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Abstract: The advent of third-generation sequencing (TGS) technologies, such as the Pacific
Biosciences (PacBio) and Oxford Nanopore machines, provides new possibilities for contig assembly,
scaffolding, and high-performance computing in bioinformatics due to its long reads. However,
the high error rate and poor quality of TGS reads provide new challenges for accurate genome
assembly and long-read alignment. Efficient processing methods are in need to prioritize high-quality
reads for improving the results of error correction and assembly. In this study, we proposed a novel
Read Quality Evaluation and Selection Tool (REQUEST) for evaluating the quality of third-generation
long reads. REQUEST generates training data of high-quality and low-quality reads which are
characterized by their nucleotide combinations. A linear regression model was built to score the
quality of reads. The method was tested on three datasets of different species. The results showed
that the top-scored reads prioritized by REQUEST achieved higher alignment accuracies. The contig
assembly results based on the top-scored reads also outperformed conventional approaches that
use all reads. REQUEST is able to distinguish high-quality reads from low-quality ones without
using reference genomes, making it a promising alternative sequence-quality evaluation method to
alignment-based algorithms.
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1. Introduction

Next-generation sequencing (NGS) dominated the DNA sequencing area since its development,
dramatically reducing the cost and error of sequencing by enabling a massively paralleled approach
capable of producing large numbers of reads [1]. With the length generated by most NGS machines
being short (often less than 200 bp), the applications of NGS are limited in gene/transcript
reconstruction and complex genomic assembly [2–4].

The emergence of third-generation sequencing (TGS) technology offers many new prospects
for genome research, especially thanks to its dramatically increased reads length [5], to solve
complex genome regions with long repeats [6–9]. In 2014, Oxford Nanopore Technologies (ONT)
presented their tiny MinION sequencer. The MinION can produce reads thousands of bases long.
Scientists used this technology to construct genomes of new species [6], such as vaccinia virus [10],
Saccharomyces cerevisiae [11], and tobacco [12]. The one-dimensional (1D) reads from MinION have a
raw nucleotide accuracy less than 75%, while the two-dimensional (2D) reads are of higher quality
(80–88% accuracy) [13].

The standard for judging assembly and long transcripts is mapping rate or genome coverage,
which depends on alignment and, therefore, is time-consuming. The accuracy of second-generation
sequencing is about 99.96%; however, it still needs to be corrected in assembly, scaffolding,
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and gap-filling [7,14,15]. At the same time, the genomes of many species are incomplete, leading
to the fact that part of reads cannot be aligned to the genome and to the limitation of downstream
analysis. There are more widely used alignment methods currently available, such as bowtie [16],
HISAT (Hierarchical Indexing for Spliced Alignment of Transcripts) [17], BLAT (BLAST-like alignment
tool) [18], and Tophat2 [19]. Currently, there are several assembly algorithms, such as de Bruijn graph
(DBG), string graph, and overlap layout consensus (OLC) [20]. The DBG algorithm, which splits the
reads into k-mers and builds the overlap graph, is a fast assembler suitable for large-scale SGS reads.

However, these tools were originally designed for NGS and do not work well for TGS
reads. The high error rate of TGS poses new challenges for long-read alignment, assembly,
structure variation [21], etc. To solve this problem, some error correction methods were put
forward, including hybrid error correction methods, such as LoRDEC (a hybrid error correction
method) [22], LSC (a computational method to perform error Correction of TGS Long reads by SGS
short reads) [23], proovread [24], and LSCplus [25], which borrow information from high-quality
second-generation reads.

Due to the low quality of data, multiple iterations of error correction are required to achieve
assembly quality [26]. Current approaches take all reads as input without filtering, such as MECAT
(a fast Mapping, Error Correction, and de novo Assembly Tool) [18], FC_Consensus [27], DAGCon
(a Directed Acyclic Graph Consensus method) [28], and FalconSense [29]. The poor-quality reads
may have a negative influence on results. MECAT uses different error-correction methods for
different types of regions. A counting-based method is used in the regions with consistent matches
or deletions without insertion. The local partial order graph (POG) is used in the regions with
insertions. The counting-based method greatly improves the calculation speed. The POG method
ensures maximum accuracy. The correcting speed of MECAT was about five times higher than that of
other tools. The accuracies of MECAT were also consistently higher than those of other two methods.

