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Abstract: The hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble
heterochromatin-like domains/complexes outside canonical constitutively heterochromatic territories
where they regulate chromatin template-dependent processes. Domains are more than 100 kb in
size; complexes less than 100 kb. They are present in the genomes of organisms ranging from fission
yeast to human, with an expansion in size and number in mammals. Some of the likely functions of
domains/complexes include silencing of the donor mating type region in fission yeast, preservation of
DNA methylation at imprinted germline differentially methylated regions (gDMRs) and regulation
of the phylotypic progression during vertebrate development. Far cis- and trans-contacts between
micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of
epigenetic compartmental domains (ECDs) detected in Hi-C maps. A thermodynamic description
of micro-phase separation of heterochromatin-like domains/complexes may require a gestalt shift
away from the monomer as the “unit of incompatibility” that determines the sign and magnitude of
the Flory–Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal “clutch”,
consisting of between 2 and 10 nucleosomes is both the long sought-after secondary structure of
chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical
framework that enables an estimation of χ for domains/complexes flanked by euchromatin and
thereby an indication of their tendency to phase separate. The degree of phase separation is specified
by χN, where N is the number of “clutches” in a domain/complex. Our approach could provide an
additional tool for understanding the biophysics of the 3D genome.

Keywords: HP1; H3K9me2/3; epigenetic compartmental domains; block copolymers; Flory–Huggins
parameter χ; unit of incompatibility

1. Introduction

There is an intimate relationship between gene regulation, chromatin structure and genome
organisation [1]. The kernel from which our understanding of this relationship grew can be found in
studies on constitutive heterochromatin, especially with the phenomenon of position-effect variegation
(PEV) in Drosophila (for reviews see [2–5]). Nine decades of work on PEV concluded that changing
the position of a gene with respect to the heterochromatin–euchromatin boundary can affect its
chromatin structure and that, in turn, affects its expression as manifest by phenotypic variegation
and changes in transcription [6–10]. Saturation mutagenesis screens identified modifiers of PEV
and molecular characterisation of their wild-type (wt) gene products showed they encode structural
components and enzymatic activities that regulate the assembly of heterochromatin [5,11–13]. Two of
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the modifiers encode Heterochromatin Protein 1 (HP1) and the Su(var)3-9 H3K9HMTase that generates
the H3K9me2/3 histone modification bound by the chromo domain (CD) of HP1 [14] (Figure 1A,B;
H3K9me2/3 will be termed H3K9me3 hereafter [15]). HP1 and the H3K9me3 modification are
highly conserved across eukaryotes and represent hallmarks of constitutive heterochromatin [16,17]
that are enriched at constitutively heterochromatic chromosomal territories of nearly all eukaryotic
chromosomes. These territories include peri-centric heterochromatin surrounding the centromeres,
(sub-)telomeric and (peri-)nucleolar organiser regions (NORs), with both hallmarks being found at
these sites in organisms as distantly related as fission yeast through Drosophila to human [18–25].
Notable exceptions are the chromosomes of budding yeast where the silent information regulator
(Sir) complex is assembled at heterochromatic territories (telomeres and NORs) by establishing and
recognising a pattern of de-acetylated histones, especially hypo-acetylated H4K16 [26]. Co-localisation
of HP1 and H3K9me3 to constitutive heterochromatin arose early in the evolution of eukaryotes with
the common ancestor of fission yeast and human living around one billion years ago [27]; budding and
fission yeasts diverged from each other at around the same time both did from human [28].

The interaction of HP1 proteins with H3K9me3 has been resolved at the atomic level and can be
illustrated using mammalian HP1β, an archetypal HP1 protein [29]. The primary structure of HP1β is
identical in human and mouse [30]. It is essential; HP1β null mutant mice die at birth [31]. HP1β is
small at around 25 kD having an N-terminal CD and a sequence-related domain towards the C-terminus
called the chromo shadow domain (CSD) [32] (c.f. Figure 1A vs. Figure 1C). These two domains
are likely to have arisen by gene duplication [33] and are separated by a less-well conserved “hinge”
region (HR) that is flexible and lacks a defined structure [34]. Both the CD and the CSD represent
globular protein modules with a diameter of around 30 Å. The CD binds the methylated H3K9 tail [35]
where three conserved aromatic residues, Tyr21, Trp42 and Phe45, form an “aromatic cage” around the
methyl-ammonium moiety (Figure 1B). Most of the binding energy is driven by cation–π interactions
where the cation methyl ammonium moiety is attracted to the negative electrostatic potential of the
aromatic groups’ π-system [36]. The HP1β CSD dimerises in solution with the dimer centring upon
helix α2 (Figure 1D), which interacts symmetrically and at an angle of 35◦ with helix α2 of the adjacent
CSD subunit and forms a non-polar pit that can accommodate penta-peptides with the consensus
sequence motif PxVxL that is found in HP1-interacting proteins [37,38] (Figure 1C,D).

HP1 and H3K9me3 co-localise outside constitutive heterochromatin as constituents of
heterochromatin-like domains and complexes that are thought to regulate chromatin template-dependent
processes [30,41,42]. There is evidence that domains/complexes are widespread in mammalian
genomes [43] but the question of their number, size and function remains open. Here, we address this
question and extend our answer using bioinformatics approach that interrogates the genomes of fission
yeast, fruit fly, mouse and human. We focus on domains/complexes that regulate critical chromatin
template-dependent processes during mammalian development and discuss how segregation of
micro-phase separated domains/complexes could drive the compartmentalisation observed in Hi-C
experiments. Treating domain/complexes as blocks in a block copolymer (BCP) that micro-phase
separate from euchromatin implies that domains/complexes possess a value for χ, the Flory–Huggins
parameter. We present a simple theoretical “clutch” model, where the “unit of incompatibility” of
chromatin is an oligo-nucleosomal “clutch” of 2–10 nucleosomes, which could provide an approach
for determining χ for domains/complexes experimentally. The magnitude of the product of χ and
the number of clutches (N) in a domain/complex (χN) specifies the degree of phase separation of the
domain/complex from euchromatin.
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Figure 1. Alignment of peptide sequences of the murine HP1 CDs (A) and the CSDs (C), structure of 
the aromatic “cage” formed around the K9me3 moiety (B) and the CSD dimer bound to PxVxL motif 
in CAF-1 peptide (D). (A) The CDs from top to bottom are HP1β(amino-acids 1–80), HP1α (amino-
acids 1–80) and HP1γ (amino-acids 1–80). The red box denotes the structured part of the CD. The 
secondary structure elements of the HP1β CD are displayed above the sequence: blue cylinders 
represent a α-helix (α1) and green arrows represent β-strands; circles within the arrows indicate β-
bulges. The residues that make up the hydrophobic core of the CD are shaded in yellow and the 
aromatic residues that form a notional “cage” around the methyl lysine are given in blue. The Thr51 
residue that is phosphorylated after DNA damage [39] is shaded in red. (B) Binding of the HP1β CD 
to H3K9me3 a notional aromatic ‘cage’ is formed from three conserved aromatic residues: Tyr21, 
Trp42 and Phe45. The interaction between the methyl-ammonium moiety and the aromatic cage is 
largely electrostatic where the positively charged (cation) moiety is attracted to the negative 
electrostatic potential of the aromatic groups’ π-system [36]. (C) The CSDs from top to bottom are 
HP1β (amino-acids 103–185), HP1α (amino-acids 106–191) and HP1γ (amino-acids 97–173). The red 
box denotes the structured part of the CSD. The secondary structure elements of the HP1β CSD are 
given above the sequence, where the cylinders represent the α-helices (α1 and α2) and the arrows 
represent β-strands; circles within the arrows indicate β-bulges. The residues that make up the 

