimations, that were based on distributions of 23-mers extracted from the PE
libraries, demonstrated similarity between the species with less than 10% difference (Table 1; Figure S2).
Moreover, these values were in relative concordance with the publicly available haploid DNA
content estimates evaluated using flow cytometry method (C-values) from the Animal Genome
Size Database [81]. The observed discrepancy of about 10% (Table 1) is common among all three
estimates and may be attributable to the genome regions that have not been covered by sequencing.

Table 1. Genome size estimates for the three Amazon parrot species in this study.

Parrot Species PE Library Coverage Genome Size (Gbp) C-Value (pg)

Amazona vitatta 14× 1.42 1.58

A. ventralis 22× 1.42 1.62–1.65

A. leucocephala 16× 1.54 1.58–1.65

23-mer based estimate based on sequencing data in this study; C-values are from the Animal Genome Size
Database [81].

Unfortunately, the transcriptomes of the highly endangered status of A. vittata were difficult
to obtain due to the restrictions at breeding facilities at the Conservation Program of the Puerto
Rican Parrot, U.S. Fish and Wildlife Service and the Recovery Program of the Puerto Rican Parrot
at the Rıo Abajo State Forest, Departamento de Recursos Naturales y Ambientales de Puerto Rico.
Transcriptome sequencing is crucially important for annotation of protein-coding genes, however the
de novo assembled transcripts can also be used for the additional scaffolding stage of the genome
assembly. In this study, we sequenced transcriptomes for five tissue samples from the Hispaniolan
parrot (A. ventralis; 4 blood samples and 1 liver sample) using Illumina HiSeq platform. Transcripts
were assembled from both independent libraries and merged into one. The characteristics of the
assembled transcriptome are presented in Table 2.

Table 2. Statistics for RNAseq libraries and assembled transcripts.

Library ID Tissue Read Pairs (Millions) Bases (Gbp) Assembled Transcripts

Parrot13 Blood 54.2 10.7 314,505
Parrot140 Blood 64.9 12.7 378,318
Parrot335 Blood 47.3 9.3 306,123
Parrot341 Blood 54.2 10.7 326,706
Parrot_336 Liver 69.6 13.7 210,549

Merged - 290.3 57.1 680,785

The assembly of A. vittata genome followed the multistage pipeline described in Section 2.4.
of Materials and Methods (Figure S1). To achieve the best results, PE and MP from A. vittata were
complemented by the transcriptome reads from A. ventralis during the transcriptome based scaffolding
stage (Figure S1). This approach worked well, probably due to the close evolutionary proximity
between the two species and resulted in the total assembly length of 1.45 Gbp (Table 3), which is
slightly longer than the 23-mer based estimation, that used PE libraries of the single species (1.42 Gbp;
Figure S2). This small increase in the size of genome assembly is likely to be due to the imprecise gap
length estimates during scaffolding, in particular at the transcriptome scaffolding stage.

Quality assessment of our assembly was performed using BUSCOv3 with the aves_odb9 gene
set [45]. Out of the 4915 Benchmarking Universal Single-Copy Orthologs (a conservative gene set
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or BUSCOs), 87.4% were found as a single-copies, 6.4% as fragmented and 6.2% were not found.
Therefore, despite the relatively low PE library coverage common to all three parrot datasets (Table 1),
the contig N50 of 101 kbp and the relatively high BUSCO score point to the high integrity of this
assembly, sufficient for protein-coding gene prediction. The total number of scaffolds in our assembly,
even after filtration of very short scaffolds (shorter than 1000 bp), was relatively high, at more than
62 k (Table 3). However, this is a known issue for the short-read based assemblies with few mate-pair
libraries sequenced and it was observed in the earlier assembly as well [27].

Table 3. Metrics for the Amazona vittata de novo genome assembly.

N50 (kbp) L50 (kbp) Longest
Contig (Mb)

Number
of Ns Mb

Number of
Scaffolds

Assembled Genome
Length (Gbp)

Amazona vittata 101.028 3057 1.885 367.97 62,777 1.447

Repeat masking is strictly necessary for prediction of protein-coding genes, as interspersed
repeats often include mobile elements with ORFs. Unfortunately, the most commonly used database
of repetitive elements RepBase still includes a very small number of avian repeats (less than 500).
To address this problem, we assembled repeats de novo from the PE library and combined the results
with the RepBase aves library [46–49]. Subsequently, 7.57% of the genomic sequences in this study
were identified as repeats (Table 4). The most common repeat class appears to be L3/CR1 LTRs,
which comprises almost 1/3 of all repeats (2.47% of the genome, Table 4). At the same time, more than
half of all repeats still fall into the unclassified category (3.92%, Table 4).