The alignment tools designed specifically for long reads, such as MECAT, Minimap [30],
and BLASR (Basic Local Alignment with Successive Refinement) [31], are still time-consuming for
precise alignment. Some tools for long-read processing were also developed. For instance, MECAT is a
mapping, error correction, assembly tool, which is very fast compared to several other tools.

Regarding sequencing machines, Pacbio RS, Pacbio RS II, and Nanopore minION are biased
toward generating certain types of erroneous nucleotide combinations. For example, an insertion or
deletion of the same continuous base was reported in recent studies [11,13]. We assumed that the
base content combinations of nucleotides, dinucleotides, and trinucleotides between high-quality
and low-quality reads were differential and, therefore, could be used for read-quality evaluation.
The nucleotide combinations considered in our work include four kinds of single nucleotide (adenine,
A; guanine, G; thymine, T; and cytosine, C), 16 kinds of dinucleotides, and 64 kinds of trinucleotides.
Here, the Read Quality Evaluation and Selection Tool (REQUEST) was applied to three real-world
third-generation sequencing read datasets from different species. We found that the reads selected
by REQUEST were of higher quality and achieved better performances in read correction and contig
assembly compared to randomly selected reads. These results support that using high-quality reads
rather than all reads is a promising approach for genome assembly.

2. Materials and Methods

2.1. Data Availability

There are three species of 2D-pass datasets generated by Oxford Nanopore techniques, including
Escherichia coli (E. coli), Yersinia pestis (Yersinia), and Drosophila biarmipes (Drosophila). The E. coli dataset is
available at the Loman lab website (http://lab.loman.net/). The Yersinia pestis and Drosophila biarmipes
datasets are available at the National Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA) database (SRR5117441, SRR7167956). The latest assembled genomes of E. coli, Yersinia,
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and Drosophila used here were downloaded from the RefSeq database (http://www.ncbi.nlm.nih.gov/
refseq).

2.2. Methods

REQUEST prioritizes high/low-quality reads based on their differential pattern of nucleotide
combinations to evaluate the quality of reads. It consists of three steps to solve the high error rate
facing the application of TGS, as shown in Figure 1.
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Figure 1. The workflow of the Read Quality Evaluation and Selection Tool (REQUEST). The method 
consists of three steps: (1) compiling of the training data of high- and low-quality reads; (2) splitting 
the training set into two parts to build the linear model and cross-score the reads; (3) selecting the top-
scored reads and evaluating them. SQ stands for the score of sequencing read quality computed by 
REQUEST. 

In step 1, to generate the training dataset, the contents of 84 kinds of nucleotide combinations 
were calculated as the sequence features for each read. The raw reads were regarded as the low-
quality reads (LQ, labeled as ‘-1’). The error-corrected reads generated by MECAT with the raw reads 
as the input data were regarded as the high-quality reads (HQ, labeled as ‘1’). 

In step 2, the training sets were split into two subsets to train the linear model separately and 
cross-score the reads. The process was equivalent to solving a linear least-square problem. The list of 
predicted Scores of read Quality, denoted as SQ scores, was calculated as shown in Equation (1). 
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where X refers to the matrix of training sets (Part 1 in Figure 1), and Xnew refers to the matrix of test 
sets (Part 2 in Figure 1). For all reads, the SQ scores of all raw reads were the combination of SQ scores 
of the two parts. 

In step 3, to verify the effectiveness of the proposed method, we selected the top-ranked 80%, 
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2.3. Evaluation Method 

Figure 1. The workflow of the Read Quality Evaluation and Selection Tool (REQUEST). The method
consists of three steps: (1) compiling of the training data of high- and low-quality reads; (2) splitting
the training set into two parts to build the linear model and cross-score the reads; (3) selecting the
top-scored reads and evaluating them. SQ stands for the score of sequencing read quality computed
by REQUEST.