Figure 1. Alignment of peptide sequences of the murine HP1 CDs (A) and the CSDs (C), structure
of the aromatic “cage” formed around the K9me3 moiety (B) and the CSD dimer bound to PxVxL
motif in CAF-1 peptide (D). (A) The CDs from top to bottom are HP1β(amino-acids 1–80), HP1α
(amino-acids 1–80) and HP1γ (amino-acids 1–80). The red box denotes the structured part of the
CD. The secondary structure elements of the HP1β CD are displayed above the sequence: blue
cylinders represent a α-helix (α1) and green arrows represent β-strands; circles within the arrows
indicate β-bulges. The residues that make up the hydrophobic core of the CD are shaded in yellow
and the aromatic residues that form a notional “cage” around the methyl lysine are given in blue.
The Thr51 residue that is phosphorylated after DNA damage [39] is shaded in red. (B) Binding of the
HP1β CD to H3K9me3 a notional aromatic ‘cage’ is formed from three conserved aromatic residues:
Tyr21, Trp42 and Phe45. The interaction between the methyl-ammonium moiety and the aromatic
cage is largely electrostatic where the positively charged (cation) moiety is attracted to the negative
electrostatic potential of the aromatic groups’ π-system [36]. (C) The CSDs from top to bottom are HP1β
(amino-acids 103–185), HP1α (amino-acids 106–191) and HP1γ (amino-acids 97–173). The red box
denotes the structured part of the CSD. The secondary structure elements of the HP1β CSD are given
above the sequence, where the cylinders represent the α-helices (α1 and α2) and the arrows represent
β-strands; circles within the arrows indicate β-bulges. The residues that make up the hydrophobic core
of the CSD are shaded in yellow and show good alignment with those found in the CD indicating a
similar overall structure of the CSD to the CD. Residues that are involved in binding the PxVxL motif
are shaded in blue; there is a blue dot below the Phe163 residue, which is involved both in the structure
of the CSD and in binding to the peptide. There are red dots below the residues that are involved in
CSD:CSD dimerisation. (D) Surface view of the CSD homodimer (one monomer in pink and the other
in blue) bound to the CAF-1 peptide (shown as a stick model) containing the PxVxL motif, which is
involved in intermolecular β pairing with both monomers [37]. Taken and modified from [40].
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2. Heterochromatin-Like Domains/Complexes in Eukaryotes

As a first step towards determining the number and size of heterochromatin-like
domains/complexes we first investigated the degree to which HP1 and H3K9me3 co-localise outside
constitutive heterochromatin. This was done for four (distantly related) genomes, namely man, mouse,
Drosophila melanogaster and fission yeast. When constitutive heterochromatin is excluded, Pearson
correlation coefficients for the co-localisation of HP1α, β and γwith H3K9me3 across the rest of the
human genome are 0.73 (α; human H1 ES cells), 0.74 (β; 293T cells) and 0.77 (γ; human H1 ES cells)
(Figure 2A–C). The same analysis in mouse ES cells gave correlations of 0.63 for HP1α, 0.69 for HP1β
and 0.71 for HP1γ (Figure 2D–F). The mouse results are in agreement with a previous study, which
showed that HP1β is preferentially targeted to genomic regions with high local concentrations of
H3K9me3 in murine ES cells (correlation coefficient 0.77; [29]). In Drosophila melanogaster ovaries
the correlation of HP1a with H3K9me3 outside constitutive heterochromatin has a coefficient of 0.92
(Figure 2G). In fission yeast the correlation of Swi6HP1 with H3K9me3 is weaker at 0.53 (Figure 2H).
This likely reflects the finding that only a limited set of loci outside constitutive heterochromatin are
marked by both H3K9me3 and Swi6HP1, including the mating-type region, a variety of repeat elements
and a number of meiotic genes [18]. If the correlation is made over the entire fission yeast genome
the correlation coefficient increases to 0.93 (Figure 2I). For constitutive heterochromatin alone the
coefficient approaches unity (0.99; Figure 2J).

These data indicate there is a correlation of HP1s with H3K9me3 outside constitutive
heterochromatin but that correlation is not absolute. This is consistent with the observation that HP1
does not always “follow code” and can localise to (hetero)chromatin in the absence of H3K9me3 [44].
For example, in the mouse, the CHD4-ADNP-HP1 complex that contains HP1 represses gene expression
locally by establishing inaccessible chromatin around its DNA-binding sites and does not depend on
H3K9me3-modified nucleosomes [45]. Similarly, in Drosophila, a variety of protein partners can localise
HP1a to euchromatic sites in the absence of H3K9me3 [46]; localisation of HP1a to telomeric constitutive
heterochromatin in Drosophila is independent of the presence of H3K9me3 at the telomere [21,47].
Alternative modes of HP1 binding to chromatin that do not involve H3K9me3 have also been
documented, for example, the HP1 CD or CSD with the H3 histone ‘core’ [48–50], HP1 binding to
histone H1 [48,51], binding of the HR region to DNA and RNA [52–54] and a non-specific electrostatic
interaction of the HP1 N-terminal extension with the H3 tail [29]. Of note is the recent demonstration that
the Swi6HP1 CSD dimer binds to the H2Bα1 helix where it is thought to destabilise the nucleosome and
promote phase separation of constitutive heterochromatin in fission yeast [55]. Our survey (Figure 2A–J)
indicates that the hallmarks of constitutive heterochromatin (HP1 and H3K9me3) also co-localise at
many sites outside constitutive heterochromatin where heterochromatin-like domains/complexes are
likely to be assembled. HP1 proteins bound to H3K9me3-marked domains/complexes are constantly
exchanging with unbound HP1 proteins in the nucleoplasm. Almost the entire pool of HP1 proteins
outside constitutive heterochromatin turns over in around 10 s (t1/2 = 1–10 s; [56,57]); constant exchange
maintains compaction of domains/complexes.

We next determined the number and size of the domains/complexes in the four organisms used
for the correlation analysis where domains/complexes were put into three categories according to
size. Domains are > 1 Mb and between 0.1 and 1 Mb with complexes less than 0.1 Mb down to 10 kb
(Table 1). Our survey showed that the number and size of heterochromatin-like domains/complexes
increases from fission yeast to fruit flies with a sharp increase from insects to mammals. For human cells
we used two different cell lines to estimate the number of HP1α/β/γ-containing domains/complexes.
For the human H1 ES cell the HP1α and γ distributions were intersected with H3K9me3 for the whole
genome and the genome outside constitutive heterochromatin (Table 1). This showed that outside
constitutive heterochromatin there were 163 HP1α/γ-containing heterochromatin-like domains and
18,853 HP1α/γ-containing complexes, with 90% of the complexes being in the range 10–30 kb (Table S1).
In human 293T cells there were 859 HP1α/β-containing domains and 32,292 HP1α/β-containing
complexes, with 75% of the complexes in the range 10–30 kb (Table S1). We conclude there are,
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conservatively, between 163 and 859 heterochromatin-like domains and 18,853–32,292 complexes in
humans depending on cell type. These values may be an underestimate because we could only
mine data for two HP1 isoforms per human cell line. For the mouse, we obtained data for all three
HP1 isoforms in a single ES cell line, which revealed no domains greater than 1 Mb but outside
heterochromatin there were 622 HP1α/β/γ-containing heterochromatin-like domains between 0.1
and 1 Mb and 10,227 HP1α/β/γ-containing heterochromatin-like complexes, with around 60% of the
complexes being in the range 10–30 kb (Table S1). In Drosophila there are two heterochromatin-like
domains outside heterochromatin in addition to 161 complexes. In fission yeast a survey of the whole
genome reveals only one heterochromatin-like domain that is larger than 0.1 Mb that most probably
represents the centromeric constitutive heterochromatin of cen3 that is 110 kb in size [58]. Outside
constitutive heterochromatin there are only 20 complexes of which the mating type region would be
one [18].
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Figure 2. Plots of genome-wide correlation of HP1 proteins and H3K9me3 outside constitutive
heterochromatin. The figure depicts fold enrichment of ChIP-seq genome profiles correlated using a
5 kb-sized window for Homo sapiens, Mus musculus, Drosophila melanogaster and a 200 bp-sized window
for Schizosaccharomyces pombe. Unless otherwise stated constitutive heterochromatin regions were
excluded prior to analysis. (A–C) show correlations of HP1α (H1 ES cells), HP1β (293T cells) and
HP1γ (H1 ES cells) with H3K9me3 in human cells. (D–F) show correlations of HP1α, HP1β and HP1γ
with H3K9me3 in mouse ES cells; (G) shows correlation of Drosophila HP1a with H3K9me3 in ovaries;
(H) shows correlation of Swi6HP1 with H3K9me3 in S. pombe; (I) shows correlation of HP1β with
H3K9me3 over the whole genome of S. pombe; (J) shows correlation of Swi6HP1 with H3K9me3 over
heterochromatin of S. pombe.
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Table 1. Heterochromatin-like domains/complexes in Homo sapiens, Mus musculus, Drosophila melanogaster
and Schizosaccharomyces pombe.