Table 4. Repeat content of the Amazona vittata genome annotated by RepeatMasker [47–49] using
generated de novo library combined with Aves repeats from RepBase [46].

Class Number of Repeats Total Length (bp) Percentage of the Genome (%)

Total repeats: 107,498,949 7.43%

SINEs 6995 895,617 0.06%
ALUs 0 0 0.00%
MIRs 3794 414,542 0.03%

LINEs: 147,387 36,382,264 2.51%
LINE1 80 19,168 0.00%
LINE2 2175 474,752 0.03%

L3/CR1 144,820 35,707,674 2.47%

LTR elements 34,688 10,514,590 0.73%
ERVL 31,743 9,376,828 0.65%

ERVL-MaLRs 0 0 0.00%
ERV_classI 1826 779,161 0.05%
ERV_classII 939 326,675 0.02%

DNA elements: 19,273 3,034,179 0.21%
hAT-Charlie 201 57,997 0.00%

TcMar-Tigger 273 49,514 0.00%

Unclassified: 345,805 56,672,299 3.92%

Small RNA: 2066 272,961 0.02%

Satellites: 3155 513,361 0.04%

Simple repeats: 8207 1,700,409 0.12%

Low complexity: 256 63,286 0.00%

Prediction of protein-coding genes was performed in accordance with the hybrid pipeline
(described in Materials and Methods 2.7) using homology (Pfam [56] and Swiss-Prot [57,58] databases),
transcriptome (A. ventralis RNAseq reads) and de novo predictions. As a reference for homology-based
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transfer, we have chosen protein sequences of three species: Gallus gallus (chicken), Taeniopygia guttata
(zebra finch) and Melopsittacus undulatus (budgerigar). Chicken and zebra finch were selected as avian
species, with the best available chromosome-level assembly and annotation, based on extensive usage
of RNAseq. Meanwhile, the budgerigar genome was included because it is the highest quality parrot
genome available, which makes it the best currently available closely related species with sufficient
assembly and annotation data.

As a result, a total of 19,669 genes have been predicted for the current version of the A. vittata
genome. This number is somewhat higher than the comparable numbers in genomes of other birds
(Table 5). However, the number of genes with the longest protein containing less than 100 amino-acids
is 4–9× higher in our annotation than in annotations of other bird genomes (Table 5). This probably
reflects the higher fragmentation level of the assembly. All of the assembly data from this study is
available in the form of the browser hub. The track hub file is publicly available by the following link:
http://public.dobzhanskycenter.ru/AmazonaHub/hub.txt.

Table 5. Statistics for protein-coding genes of species used in the current analysis. Among the three
Amazona species used, only the A. vittata is listed, since as for A. leucocephala and A. ventralis only
reference-assisted assemblies were performed, so that identical (or almost identical) gene counts are
reported for these species.

Species N of Genes
N of Genes with
Longest Protein

<100 aa

N Genes Assigned
to the EggNOG

Clusters
Genome Size (pg) *

Cyanistes caeruleus 16,519 503 16,030 1.47
Falco cherrug 14,694 302 14,607 -

Falco peregrinus 14,859 307 14,771 1.45
Ficedula albicollis 15,400 360 14,952 -

Geospiza fortis 14,182 327 14,101 -
Manacus vitellinus 16,312 362 16,086 -

Melopsittacus undullatus 14,255 315 14,192 1.02–1.37
Parus major 15,251 285 14,795 1.51

Serinus canaria 15,582 455 15,194 1.48–1.62
Taenopygia guttata 16,368 494 16,202 1.25

Zonotrichia albicollis 14,374 314 14,018 1.33–1.58
Amazona vittata 19,669 2339 18,488 1.58

* C-values are from the Genome Size Database [81].

3.2. Genome-Wide Heterozygosity

Given the fragmented nature (N50 101.028 kbp, Table 3) of our assembly we were unable to use
the most common window-based approach for heterozygosity-level assessment. Instead we calculated
a simple metric of whole genome heterozygosity: counting and dividing the number of heterozygous
SNP by the unmasked genome length. As expected, the A. vittata genome had the lowest level of
heterozygosity, with a mean density of 0.96 heterozygous SNPs/kbp. A. ventralis and A. lecucocephala
showed higher heterozygosity 1.6–1.7 SNPs/kbp (Table S6).