In step 1, to generate the training dataset, the contents of 84 kinds of nucleotide combinations
were calculated as the sequence features for each read. The raw reads were regarded as the low-quality
reads (LQ, labeled as ‘-1’). The error-corrected reads generated by MECAT with the raw reads as the
input data were regarded as the high-quality reads (HQ, labeled as ‘1’).

In step 2, the training sets were split into two subsets to train the linear model separately and
cross-score the reads. The process was equivalent to solving a linear least-square problem. The list of
predicted Scores of read Quality, denoted as SQ scores, was calculated as shown in Equation (1).

SQ scores = f(X, Xnew) = Xnew (XTX)−1 XTY, (1)

where X refers to the matrix of training sets (Part 1 in Figure 1), and Xnew refers to the matrix of test
sets (Part 2 in Figure 1). For all reads, the SQ scores of all raw reads were the combination of SQ scores
of the two parts.

In step 3, to verify the effectiveness of the proposed method, we selected the top-ranked 80%, 85%,
90%, and 95% of reads and removed the lowest-scored reads, which reduced the negative impacts.
The top-ranked reads could then be used for error correction and contig assembly for testing the
effectiveness of our method.
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The REQUEST software was implemented in Python and R, and it is freely available at http:
//github.com/bioinfomaticsCSU/REQUEST.

2.3. Evaluation Method

For raw reads and corrected reads, the analytical indicators include the number of reads (Num),
as well as the maximum (max), minimum (min), and average length of each dataset. We aligned all
reads to the genome and counted the numbers of alignment, aligned rate (%), and mean and median
of identity.

Alignments refer to long reads whose overlapped lengths with the reference genome are longer
than 2000 bp and where the mismatch rate is less than twice the read error rate [32]. Aligned rate (R)
refers to the proportion of reads aligned to genomes in all reads, calculated as

aligned rate =
n
N

× 100%, (2)

where n refers to the number of alignments, and N refers to the number of all reads.
The identity is a general standard of sequence quality, showing the degree of match to genome.

Identity of a sequence is the ratio of bases aligned to genome, calculated as

identity =
m

Ref
× 100%, (3)

where m refers to the number of matched bases, and Ref refers to the length of reference sequence.
We calculated the Pearson correlation coefficient between the identity and SQ scores. The Pearson

correlation coefficient was as follows:

P =
∑n

i=1

(
Identityi − Identity

)(
SQi − SQ

)√
∑n

i =1

(
Identityi − Identity

)2
∑n

i=1
(
SQi − SQ

)2
. (4)

To further investigate whether this selection method could improve assembly, we used the selected
datasets for assembly using MECAT2canu with the Nanopore assembly pipeline, and the contigs
were evaluated by QUAST (Quality Assessment Tool for Genome Assemblies) [33]. The metrics
used here were the number of contigs, max length of contigs, the number of misassemblies (MA),
largest alignment, N50, NA50, and genome fraction. N50 is the length of the longest contig such that
all the contigs longer than this contig cover at least half of the genome being assembled [34]. NA50
is similar to N50 [35] in corrected contigs. Genome fraction is the percentage of aligned bases in the
reference genome. A base in the reference genome is aligned if there is at least one contig covering this
base [36].

3. Results

3.1. High-Quality and Low-Quality Reads Show Different Patterns of Nucleotide Combination Content

The differential pattern of long reads was illustrated using a Nanopore sequencing dataset.
For instance, Figure 2 shows the difference of four trinucleotides between the reference genome
(representing gold-standard error-free reads, green lines), corrected reads (representing high-quality reads,
blue lines), and raw reads (representing low-quality reads, red lines). The differences were prominent.