Organism Size, Mb Cell Type|Components Whole Genome Heterochromatic Regions Excluded

H. sapiens

>1 H1 ES cells
(HP1α + HP1γ + H3K9me3) 48 4

0.1–1 H1 ES cells
(HP1α + HP1γ + H3K9me3) 345 159

0.01–0.1 H1 ES cells
(HP1α + HP1γ + H3K9me3) 19,550 18,853

>1 293T cells (HP1α + HP1β + H3K9me3) 24 4

0.1–1 293T cells (HP1α + HP1β + H3K9me3) 1027 855

0.01–0.1 293T cells (HP1α + HP1β + H3K9me3) 33,754 32,292

M. musculus
>1 ES cells (HP1α + HP1β + HP1γ + H3K9me3) 0 0

0.1–1 ES cells (HP1α + HP1β + HP1γ + H3K9me3) 1059 622

0.01–0.1 ES cells (HP1α + HP1β + HP1γ + H3K9me3) 12,675 10,227

D. melanogaster
>1 Ovaries (HP1a + H3K9me3) 7 0

0.1–1 Ovaries (HP1a + H3K9me3) 27 2

0.01–0.1 Ovaries (HP1a + H3K9me3) 183 161

S. pombe
>1 (Swi6HP1 + H3K9me3) 0 0

0.1–1 (Swi6HP1 + H3K9me3) 1 0

0.01–0.1 (Swi6HP1 + H3K9me3) 23 20

Heterochromatin-like domains/complexes in Homo sapiens, Mus musculus, Drosophila melanogaster and
Schizosaccharomyces pombe. In man, the size and number of domains (>1 Mb and between 0.1 and 1 Mb) and
complexes (0.01–0.1 Mb) were determined using ChiP-seq data for H1 ES cells (HP1α + HP1γ + H3K9me3) [59,60]
and 293T cells (HP1α + HP1β + H3K9me3) [61,62]. For the mouse, the same analysis was undertaken in a single
cell line, namely mouse ES cells (HP1α + HP1β + HP1γ + H3K9me3) [45]. Data from ovaries were used for the fly
(HP1a + H3K9me3) [63]. A culture of fission yeast cells was used to generate the ChIP-seq (Swi6HP1 + H3K9me3)
[64] that were mined for our survey. Domains and complexes were calculated for the whole genome (including
constitutive heterochromatin) and the genome without constitutive heterochromatin.

Our survey indicates that heterochromatin-like domains/complexes are widespread in the
genomes of (distantly related) eukaryotes (Table 1). At the outset they were proposed primarily
as a general mechanism for regulating chromatin template-dependent processes outside constitutive
heterochromatin and secondarily as a mechanism for a special case where chromosomes and genes
exhibit allele-specific parent-of-origin-specific behaviour [30,41,42,65]. Initial support for the general
case came from immunofluorescence studies [66] and soon thereafter from the discovery that the
universal co-repressor of KRAB-zinc finger proteins (KRAB-ZFPs), KAP1, recruits HP1 proteins to
form localised heterochromatin-like domains/complexes [42,67]. At around the same time it was
shown that the function of HP1-containing heterochromatin-like domain/complexes was conserved
from fission yeast to human [16]. Detailed studies on the KRAB-Zinc finger gene (KRAB-ZNF)
clusters on human chromosome 19 have provided insight into how large heterochromatin-like
domains (up to 4 Mb; [68,69]) can be nucleated at particular sites by small heterochromatin-like
complexes (≈6 kb; [43,68]). The domains so assembled make far cis-contacts to generate the B4
heterochromatic sub-compartment detected in Hi-C maps [43,70]. An intriguing characteristic of the
heterochromatin-like domains that encompass the KRAB-ZNF clusters is that the genes within the
clusters remain expressible [71]. The domains are thought to ‘protect’ the KRAB-ZNF gene repeats
as they have expanded during evolution by preventing illegitimate recombination [68], rather than
to repress and silence the repeats. It would seem that heterochromatin-like domains/complexes have
a variety of chromatin template-dependent functions an observation supported by studies on HP1,
which have shown it to be associated with gene activation as well as with loci involved in other nuclear
functions, including transcriptional elongation, RNA splicing and DNA repair [39,72–78].

Support for the special case alluded to above came from the observation, to be described,
that KRAB-ZFPs assemble heterochromatin-like complexes at “imprinted genes” that exhibit
parent-of-origin-specific gene expression [79].
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3. Heterochromatin-Like Complexes and Preservation of DNA Methylation at Imprinted gDMRs
during Pre-Implantation Embryogenesis

Evidence that phenotypic traits could be subject to parent-of-origin effects came not long after
the re-discovery of Mendel’s laws of inheritance in 1900 [80], although Mendel himself thought it
indubitable that reciprocal crosses were equivalent, saying: “ . . . it is perfectly immaterial whether the
dominant character belongs to the seed-bearer or to the pollen parent; the form of the hybrid remains identical
in both cases” [81]. We now know of many instances where this is not the case, where the behaviour
of chromosomes and genes are dependent upon ancestry. Parent-of-origin-specific behaviour of
chromosomes was first observed in insects, in Sciara (reviewed by Metz in 1938 [82]) and Coccidae [83].
In mammals, pronuclear transfer experiments confirmed that the parental contributions to the zygote
were genetically but not functionally equivalent [84,85]. These experiments led to the suggestion that
the expression of certain genes, called imprinted genes, was dependent upon parental origin. There are
now known to be around 100 imprinted genes that exhibit mono-allelic parent-of-origin-specific
expression in mouse and human [86,87]. Such genes are said to be subject to genomic imprinting [88,89].
Genomic imprinting results in genes (or gene clusters) that are either maternally or paternally imprinted.
Maternally imprinted genes are associated with a maternal-specific “mark” that acts in cis such that
there is a heritable (cell-to-cell) change in the behaviour of the gene. The same is true for paternally
imprinted genes except that the “mark” is specific for the paternal allele. Genomic imprinting is
necessarily reversible, thus epigenetic, because the parental alleles of an imprinted gene are marked
differently in the soma, but the marks must be erased in the germ-line so that both alleles can then be
marked again, this time according to the sex of the parent. Imprinting (“marking”) takes place when
the parental genomes are separate, which occurs in the respective germ-lines and during the brief
period when the pro-nuclei lie separately in the ooplasm of the newly fertilised zygote.

In the mouse, depletion of DNA methylation of cytosine (5mC) in CpG dinucleotides leads
to dysregulation of genomic imprinting [90]. Since differences in 5mC could be traced back to the
sperm and egg it was concluded that the parent-of-origin-specific “mark” is DNA methylation [91].
Parent-of-origin-specific differences in CpG methylation are called gametic or germline differentially
methylated regions (gDMRs) and fall within a broader category of CpG-rich genomic regions called
CpG islands (CGIs; [92]) that are widespread in the genome, with ≈70% of annotated gene promoters in
human being associated with a CGI [93]; within the bounds of definition both maternally and paternally
imprinted gDMRs are recognisable as CGIs [94,95]. CpGs that are part of CGIs are usually unmethylated,
whether the associated gene is active or inactive [92], but imprinted gDMRs are exceptions where
CGIs are methylated. Accordingly, classical imprinted gDMRs are methylated in either the female
(maternally imprinted) or the male (paternally imprinted) germline and retain this parent-of-origin
specific methylation following fertilisation and during pre-implantation development [89]. In the
mouse, there are ≈26 (23 maternal and 3 paternal) definitive imprinted gDMRs [96,97] (Figure 3A).