3.3. Phylogenetic and Demographic Analysis

In order to resolve evolutionary relationships between the species in this study, we performed in
the wider context of bird phylogeny. In addition to the genome data for the three amazon parrots from
this study, we chose 11 additional avian genomes. We included two species of falcons (Falconiformes),
eight species of passerine birds (Passeriformes) and one additional parrot (Psittaciformes) with assembly
and annotation based on extensive usage of RNAseq (see Materials and Methods). The tree was
calculated using filtered alignment of 4135 single-copy orthologs in RaxML v.8 with 1000 bootstrap
replicates. The two falcon species (Falco cherrug and F. peregrinus) were placed in an outgroup. All nodes
in the resulting tree had the highest 100% bootstrap support suggesting high stability of the tree to the

http://public.dobzhanskycenter.ru/AmazonaHub/hub.txt
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noise in input data. According to our reconstruction A. vittata and A. ventralis form a monophyletic
group with A. leucocephala as a sister species (Figure 2).
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Figure 2. Reconstructed phylogenetic tree for 14 species. Reconstruction was performed using RAxML
8 [63] with falcons (Falco cherrug and F. peregrinus) as an outgroup. A. vittata and A. ventralis form
a monophyletic group, with A. leucocephala as their sister taxon.

We also attempted to estimate population dynamics using the pairwise sequentially Markovian
coalescent (PSMC) model. The resulting estimate is based on the assumption of a generation time of six
years calculated by the captive breeding program for the Puerto Rican parrot [76] and mutation rates
recently estimated from bird pedigrees available in the literature [77] and provides the assessment of
these species’ effective population sizes (Ne) in recent evolutionary history (Figure 3). This analysis
indicates that the first split between the three species of amazons occurred at least 2 MYA. This date
may be suggesting the time of the initial dispersal of the ancestral population of parrots from Central
America (Figure 3).
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Figure 3. Population history of the three Amazona species. For all of them, A. vittata genome was used
as a reference. Generation times were calculated by the captive breeding program for Puerto Rican
parrot [76] and mutation rates recently estimated from bird pedigrees available in the literature [77].
Trajectories of all three species suggest an initial founder effect that may be attributed to parrot dispersal
from Central America between 2 and 3 MYA.

4. Discussion

Publicly available genome assemblies and gene annotations for the three Caribbean parrots are
the major result of this study. In a combination approach that used both genome and transcriptome
sequences, we were able to obtain enough coverage to allow for the identification of the major types of
repeats, as well as locations of the protein coding genes (Tables 4 and 5), with high confidence: 90%
of BUSCO genes were found as complete, single copy or duplicated and only 6.4% as fragmented;
Table S2. Still, the number of genes (19,669) is somewhat higher than the respective numbers estimated
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for other birds (Table 5). While BUSCO assessments elevate the confidence that this increase can
be correlated with the increase in genome size, we cannot rule out the possibility that the higher
fragmentation level of our assemblies has contributed as well. Specifically, the number of genes with
longest protein shorter than 100 amino-acids is 4–9 times higher in our annotation than in annotations
of other bird genomes (Table 5). Nevertheless, these assemblies were sufficient to produce the first
estimates of genome wide heterozygosity (Table S4) and allowed inferences of the phylogeny based on
the genome wide data (Figure 2), as well as estimates of demographic histories, in these three island
species for the first time (Figure 3).

This study reinforces the observation that the Amazona parrots have slightly larger genomes than
other parrots on average. The Animal Genome Size Database [81] features haploid DNA content
(C-values) for 56 genomes of Psittaciformes, of which 16 belong to the genus Amazona. The average
genome size for the Amazon parrots is 1.58 pg (±0.09), while the rest of the parrots have significantly
(p < 0.0001) smaller genomes of 1.35 pg (±0.11). Our estimates were based on distributions of 23-mers
extracted from PE libraries (Figure S2, Table 1). Therefore, current genome size estimations for the three
Caribbean parrots in this study provide an independent confirmation and demonstrated remarkable
similarity with the publicly available C-values. The 10% discrepancy in genome size estimates between
the two methods (Table 1) could be attributed to the genomic regions which have not been covered
by sequencing.

Only 7.57% of the parrot genomic sequences in this study were identified as repeats (Table 4).
Such a small fraction is not unusual for birds. In fact, birds have the least number of repeated elements
in their genomes compared to any other group of tetrapods, comprising only 4–10% of the total genome
size (compared to the 34–52% in mammals) [4,80] and an up to two-fold genome contraction had
occurred before the divergence of birds from a theropod ancestor [82–84]. However, since repeats are
more difficult to assemble and a higher proportion of them would be omitted in comparison with the
rest of the sequence, the reduced number of repeats we found could also be explained by the high
percentage of gaps (~24%) in the present genome assembly.