In order to determine whether the selected reads with high SQ scores could result in an
improvement of error correction and assembly results, we also randomly selected the same number
of raw reads and compared the results between our selected reads and the randomly selected reads.
The results of E. coli (see Table 1), Yersinia (see Table 2), and Drosophila (see Table 3) consist of three
parts: read alignment, read correction, and contig assembly.

http://github.com/bioinfomaticsCSU/REQUEST
http://github.com/bioinfomaticsCSU/REQUEST
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Table 1. Summary of the results of Escherichia coli in selection, correction, and contigs. REQUEST—Read
Quality Evaluation and Selection Tool.

P (%) Num Max Min Mean n R (%) Mean I Median I

Read
Alignment

All reads 100 31,858 64,218 99 7668 27,869 87.48 84.16 88.33

Random

95 30,265 62,072 99 7669 26,471 87.50 84.16 88.33
90 28,672 62,072 99 7670 25,078 87.50 84.16 88.32
85 27,079 61,357 100 7670 23,685 87.51 84.15 88.32
80 25,486 59,926 100 7671 22,288 87.50 84.15 88.32

REQUEST

95 30,265 64,218 99 7875 27,238 90.00 84.46 88.60
90 28,672 64,218 99 7964 26,192 91.35 84.98 89.07
85 27,079 64,218 99 8028 25,016 92.38 85.52 89.48
80 25,486 64,218 99 8082 23,766 93.25 86.06 89.88

Read
Correction

All reads 100 26,034 33,912 2000 8144 25,775 99.01 96.67 98.36

Random

95 24,252 33,882 2000 8147 24,011 99.01 96.78 98.36
90 22,943 33,817 2001 8143 22,715 99.01 96.76 98.34
85 21,626 33,724 2001 8137 21,411 99.00 96.73 98.31
80 20,303 33,519 2001 8130 20,101 99.00 96.70 98.28

REQUEST

95 25,715 33,886 2001 8162 25,469 99.04 96.51 98.25
90 24,906 33,886 2001 8224 24,670 99.05 96.59 98.29
85 23,968 33,880 2001 8279 23,731 99.01 96.68 98.33
80 22,883 33,880 2000 8335 22,673 99.08 96.76 98.38

Contig
Assembly

P (%) Num Max(kb) MA Largest
alignment (kb) N50 (kb) NA50(kb) GF (%)

All reads 100 2 4636 6 2305 4636 1655.60 99.86

Random

95 3 3724 3 3294 3724 3201.91 99.98
90 4 2958 3 2606 2947 2438.54 99.97
85 5 3463 3 3153 3380 3032.37 99.92
80 7 2496 3 2444 1970 1864.48 99.81

REQUEST

95 2 4641 5 2530 4641 2529.56 100.00
90 2 4639 7 3587 4639 3587.13 99.89
85 3 4635 5 3956 4635 3956.42 100.00
80 3 4636 5 3957 4636 3956.57 100.00

1 P indicates the proportion of retained reads; Max, Min, and Mean indicate the maximum, minimum, and mean
read lengths, respectively; “n” means the number of alignments; R means the aligned rate; “I” indicates the identity;
MA indicates misassemblies; GF indicates genome fraction.
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Table 2. Summary of the results of Yersinia pestis in selection, correction, and contigs.

P (%) Num Max Min Mean n R (%) Mean I Median I

Read
Alignment

All reads 100 28,429 61,191 125 7679 26,989 94.93 83.44 86.70

Random

95 27,007 61,191 125 7680 25,628 94.90 83.44 86.70
90 25,586 61,191 125 7689 24,277 94.88 83.44 86.70
85 24,164 61,191 145 7679 22,928 94.89 83.44 86.70
80 22,743 53,492 125 7686 21,573 94.86 83.44 86.70

REQUEST

95 27,008 61,191 184 7785 26,181 96.94 83.84 86.87
90 25,586 61,191 184 7827 25,024 97.80 84.32 87.08
85 24,164 61,191 184 7869 23,750 98.29 84.73 87.29
80 22,743 61,191 184 7904 22,402 98.50 85.08 87.45