The identification of a small number of imprinted gDMRs during the pre-genomic era prompted
efforts directed towards identifying hypothetical specialised sequence elements that would be
recognised by specific trans-acting factors that target the de novo DNA methylation machinery
to imprinted gDMRs during gametogenesis. However, later whole genome studies revealed a very
different picture, which led to the abandonment of the notion that specific imprinting machinery
operates in the germline. Mining the sperm and oocyte methylomes showed that there were many more
gDMRs in the gametes, far above the number of definitive imprinted gDMRs. Depending on the study,
the mouse oocyte nucleus contains around 1–2000 oocyte-specific gDMRs, with the sperm-specific
gDMRs numbering between 185 and 818 [98,99] (Figure 3A). The combined total is roughly 1600
(imprinted and non-imprinted) gDMRs in the pro-nuclei of the newly fertilised zygote [99]. This is
almost two orders of magnitude greater than the number (≈26) of classical definitive imprinted gDMRs
whose methylation is retained after fertilisation and through pre-implantation embryogenesis [96,97]
(Figure 3A). Putting it short, imprinted gDMRs are not uniquely targeted for DNA methylation;
imprinted and non-imprinted gDMRs are methylated by mechanisms common to CGIs [100,101].
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The difference is that allele-specific methylation at imprinted gDMRs is preserved after fertilisation
while the differential methylation at non-imprinted gDMRs is not.

Pre-implantation embryogenesis in mouse and human is characterised by a global DNA
demethylation of the parental genomes [102,103]. Demethylation is thought to ensure that the
embryonic epigenome is purged of any barriers to pluripotency, which is essential for those cells of the
inner cellular mass (ICM) that will go on to form the tissues and cell types of the embryo proper [104].
DNA methylation at the imprinted gDMRs is preserved during this DNA demethylation phase through
the assembly of localised heterochromatin-like complexes at imprinted gDMRs [105,106]. It is the
sequence-specific assembly of heterochromatin-like complexes at imprinted gDMRs that is the key to
understanding genomic imprinting in mammals, consistent with the earlier proposal [30].

Preservation of methylation at imprinted gDMRs requires binding of KRAB zinc-finger proteins
(KRAB-ZFPs), ZFP57 [79,107] and ZFP445 [108]. Methylation of all imprinted gDMRs, except one, is
lost in ZFP57/445 mouse double mutants [108]. Characterisation of ZFP57 in the mouse has shown that
binding of ZFP57 is methylation sensitive with its binding being a hexamer motif TGCCGC found
in imprinted gDMRs, where the central CpG dinucleotide is methylated [107,109,110] (Figure 2B).
Assembly of ZFP57/445-directed heterochromatin-like complexes is likely to take place soon after
fertilisation since most of the constituents are laid down maternally (Figure 2C). In mouse oocytes there
are maternal stores of ZFP57 and KAP1 and their loss affects methylation at imprinted gDMRs [79,111].
The Setdb1 HMTase that interacts with KAP1 is localised to peri-nucleolar rims of the pro-nuclei
in the zygote [112] and maternal deletion of Setdb1 leads to dramatic defects in preimplantation
development [113]; deletion in ES cells leads to DNA demethylation of imprinted gDMRs [114]. Setdb1
generates the H3K9me3 binding site for HP1 proteins that are also found in the oocyte cytoplasm and
pro-nuclei of the early embryo [115,116]. The maintenance DNA methyltransferase Dnmt1 that interacts
with KAP1 [107,117] is barely detectable in the ooplasm and in the early embryo [118,119]. Yet these trace
amounts are essential for methylation of imprinted gDMRs because loss of maternal-zygotic Dnmt1
leads to loss of methylation at all imprinted gDMRs [120]. H4K20me3 catalysed by H4K20HMTases
during oogenesis is present in the maternal pronucleus but is undetectable by immunofluorescence
in nuclei at later preimplantation stages [116,121,122]. It has yet to be shown whether the (very) low
levels of H4K20HMTase mRNAs present in the zygote and pre-implantation stages [121] are translated
into active proteins and generate H4K20me3 at imprinted gDMRs though interactions with the resident
heterochromatin-like complexes.

Once assembled, the complex preserves methylation at imprinted gDMRs throughout the
demethylation phase, which is complete at the blastocyst stage where the lowest levels of global
DNA methylation are reached (Figure 3C) [101,102,123]. Biochemical and functional studies using ES
cells (derived from the blastocyst) have shown that the structural proteins and enzymatic activities of
the heterochromatin-like complexes are present at imprinted gDMRs [107,114,124–126] (Figure 3D).
H4K20me3 is clearly detected at imprinted gDMRs in ES cells [124], indicating the recruitment of an
H4K20HMTase [125], most likely through a known interaction of H4K20HMTases with HP1 [127]
(Figure 3D).
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numbered 1 through to 11 on red (maternal homologue) and blue (paternal homologue) lines. Open 
rectangles represent non-methylated CGIs. Some methylated CGIs are shared (e.g., closed rectangle 
at position 3 on both parental homologues) and are not gDMRs. Some methylated CGIs are non-
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Figure 3. Preservation of DNA methylation at imprinted gDMRs by a localised heterochromatin-like
complex. (A) There are many more (imprinted and non-imprinted) gDMRs than definitive imprinted
gDMRs. The oocyte nucleus (red circle) contains 1–2000 oocyte-specific gDMRs of which 23 are
definitive imprinted gDMRs. The sperm nucleus (blue circle) contains around 100–800 gDMRs of
which three are definitive imprinted gDMRs. Below the oocyte and sperm are schematic maternal and
paternal homologous chromosomes that carry CpG islands (CGIs) depicted as rectangles numbered
1 through to 11 on red (maternal homologue) and blue (paternal homologue) lines. Open rectangles
represent non-methylated CGIs. Some methylated CGIs are shared (e.g., closed rectangle at position
3 on both parental homologues) and are not gDMRs. Some methylated CGIs are non-imprinted
gDMRs (closed rectangles at position 6 on paternal chromosome and positions 2, 4, 5, 9 and 11 on
the maternal chromosome) that will lose their methylation during the DNA demethylation that takes
place as embryos pass through preimplantation development. A few methylated CGIs are imprinted
gDMRs (closed rectangles at position 10 on the paternal chromosome and 1 and 8 on the maternal
homologue) that will retain their methylation status through DNA demethylation. As explained,
there are around 1–2000 non-imprinted and imprinted gDMRs present in the oocyte nucleus and around
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100–800 non-imprinted and imprinted gDMRs will enter with the sperm. This difference in number in
respective germ cells is reflected in the difference in closed rectangles on the maternal (red line) and
paternal (blue line) homologues. (B) Consensus binding site of ZFP57. The TGCCGC hexamer motif is
found in imprinted gDMRs and bound by ZFP57 when the central CpG dinucleotide is methylated.
This motif shown (based on [124]) was downloaded from the Tomtom database (http://meme-suite.
org/tools/tomtom) and has the searchable identifier ZFP57_MOUSE.H11MO.0.B. (C) Preservation of
methylation at imprinted gDMRs. (1) The paternal (sperm nucleus in blue) and maternal (oocyte nucleus
in red) nuclei contain homologous chromosomes that carry CpG islands (CGIs) depicted as described
in (A). (2) The maternal (in red) and paternal (in blue) pro-nuclei contain the homologous chromosomes
(red and blue lines, respectively) described in (1). Of the ≈1600 non-imprinted and imprinted gDMRs
in the zygote, only a small percentage—the imprinted gDMRs—will preserve DNA methylation in the
face of the DNA demethylation that takes place during pre-implantation development [105]. The initial
assembly of the heterochromatin-like complexes that preserve methylation at imprinted gDMRs takes
place in the newly fertilized zygote (see text for details). It should be noted that H4K20HMTases have
only been detected in the zygote by RT-PCR owing to lack of specific antibodies so it remains to be shown
that the mRNAs are translated to give active proteins. (3) Preservation of methylation at imprinted
gDMRs on the paternal (position 10) and maternal (positions 1 and 8) homologues is due to localised
heterochromatin-like complexes at imprinted gDMRs. We have included H4K20HMTases as part of the
heterochromatin-like complex that generates H4K20me3 at the imprinted gDMRs because trace amounts
have been detected by RT-PCR albeit translated protein has yet to be shown. The complexes preserve
DNA methylation at imprinted gDMRs throughout pre-implantation development; non-imprinted
gDMRs and methylated CGIs become de-methylated (stippled rectangles). (4) Global levels of DNA
methylation reach their lowest point in embryonic nuclei of the blastocyst. However, methylation at
imprinted gDMRs is preserved by the heterochromatin-like complexes shown in (3), on the paternal
(position 10) and maternal (position 1 and 8) homologues. P denotes paternal homologue and M the
maternal homologue. Taken and modified from [128]. (D) Assembly of localised heterochromatin-like
complex at imprinted gDMRs. Methylation of cytosines in CpG dinucleotides (black circles) is preserved
by the assembly of a heterochromatin-like complex at imprinted gDMRs. The complex is targeted by the
KRAB zinc-finger protein ZFP57 that binds the hexamer motif TGCCGC when the cytosine in the CpG
is methylated (black circle in green rectangle). This in turn recruits KAP1, which is a modular protein
that acts as a focal point for the recruitment of Setdb1 histone methyltransferase, HP1 and Dnmt1. HP1
binds the H3K9me3 generated by Setdb1 and recruits a H4K20me3 histone methyl-transferase that
generates H4K20me3 thus forming the H3K9me3:HP1:H4K20me3 pathway. DNA methylation at the
imprinted gDMR is maintained (dotted lines) by Dnmt1. Taken and modified from [128].