There is a possibility that the large genome sizes in Amazons could be attributed to expansion
of one of the transposable element classes. Unfortunately, because of the high gap proportion in
the current genomes, it is difficult to determine which of these elements could be the culprit with
high confidence. The most common of repeats we have identified are the Chicken repeat 1 (CR1)
elements that make up 2.47% of the Amazona genome (Table 4). CR1 elements belong to the non-long
repeat class of retrotransposons and are subdivided into at least six distinct subfamilies, comprising
sequences of about 300 bp long, all of which share substantial sequence similarity. CR1-like elements
were found in various genomes from invertebrates to mammals, suggesting their importance for
genome structure and/or function [85]. However, it is too early to arrive at any conclusion, since the
majority of the repetitive content is either not represented in the assembly (because repeats are more
difficult to assemble and place) or has been labelled as “unclassified” (3.92% of the genome; Table 4).

There were two main reasons why we could not calculate the timing of speciation using the
divergence time analysis given our data. First, we noted a significant difference in cumulative
branch length (especially for Passeriformes) and suspected existence of substantial differences in
the mutation rates that would bias our estimates. Second, the current paleontological record is
lacking fossil calibrations inside Psittaciformes. The only calibration point within the parrot clade for
a split between Melopsittacus undulatus and Amazons (22.5 MYA) is in fact a derived second level
molecular calibration point. Fossil-based calibration points within the passerine clade (split between
Manacus/Taeniopygia/Geospiza at 13.6–16.3 MYA and Taeniopygia/Geospiza at 7.2–11.6 [2]) are not useful
for timing parrot phylogenies because of the mentioned issue involving mutation rate. The split
between Psittaciformes/Passeriformes (53.5–65 MYA) [86] is too old to be helpful for dating of the
relatively recent split between Amazona species. Hopefully, paleontological discoveries of new fossils
of ancient parrots combined with the rapid advances in genome sequencing and analysis will soon
bridge this gap. All mentioned fossil calibrations are listed in a supplementary table (Table S3).
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In this study we present an early attempt to estimate genome wide heterozygosity given our
data. This early estimate can be further evaluated and discussed in conjunction with the effects
for life-history, morphological and physiological traits [87–89]. Species that are endangered and/or
threatened taxa generally display lower heterozygosity than related unthreatened taxa [90]. However,
we can already use these preliminary values to address certain theoretical questions in conservation
genetics. For instance, we used the heterozygote estimates in context with the hypothesis that
genetic diversity should be positively correlated among islands [91]. This hypothesis is based on
two of the most prominent theories of island diversity, MacArthur and Wilson’s [6] theory of island
biogeography and Sewall Wright’s [92] island model of population genetics [93]. While we have
observed a connection between island size and heterozygosity (Figure S3; r2 > 0.99), more island species
are needed for a better evaluation of this hypothesis (Figure S3). The heteroygosity estimates for SNPs
based on the genome sequences indicate that the Puerto Rican parrot has the lowest heterozygosity
(0.96 SNPs/kbp), with almost half of that in the other two species and is similar to the number reported
for another endangered parrot: kea (Nestor notabilis; 0.91 SNPs/kbp). At the same time, two earlier
investigated critically endangered/vulnerable avian species, the white-tailed eagle (0.4 SNPs/kbp)
and the dalmatian pelican (0.6 SNPs/kbp), have lower heterozygosity values [94] (Table S4).

In conclusion, new data generated on three Caribbean amazons has contributed to the body of
knowledge on parrot genomics and conservation genetics and in combination with other genomes
it will allow for future analyses that will provide valuable insights into the evolution of functional
elements in the genomes of these parrot species.

Supplementary Materials: All the data has been uploaded to NCBI: Bioproject accession PRJNA496322; Genome
submission ID: SUB4629817. The following are available online at http://www.mdpi.com/2073-4425/10/1/54/s1,
Figure S1. Pipeline used to assemble A. vitatta genome. One PE and two MP A. vitatta genome libraries were
used to generate preliminary scaffolds complemented by additional scaffolding step using five A. ventralis
RNAseq libraries. Figure S2. Distributions of 23-mers from K-mer distributions PE libraries of three parrot species.
Corresponding genome size estimation present on figure and also in Table 1. Figure S3. Connection between
heterozygosity and areal size for three Amazona species. Table S1. The sequencing outputs for each genome
used in the current assemblies. Abbreviations: paired-end (PE) mate pairs (MP); Table S2. BUSCO scores for all
steps of assembly of A. vittata genome. Assembly evaluation was performed using BUSCO v3 and Avian dataset
(Simão et al., 2015). Table S3. Available fossil-based calibrations for speciation time dating within Psittaciformes
and Passeriformes clades. Table S4. Mean heterozygosity in the genomes of three Amazona species compared
with the values reported earlier for other avian species.
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