Read
Correction

All reads 100 25,776 57,301 2000 7229 24,769 96.09 96.96 98.09

Random

95 23,953 33,843 2001 7170 23,946 99.97 97.12 98.14
90 22,633 33,587 2001 7157 22,627 99.97 97.11 98.12
85 21,315 33,289 2000 7139 21,310 99.98 97.11 98.10
80 19,974 33,730 2001 7117 19,969 99.98 97.10 98.09

REQUEST

95 25,357 56,560 2000 7263 25,350 99.97 96.86 98.03
90 24,449 56,560 2000 7336 24,442 99.97 96.93 98.07
85 23,312 56,587 2000 7399 23,305 99.97 97.04 98.12
80 22,028 57,044 2000 7468 22,022 99.97 97.10 98.16

Contig
Assembly

P (%) Num Max(kb) MA Largest
alignment (kb) N50(kb) NA50(kb) GF (%)

All reads 100 4 4646 30 940 4646 377.69 99.96

Random

95 5 2749 28 835 2310 370.53 99.72
90 8 2174 25 816 1642 345.93 99.55
85 11 1756 28 771 1141 301.66 99.28
80 19 1194 27 593 471 224.73 98.54

REQUEST

95 6 4641 31 1012 4641 377.70 99.96
90 4 4658 31 798 4658 377.69 99.96
85 4 4645 29 1012 4645 377.69 99.96
80 7 2571 30 798 2571 282.40 99.73

The raw reads were ranked by the SQ scores, and the top 95%, top 90%, top 85%, and top 80%
of reads were retained for subsequent analysis. For comparison, subsets of raw datasets of the same
size as the reads selected by REQUEST were randomly selected; by repeating this process 20 times,
20 replicate sub-datasets were obtained, and the results on the randomly selected reads were averaged
for comparison.

The corrected reads were processed by MECAT. The evaluation criterions of the raw reads
and corrected reads contained (1) the number of reads, (2) maximum, minimum, and mean length,
(3) the number of alignments and the proportion of alignment in all reads, and (4) mean and
median identity.

The evaluation criteria of contigs contained the number of contigs, the maximum contig length,
the number of misassemblies, maximum length of alignment, N50, NA50, and genome fraction.

Table 3. Summary of the results of Drosophila biarmipes in selection, correction, and contigs.

P (%) Num Max Min Mean n R (%) Mean I Median I

Read
Alignment

All reads 100 1,375,649 93,368 61 4102 845,134 61.44 79.57 82.58

Random

95 1,306,867 93,368 61 4102 802,968 61.44 79.57 82.24
90 1,260,870 93,368 61 4101 760,614 60.32 79.57 82.58
85 1,192,229 93,368 61 4101 718,489 60.26 79.57 82.58
80 1,123,446 93,368 61 4102 676,352 60.20 79.57 82.58

REQUEST

95 1,306,867 93,368 83 4298 844,504 64.62 79.58 82.58
90 1,260,870 93,368 83 4503 841,439 66.73 79.61 82.61
85 1,192,229 93,368 83 4725 833,911 69.95 79.65 82.67
80 1,123,446 93,368 105 4950 818,457 72.85 79.72 82.79
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Table 3. Cont.

P (%) Num Max Min Mean n R (%) Mean I Median I

Read
Correction

All reads 100 628,180 53,163 2000 6743 625,472 99.57 89.25 94.68

Random

95 594,932 52,702 2000 6654 592,270 99.55 89.22 94.67
90 571,876 52,531 2000 6579 558,019 97.58 89.21 94.68
85 536,463 49,260 2000 6452 522,184 97.34 89.19 94.68
80 498,685 47,746 2000 6297 483,630 96.98 89.19 94.69

REQUEST

95 634,003 53,154 2000 6713 630,933 99.52 89.10 94.55
90 633,478 53,154 2000 6715 629,206 99.33 89.11 94.56
85 632,026 53,154 2000 6719 629,206 99.55 89.14 94.56
80 627,427 53,157 2000 6731 575,145 91.67 89.25 94.72