There are two ways by which heterochromatin-like complexes could preserve DNA methylation
at imprinted gDMRs. The first is by protecting imprinted gDMRs from the activity of demethylating
Tet dioxygenases that are present in the early embryo [104,105,129]. The second is mediated by the
interaction of KAP1 with Dnmt1 [107,117] (Figure 3D), which is important because Dnmt1 is scarce
during the DNA demethylation phase of pre-implantation development [118–120]. The KAP1–Dnmt1
interaction would have the effect of concentrating trace amounts of Dnmt1 in the vicinity of imprinted
gDMRs thereby ensuring maintenance of 5mC (Figure 3C). Dnmt1 may also be recruited to imprinted
gDMRs through a known interaction with HP1 proteins that has been shown to increase local DNA
methylation levels [130].

The size of the heterochromatin-like complex at the imprinted gDMRs is around 6 kb [126].
The mechanism(s) by which the size of heterochromatin-like complexes is regulated is of interest
because in other regions of the genome small, localised, heterochromatin-like complexes, such as that
found at the imprinted gDMRs, act as nucleation sites for the assembly of much larger domains. This is
the case for KRAB-ZFP-directed heterochromatin-like complexes (≈6 kb; [43,68]) that nucleate the
assembly of KRAB-ZNF heterochromatin-like domains that can range up to 4 Mb in size [43,68].

After embryos implant into the maternal endometrium early post-implantation development is
characterised by elongation of the primitive streak along the epiblast whereupon gastrulation begins

http://meme-suite.org/tools/tomtom
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and cells of the embryo undergo finely orchestrated morphogenetic movements to form the three germ
layers, ectoderm, mesoderm and endoderm [131]. Of note is that around this time H3K9me3-marked
heterochromatin is transiently deployed in germ layer cells [132]. This transient deployment is likely
involved in an evolutionary restriction observed during vertebrate development called the phylotypic
period or progression, to which we now turn.

4. Heterochromatin-Like Domains/Complexes and the Phylotypic Progression during
Vertebrate Development

In his popular work Anthropogenie Haeckel [133] published some of the most famous pictures
in Biology: a series of comparative drawings showing different animals arising from near identical
somite-stage embryos. For more than a century there has been controversy over what weight ought
to be placed on the images [134], nevertheless, what they illustrated so graphically was there is a
stage in development where an animal most closely resembles other species (Figure 4A,B). Ironically,
this notion has become one of the central concepts in evolution and development because a similar
embryonic stage can be identified in each phylum and has been termed the phylotypic stage [135].
In vertebrates, the identification of a precise phylotypic stage that is identical in all species has
been elusive owing largely to the vagaries of heterochrony [136,137]. Rather, there is thought to
be a phylotypic “period” [136] or “progression” [138] that roughly corresponds to organogenesis
where numerous, undifferentiated, organ primordia are developing from the three germ layers
(Figure 4A,B) [138–140]. Here, we use the term “phylotypic progression” because it most closely
describes the character of the molecular mechanisms, to be described, that restrict the amount of
evolution allowed during this developmental window.

The reduced inter-species variability of the phylotypic progression is flanked on either side by an
earlier stage of ontogeny at which species differ markedly from one another, and a later stage that shows
a progressive divergence among species (Figure 4A,B). The divergence of morphologies on either side of
the phylotypic progression formed the basis of the hourglass model of vertebrate development [138–140].
Molecular explanations for the evolutionary “bottleneck” through which embryos pass are of two kinds.
One is that there are signalling pathways among developmental modules in the mid-embryonic stages
that are highly inter-dependent and make this period developmentally constrained, thus leading to
evolutionary conservation [139]. The second relates to the mechanism(s) by which the anterior-posterior
(A-P) axis (body plan; Bauplan) is laid down, specifically, the mechanisms that regulate the temporal and
spatial collinearity of Hox cluster gene expression [138], where perturbations in the timing and/or extent
of Hox gene expression are deleterious and this, again, leads to a restriction in the amount of evolution
allowed. Support for this second explanation, as well as for the hourglass model, has come from
cross-species transcriptome comparisons. Transcriptome profiling of mid-embryonic (around gastrula
to organogenesis) stages of four vertebrate species (mouse, chicken, Xenopus laevis and zebrafish)
showed conserved expression profiles during the above stages including conserved expression of
Hox genes [141]. The relationship between the spatially restricted Hox gene expression patterns,
the laying down of the Bauplan and the phylotypic progression reached its apotheosis in the remarkable
observation that all three are intimately associated across different phyla. This led to the hypothesis
that the association is a universal trait in animals and the defining characteristic of the zootype [142].

We suggest that the major cause for the phylotypic progression in vertebrates is the requirement
for properly establishing epigenetic compartmental domains (ECDs; Box S1) so that by the end of the
progression both position-specific and cell-type-specific cellular identities are safeguarded. It is a general
mechanism that accommodates the role played by Hox gene expression in determining position-specific
identities along the A-P axis [143]. ECDs contribute to ensuring that they remain so. ECDs are defined
as contact enrichments seen in Hi-C maps that are generated by segregation of micro-phase separated
HP1-containing heterochromatin-like and Pc-containing Pc-G domains/complexes (Box S1; [43]).
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Figure 4. The phylotypic progression of vertebrate development and the generation of cell-type- and
position-specific contact enrichments that contribute to epigenetic compartmental domains (ECDs).
(A) The developmental hourglass model for vertebrate development. The model predicts that the
mid-embryonic organogenesis stages (phylotypic progression) represent the developmental stages
with highest morphological conservation across vertebrates. The phylotypic progression encompasses
the developmental window when the anterior-posterior axis (body plan, Bauplan) is laid down. By the
end of the phylotypic progression cell-type-specific patterns of gene expression have been initiated
and position-specific (Hox code) patterns of gene expression are established and thereafter maintained
for the rest of development. Taken and modified from [140]. (B) The phylotypic progression for
vertebrates. This figure is taken from [140] where two stages of Xenopus laevis were shown because
there was no statistically significant difference between these two stages. (C) Establishment of cell-type-
and position-specific contact enrichments that contribute to ECDs. Depicted in the middle is
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the “bottle-neck” of the hourglass depicted in (A), which shows the embryonic stages of the murine
phylotypic progression where embryos show greatest similarity with other vertebrates. On the left of
the progression is depicted the establishment of cell-type-specific contact enrichments. By day 8.25
of embryonic development H3K9me3-marked heterochromatin is transiently deployed to compact
and silence genes that regulate cell-type-specific differentiation. This is shown as five chromatin
loops (red loops) that represent H3K9me3-marked chromosome fibres that are “bridged” by HP1
proteins. As embryos pass through the phylotypic progression there is a progressive loss in
H3K9me3-marked heterochromatin. By the end of the phylotypic progression there is cell-type-specific
loss of H3K9me3-marked heterochromatin and differentiation-specific genes are expressed. Far cis-
and trans-contact between micro-phase separated heterochromatin-like domains/complexes result in
cell type-specific contact enrichments that emerge as cell-type-specific ECDs (double-headed arrows
denote (far) cis-interactions; arrows on top of loops indicate trans-interactions; the cartoon Hi-C maps
show, crudely, cell-type specific contact enrichments that become part of ECDs; A type compartments
are not shown). The scenario is similar to the generation of position-specific contact enrichments that
become part of ECDs that are shown on the right. On day 6.5 the Hox genes clusters are assembled as
Pc-G domains (orange loops on the bottom right) that represent “closed” chromatin domains whose
constituents are H3K27me3-marked nucleosomes and the PRC1- and PRC2- complexes, where the Pc
homologue in PRC1 “bridges” H3K27me3-marked nucleosomes (Diagram A in Box S1, bottom row).
As embryos progress through the phylotypic progression there is a progressive 3′ to 5′ activation of
Hox genes along the Hox gene cluster (temporal collinearity). By the time embryos leave the phylotypic
progression the spatially restricted patterns of Hox gene expression (spatial collinearity) have been
established so that the Hox code for each region of the embryo are stable for the rest of development.
In nuclei from the posterior trunk, much of the Hox gene cluster is in a euchromatic conformation
that facilitates Hox gene expression (two blue “euchromatic” loops) with only a small region of the
Hox cluster compacted into the remaining Pc-G domain (orange Pc-G loop). The cis- (denoted by
double-headed arrows) and trans- (given by arrows on top of the loops) interactions that are mediated
by this configuration of loops contribute position-specific contact enrichments to ECDs that are shown
in the Hi-C maps (on the far right of Figure 4C). In nuclei from the mid-trunk region a smaller region of
the Hox cluster is in a euchromatic conformation (one blue “euchromatic” loop) while a larger region
remains compacted into a Pc-G domain (two orange Pc-G loops). This configuration of loops gives
rise to position-specific contact enrichments that reflect the position of the cell along the A-P axis.
These contact enrichments are shown in the middle Hi-C map cartoon to the right of the loops in
Figure 4C. In the forebrain, where Hox genes are not expressed, the entire HoxD cluster is assembled into
a Pc-G domain (three orange loops at top on right in Figure 4C). This configuration of loops give rise to
contact enrichments that are specific for this anterior position along the A-P axis and are depicted in the
cartoon Hi-C maps at the top right of Figure 4C. The position-specific contact enrichments are a small
fraction of the contacts that contribute to ECDs. Not shown in the cartoon Hi-C maps are the myriad
of additional contacts between ≈2000 Pc-G domains/complexes and between heterochromatin-like
domains/complexes found elsewhere in the mouse genome.

A role for heterochromatin-like domains/complexes in regulating the phylotypic progression is
indicated from two recent studies. The first, a study of the reprogramming of H3K9me3-marked
heterochromatin during early mouse development, showed that in recently implanted embryos
(around day 6.5) there is a gradual increase in the association of H3K9me3-marked heterochromatin
with lineage-incompatible genes [144]. The second showed that levels continue to rise reaching
their maximum in germ layer cells on day 8.25 where there is a net increase in association of
H3K9me3-marked heterochromatin with genes that regulate differentiation of adult cell types [132].
Repression of differentiation-specific genes is transient. Beyond day 8.25, as embryos traverse the
phylotypic progression there is a progressive loss of H3K9me3 and chromatin compaction at many
sites in the genome and at those sites tissue-specific gene expression with concomitant differentiation
begins [132]. By the time embryos exit the phylotypic progression (we give it as around day 10.5 in
Figure 4C) there is cell-type-specific loss of H3K9me3-marked heterochromatin, where previously
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repressed genes take up euchromatic conformations that promote tissue specific gene expression
(blue loops on the left in Figure 4C). Nuclei of differentiating cells still have H3K9me3-marked
heterochromatin domains/complexes elsewhere in their genomes and “bridging” within and between
H3K9me3-marked nucleosome fibres by HP1 contribute to the emergence of cell-type-specific contact
enrichments in ECDs (red loops on the left in Figure 4C and associated cartoon Hi-C maps). ECDs
safeguard cellular identity (Diagrams A–C in Box S1). Notably, RNAi “knock-down” screens for genes
whose depletion destabilise cellular identity, identified genes that encode CAF-1, the SUMO-conjugating
enzyme UBE2i, SUMO2, SETDB1, ATRX and DAXX proteins [145,146]. All are involved in either
nucleation or replication of heterochromatin-like domains/complexes thus providing a link between
safeguarding cellular identity and ECDs (Diagram C in Box S1; Figure 4C on left; [43]).

Pc-G domains/complexes also contribute contact enrichments to ECDs (Box S1; Figure 4C on the
right) and the best described Pc-G domains are those that compact the Hox gene clusters. Hox genes
are determinants of cellular fate and the positional identities of post-occipital tissues in the mouse
(tissues below the skull, including the trunk and limbs) are determined by the collinear expression
of Hox genes [147]. In cells where Hox genes are not expressed, such as ICM-derived ES cells and
cells of the post-implantation epiblast, repressive Pc-G domains compact the ≈100 kb Hox gene
clusters; constituents of Pc-G domains include the canonical H3K27me3 histone modification and the
PRC1 and PRC2 complexes [148,149]. In the forebrain, where Hox genes are not expressed, the same
H3K27me3-marked domain has been shown to encompass the HoxD and HoxB clusters [150]. Thus,
in cells of the epiblast (around day 6.5 in the mouse), prior to entering the phylotypic progression,
the Hox gene clusters are assembled into repressive Pc-G domains (depicted on the bottom right of
Figure 4C as three orange Pc-G loops).