Contig
Assembly

P (%) Num Max(kb) MA Largest
alignment (kb) N50(kb) NA50(kb) GF (%)

All reads 100 2185 673 10,602 304 67 31.00 55.65

Random

95 2051 530 9689 216 57 27.00 46.36
90 1868 301 8973 176 50 23.00 36.92
85 1635 226 8165 160 43 16.00 28.09
80 1385 191 7376 112 39 10.00 20.90

REQUEST

95 2164 552 10,815 307 68 31.00 55.82
90 2142 552 10,732 234 68 31.00 55.75
85 2132 552 10,616 234 68 31.00 55.57
80 2113 552 10,734 234 67 31.00 54.95

3.2. Experimental Results

3.2.1. Results of Escherichia coli

The raw dataset of E. coli contained 31,858 2D reads. The length ranged from 99 bp to 64,218 bp.
The identity ranged from 53.95% to 97.42%. We made a comparison between SQ and identity.
The relationship between SQ score and identity is shown in Figure 3a. An obvious positive correlation
can be seen in the figure. The Pearson correlation coefficient of E. coli between identity and SQ
score was 0.53 (p < 2.2 × 10−16), suggesting that the SQ scores are a useful indicator of read
alignment-based quality.
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85 21,626  33,724 2001  8137 21,411 99.00 96.73 98.31 
80 20,303  33,519 2001  8130 20,101 99.00 96.70 98.28 

REQUEST 

95 25,715  33,886 2001  8162 25,469 99.04 96.51 98.25 
90 24,906  33,886 2001  8224 24,670 99.05 96.59 98.29 
85 23,968  33,880 2001  8279 23,731 99.01 96.68 98.33 
80 22,883  33,880 2000  8335 22,673 99.08 96.76 98.38 

Contig 
Assembly 

 P (%) Num Max(kb) MA 
Largest 

alignment(kb) 
N50 (kb) NA50(kb) GF (%) 

All reads 100 2 4636 6 2305 4636 1655.60 99.86 

Random 

95 3 3724 3 3294 3724 3201.91 99.98 
90 4 2958 3 2606 2947 2438.54 99.97 
85 5 3463 3 3153 3380 3032.37 99.92 
80 7 2496 3 2444 1970 1864.48 99.81 

REQUEST 

95 2 4641 5 2530 4641 2529.56 100.00 
90 2 4639 7 3587 4639 3587.13 99.89 
85 3 4635 5 3956 4635 3956.42 100.00 
80 3 4636 5 3957 4636 3956.57 100.00 

1 P indicates the proportion of retained reads; Max, Min, and Mean indicate the maximum, minimum, 
and mean read lengths, respectively; “n” means the number of alignments; R means the aligned rate; 
“I” indicates the identity; MA indicates misassemblies; GF indicates genome fraction. 
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Figure 3. Relationship of identity and predicted (SQ) score. The identity was grouped into 65–70%, 
70–75%, 75–80%, 80–85%, 85–90%, 90–95%, and 95–100%. For each group, the distribution of SQ scores 
was plotted. (a) Comparison of Escherichia coli; (b) comparison of Yersinia pestis; (c) comparison of 
Drosophila biarmipes. 

Then, error correction and assembly were carried out on the randomly selected reads. The results 
of E. coli datasets are shown in Table 1. The length distribution of the reads selected by our method 

Figure 3. Relationship of identity and predicted (SQ) score. The identity was grouped into 65–70%,
70–75%, 75–80%, 80–85%, 85–90%, 90–95%, and 95–100%. For each group, the distribution of SQ scores
was plotted. (a) Comparison of Escherichia coli; (b) comparison of Yersinia pestis; (c) comparison of
Drosophila biarmipes.