Hox gene expression is observed first on day 7.2 [151] and, once initiated, there is a gradual 3′ to
5′ activation along the Hox gene clusters with the 3′-most genes (group 1 genes) of the cluster being
expressed first to be followed one after another by Hox genes that reside more 5′ finally ending with
the 5′-located (group 13) genes (temporal collinearity; [152]). The 3′ to 5′ activation is associated with
corresponding change in epigenetic modifications from a repressive H3K27me3 modification to an
activating H3K4me3 modification [153]. The dynamical change in histone modification is associated
with a progressive shift in the 3D compartmental organisation of the cluster. Accordingly, when a Hox
cluster is transcriptionally inactive (enriched in H3K27me3) it forms a single 3D compartment that
can interact in cis- and trans- with distantly located loci that are also enriched in H3K27me3 [150,154].
As the 3′ to 5′ transcription of a Hox cluster proceeds there is a switch in 3D organisation whereupon
newly activated Hox genes beginning at the 3′ end of the cluster are progressively incorporated
into a transcriptionally active compartment, while the rest remain in an inactive compartment [150].
By the time embryos exit the phylotypic progression temporal collinearity has established the spatially
restricted patterns of Hox gene expression (spatial collinearity; day 10.5 for the somitic Hox code;
Figure 4C on the top), which are stable for the rest of development [155]. In a nucleus taken from the
posterior trunk of the day 10.5 embryo much of the Hox cluster has taken up an “open”, euchromatic
conformation that is permissive for gene expression (two blue “euchromatic” loops at the bottom right
of Figure 4C) and only a small part of the Hox cluster remain assembled into a compact, silent Pc-G
domain (one orange loop at the bottom right of Figure 4C). More anteriorly, around the mid-point
of the trunk, only the 3′-most genes of the Hox gene cluster are in an open conformation (one blue
“euchromatic” and two orange (Pc-G) loops at the middle on right of Figure 4C). In the forebrain where
Hox genes are not expressed the entire HoxD cluster is assembled into a Pc-G domain (three orange
loops at top on right in Figure 4C). Segregation of micro-phase separated Pc-G domains associated
with the Hox genes contributes position-specific contact enrichments to ECDs (Diagram C in Box
S1; cartoons on right of Figure 4C). Position-specific contacts mediated by Pc-G domains/complexes
associated with Hox genes are but one fraction of the contacts that contribute to ECDs for, as explained
below, there are around 2000 Pc-G domains/complexes in mouse and human genomes [156] all of
which are likely to contribute to ECDs along with heterochromatin-like domains/complexes.
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Temporal collinearity has been posited as the cause of the phylotypic progression—an ineluctable
Einbahnstraße [138] through which vertebrate embryos must pass in order for the spatially-restricted
patterns to be established (spatial collinearity) thereby ensuring each position along the A-P has
its own Hox code that is stably carried forward for the rest of development. We believe that the
establishment of Hox gene spatial collinearity is taking place in the larger context of the deployment of
heterochromatin-like domain/complexes during the phylotypic stage (Figure 4C on left). Together they
contribute to the evolutionary restriction seen as the “bottleneck” in the hourglass model of vertebrate
development (Figure 4A). Key questions remain. For example, what is the mechanism(s) by which the
ground states of heterochromatin-like and Pc-G domains/complexes are achieved on days 8.25 and 6.5,
respectively? A related question is: how is the Einbahnstraße [138] converted into a two-way-street
during the animal cloning procedure? The A-P axis must be faithfully recapitulated in reconstructed
embryos even when the transferred nucleus retains the memory of the Hox code specific for only one
position along that axis.

The number of Pc-G domains/complexes is around 2000 in the genomes of mouse and human ES
cells, where there is a preference of PRC1 and PRC2 complexes to localise to CGIs [156]. The domains/
complexes contribute to the coarse-grained chromatin-state pattern that characterises mammalian
genomes [157,158]. That is, they contribute to the “segmented” nature of mammalian genomes,
where segments or “blocks” consisting of Pc-G and heterochromatin-like domains/complexes alternate
with segments or “blocks” of euchromatin. As shown (Diagram C in Box S1), ECDs are generated by
cis- and trans-contacts between both types of micro-phase separated domains/complexes. How the
theory of micro-phase separation of block copolymers (BCPs) might explain the behaviour of the
domains/complexes as “blocks” in a chromatin fibre is the subject of the next section where, in the
interests of clarity, we concern ourselves with heterochromatin-like domains/complexes although the
same arguments apply to Pc-G domains/complexes.

5. Heterochromatin-Like Domains/Complexes and Block Copolymers (BCPs)

Our survey of co-localisation of HP1s with H3K9me3 shows that depending on cell type there are
(conservatively) around 163–855 heterochromatin-like domains (>0.1 Mb) and 18,853–32,292 complexes
(<0.1 Mb) in the human genome (Table 1). The heterochromatin-like domains/complexes are contiguous
with the nucleosome fibre and can be coarse-grained as alternating “blocks” of heterochromatin and
euchromatin along the nucleosome fibre “polymer” (Box S1). This organisation is analogous to that
of a BCP that contains a series of alternating blocks (e.g., A-type and B-type), each composed of
multiple monomers (A monomers and B monomers). Where the monomers are incompatible the blocks
segregate on the basis of like-with-like, with A-type blocks associating with A-type blocks and B-type
associating with B-type. Accordingly, the BCP forms spatially segregated domains that are enriched
in A or B [159]. We have drawn upon the basic polymer physics of micro-phase separation of bulk
BCPs to explain how segregation of micro-phase separated heterochromatin-like domain/complexes is
likely to generate contact enrichments that contribute to ECDs detected in Hi-C maps ([43]; Box S1).
While we recognise that micro-phase separation seen with simple hydrocarbon BCPs (top of Box S2) is
a useful analogy we argue in the next sections that the fundamental physics of micro-phase separation
of heterochromatin-like domains/complexes is not the same as BCPs. In order to develop our argument,
we begin with a simplified description of the physics underpinning micro-phase separation of BCPs.

BCPs can be configured into a wide variety of molecular architectures based on two, three or
more monomer types [160]. Of these architectures, symmetric BCPs containing equal sized blocks
A and B (AB di-BCPs) have been the focus of a very large number theoretical and experimental
studies and our discussion of BCPs will deal almost exclusively with this simplest form of BCP.
The physics of the phase behaviour of a bulk (undiluted) AB di-BCP centres upon the covalent bond
that separates the two chemically dissimilar blocks and prevents macroscopic phase separation (for a
review see [161]). The bond makes the entropy of mixing small and excess free energy generated
by even minor chemical or structural differences between A and B blocks is sufficient to produce
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contributions that are unfavourable to mixing. Put another way, phase separation of a bulk di-BCP is
driven by an unfavourable mixing enthalpy coupled with small mixing entropy, with the covalent bond
connecting the blocks preventing macroscopic phase separation. Microscopic phase separation of a
di-BCP depends on three parameters [161]: (1) the volume fractions of the A and B blocks (fA + fB = 1),
(2) the total degree of polymerisation (N = NA + NB), and (3) the Flory–Huggins parameter (χAB).
The χ-parameter specifies the degree of incompatibility between the A and B blocks and this is what
ultimately drives micro-phase separation. The relationship between χAB and temperature (T) is given
in Equation (1), which is an application to BCPs of the original mean field lattice theory [162,163] for
the thermodynamic behaviour of homo-polymers in a simple solvent (see Equation (S1) in Box S2):

χAB =
z

kBT

[
εAB −

1
2
(εAA + εBB)

]
(1)

Equation (1) describes the energy cost (in units of thermal energy kBT) when A and B monomers
make contact. z is the coordination number of an incompressible lattice (Box S2) and represents the
number of nearest neighbours per lattice site that can be occupied by either an A-type monomer or a
B-type monomer. εAB, εAA and εBB are the contact energies per repeat unit (monomer) of A-B, A-A
and B-B, respectively. As with Equation (S1) in Box S2 the sign (positive or negative) and magnitude
of χAB in Equation (1) is determined by the choice of monomer—the “unit of incompatibility” is the
monomer. For a typical di-BCP consisting of two types of simple hydrocarbon monomer, such as
polyisoprene-block-polystyrene (PI-b-PS), where electrostatic interactions are negligible (i.e., governed
by dispersive interactions), the value for χ is positive and small (≈0.1). The positive value indicates
that there is a net repulsion between the PI and PS blocks of the PI-b-PS and they have a tendency
to micro-phase separate; a di-BCP that has a negative value of χ would indicate a free-energy drive
towards mixing. In Equation (1) and Equation (S1) χ varies inversely with temperature. Increasing
temperature or decreasing χAB through choice of monomers reduces the incompatibility between the
constituent blocks and combinatorial entropy increases, resulting in mixing whereupon the di-BCP
becomes disordered (i.e., homogeneous).