Then, error correction and assembly were carried out on the randomly selected reads. The results
of E. coli datasets are shown in Table 1. The length distribution of the reads selected by our method
was higher than that of the randomly selected reads. The proportion of alignments was up to 93.25%,
which was 5.57 percent higher than that from randomly selected reads. The distribution of identity
had a similar trend. This indicates that SQ scores indeed correlate with the quality of reads.
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In the second part, the results of error correction showed different trends. The mean and median
identity of the REQUEST selection was lower than that of the random selection in 85–95% and higher
in 80%. Meanwhile, the number and length of the REQUEST selection was much higher than random
selection. This means that REQUEST allowed more reads to be corrected and the length of effective
error correction was longer.

In the last part, the assembly results showed the advantages of REQUEST with fewer and longer
contigs. N50 and NA50 were also longer. Although there were slightly more misassemblies, the genome
fraction was up to 100%.

3.2.2. Results of Yersinia pestis

The raw dataset of Yersinia contained 28,429 2D reads. The length ranged from 125 bp to 61,191 bp.
The identity ranged from 54.24% to 95.14%. The relationship of SQ score and identity is shown in
Figure 3b. The Pearson correlation coefficient of Yersinia between identity and SQ score was 0.48
(p < 2.2 × 10−16). The results are shown in Table 2. The mean length of the reads selected by the
REQUEST method was higher than that of the randomly selected reads. The distribution of identity
had a similar trend.

In the second part, the results of error correction had similar trends as the E. coli datasets. The max
length of error-corrected reads was 23,000bp longer than that of random selection.

In the last part, the assembly results also showed the advantages of REQUEST. Overall, the results
of model-based selection were comparable to those of all data and outperformed randomly selected
reads. The max length, N50, and NA50 were also longer. Although misassemblies were slightly more
than the result of random selection, genome fraction was up to 99.96%.

3.2.3. Results of Drosophila biarmipes

The raw dataset of Drosophila contained 1,375,649 reads. The length ranged from 61 bp to 93,368 bp.
The identity ranged from 60.60% to 100.0%. The relationship of SQ score and identity is shown in
Figure 3c. The Pearson correlation coefficient of Drosophila between identity and SQ score was 0.36
(p < 2.2 × 10−16). Due to the large genome of Drosophila, the results were different from those of the
above two datasets (Table 3). The alignment of the REQUEST selected reads was higher than that of
all reads and randomly selected reads. In the second part, the number of corrected reads from the
REQUEST-selected reads was more than that of randomly selected reads. In the last part, the assembly
results also showed the advantage of REQUEST. Overall, the results after selection were better than
those without filtering.

4. Discussion

In this study, we proposed a sequence-based method, REQUEST, to evaluate and select TGS
long reads based on the differential pattern of base combination. It defined the corrected reads as the
high-quality reads and the raw reads as the low-quality reads. The base combinations of each read
were regarded as the features. REQUEST builds a linear model to score the raw reads. The SQ scores
were used as the criterion to select the high-quality reads.

The selected reads with high SQ scores had longer length, higher identity, and higher aligned
rate than randomly selected ones. For the results of error correction, the selection generated more
reads with longer effective length. The aligned rate of REQUEST was also better than the results of
all reads without filtration. Applied to contig assembly, the performance of contigs of REQUEST was
better compared to random selection, as well as the performance for all reads in N50, NA50, and other
aspects. The genome fraction was higher than that using all reads. It was confirmed that using only
reads of high SQ scores had a positive impact in further error correction and assembly. In the future,
we plan to test the performance of REQUEST on larger and more complex genomes such as the human
genome sequencing data.
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REQUEST evaluated and selected third-generation long reads based on the base combinations
without a reference genome. It performed better than randomly selected reads and all reads in terms of
read quality, error correction, and assembly. REQUEST can quickly evaluate sequence quality, improve
the results of error correction and assembly, and reduce the time of iterative error correction of reads
generated by the third-generation sequencing technique. REQUEST gives each read an SQ score.
In addition to aid filtering low-quality reads, this score can also be integrated with error correction and
assembly algorithms for potentially improving their performance.
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