We have previously drawn on the observation that χ varies inversely with temperature and
that micro-phase separation is dependent upon composition (volume fraction), to provide insight
into how changes in the activity of chromatin-associated cohesin affects the compartmentalisation
observed in Hi-C maps (Figure 5) [43]. As explained ([43]; Diagram B in Box S1; see also
Sections 7 and 8 below), the incompatibility between the heterochromatin-like domains/complexes
and euchromatin is owing to the “bridging” of the H3K9me3-marked nucleosomes and it is this
bridging that drives micro-phase separation of the domains/complexes from euchromatin. Far cis- and
trans-contacts between micro-phase separated heterochromatin-like complexes results in segregation
and contributes to the emergence of the ECDs observed in Hi-C maps ([43]; Diagrams B and C Box
S1). Mixing of heterochromatin-like complexes with euchromatin is caused by cohesin, which is a
loop-extruding factor (LEF) [164,165]. LEFs attach to the chromatin fibre and reel it in from both sides,
thereby extruding a progressively growing chromatin loop until the LEFs fall off, bump into each
other, or bump into extrusion barriers such as CTCF, which define TAD boundaries [164–166]. Loop
extrusion is an energy-driven, ATP-dependent, process [167]. Mixing is promoted by friction of the
heterochromatin-like domain/complex with the nucleoplasm during loop extrusion, which converts
the kinetic energy of loop extrusion into thermal energy (work done by ATP-hydrolysis is converted
into heat). As a consequence, HP1-mediated “bridging” of H3K9me3-marked nucleosomes is
disrupted making the domains/complexes less “heterochromatic” and more “euchromatic”, with smaller
complexes undergoing greater mixing compared to the larger domains in keeping with the dependency
of micro-phase separation on volume fraction.

The above provides a framework for understanding how mutants that affect cohesin activity
can in turn affect ECDs observed in Hi-C maps (Figure 5). For example, when the cohesin subunit
SCC1 is deleted [168] finer, better defined, ECDs emerge in Hi-C maps (Figure 5A, on the right; [169])
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that are normally “masked” in wild-type (wt) cells (Figure 5A, on the left). The emergence of
the finer compartmentalisation in SCC1 mutants can be understood in terms of the model in
Figure 5B, that consists of two loops, loops 1 and 2. Loop 1 contains a large micro-phase separated
heterochromatin-like domain. In loop 2 is a smaller heterochromatin-like complex. In wt cells, extrusion
of the large heterochromatin-like domain in loop 1 by the cohesin complex (green rings on left in
Figure 5B) has little effect on the mixing of the domain with euchromatin; the domain makes far cis-
and trans-contacts (red arrows) that will be detected as contact enrichments in ECDs. Extrusion of
the smaller complex in loop 2 by the cohesin complex results in extensive mixing with euchromatin
leading to its dissolution in wt cells (depicted by the red dots on blue line). As a consequence,
the smaller complex makes contacts (blue arrows) that will be detected as contact enrichments in
A-type compartments. On the right in Figure 5B is an explanation of the emergence of the finer
compartmentalisation in SCC1 deleted cells. Here energy-driven loop extrusion is absent and the
HP1-mediated bridging of H3K9me3-marked nucleosomes in the small heterochromatin-like complex
is reconstituted (red line in loop 2 on right of Figure 5B); the large domain that precedes it is unaffected.
Reconstitution of the small complex promotes far cis- and trans-contacts (red arrows) that cause the
finer, more defined, ECDs observed in SCC1 deleted cells (Figure 5A on right).

Mixing of larger heterochromatin-like domains with euchromatin by enhanced energy-driven
loop extrusion could go some way to explaining the changes in compartmentalisation seen in Hi-C
maps derived from WAPL/Pds5A/B compound mutant cells (Figure 5C on the right; [169]). By way of
background, WAPL normally removes cohesion through binding of its YSR motifs to the regulatory
subunit of cohesin, Pds5 [171,172]. The WAPL-pds5 interaction stabilises a transient, open, state of the
cohesin ring that results from disruption of the interface between the SMC3 and Rad21/Scc1 cohesin
subunits, with consequent release of the sister chromatids [173,174]. In mutations or “knockdowns” of
WAPL cohesin is retained along the length of the chromosome arms [175–177]. Retention of cohesin
complexes results in continued loop extrusion, the formation of larger topologically associated domains
(TADs) and the loss of compartmentalisation [170] (Figure 5C, on the right). As shown in Figure 5D
(on the right), loss of compartmentalisation may, at least in part, be explained by enhanced loop
extrusion that disrupts HP1-mediated bridging of H3K9me3-marked nucleosomes even within large
heterochromatin-like domains (red dots on blue line) resulting in mixing of domains/complexes with
euchromatin. Unrestrained loop extrusion eventually leads to an overall loss of interphase chromatin
organisation where interphase chromatin takes on condensed mitotic-like chromatin state termed
vermicelli [170]. This loss of interphase organisation will also affect compartmentalisation.

Recent work in fission yeast may provide additional support for loop extrusion as a mechanism
for mixing of heterochromatin-like domain/complexes with euchromatin. Specifically, it was observed
that the Pds5 mutation in fission yeast alleviates heterochromatin-mediated silencing at the donor
mating-type region [178]. The effect of the Pds5 mutation can be reversed by introduction of the eso1
mutation [178]. eso1p is an acetyltransferase required for establishing stable cohesin complexes on
chromatin, which it does by acetylating the heads of the SMC3 cohesin subunit that protects against
removal of cohesin by WAPL [179,180]. Genetic interaction of the two mutations can be explained by
reversible mixing of the heterochromatin-like complex assembled at the silenced mating-type region
with flanking euchromatin. Accordingly, loss of Pds5p activity enhances cohesin-driven loop extrusion
leading to disruption of HP1-mediated bridging of H3K9me3-marked nucleosomes resulting in mixing
with euchromatin (c.f. Figure 5C,D on right). Introduction of eso1 returns cohesin activity to near
normal levels by interrupting cohesin establishment and that, in turn, reverses mixing and reconstitutes
the heterochromatin-like complex and silencing at the donor mating-type region.
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Figure 5. Mixing of heterochromatin-like domains/complexes with euchromatin by modulating
chromatin-associated cohesin activity. (A) Hi-C maps for wt and SCC1 depleted cells at low resolution
(70 Mb) to show the effect of cohesin depletion on compartmentalisation. The Hi-C map generated
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from SCC1 deleted cells (on right) have a finer, better defined, compartmentalisation compared to the
Hi-C map from wt cells (on left). Taken and modified from [169], with permission. (B) A BCP-based
model that provides an explanation for the effect of SCC1 depletion on compartmentalisation. On the
left are two loops that are being extruded by chromatin-associated cohesin (green rings at base of
loops). Loop 1 contains a large micro-phase separated heterochromatin domain/complex (continuous
red line) that is flanked by euchromatin (continuous blue line). The large domain/complex is resistant
to mixing; bridging of H3K9me3-marked nucleosomes by HP1 is not disrupted (see key at bottom
of figure). Loop 2 contains a smaller domain/complex (smaller “block”) that is subject to mixing
(dotted line; see key at bottom of figure) by loop extrusion, which is a prediction of BCP theory,
where a block of smaller volume fraction has greater tendency for mixing, with the BCP becoming
“homogeneous” (one phase). Loop 1 makes far cis- (not shown) and trans-contacts (red arrows)
with other HP1-containing domains/complexes which result in contact enrichments that emerge in
ECDs. Loop 2 makes euchromatic contacts (blue arrows) that will fall into A-type compartments as
a consequence of mixing because the smaller domain/complex is now more euchromatic and less
heterochromatic. On the right are the same two loops after chromatin-associated cohesin is eliminated by
loss of SCC1, whereupon loop extrusion ceases and mixing is reduced. This has little effect on the larger
domain/complex in loop 1, but leads to the reconstitution of the smaller domain/complex in loop 2 (now
a continuous red line) as a consequence of bridging H3K9me3-marked nucleosomes by HP1. The newly
reconstituted domain/complex can then make far cis- (double-headed arrow) and trans-contacts (red
arrows) that result in the finer, more defined, compartmentalisation seen Hi-C maps from SCC1 deleted
cells. (C) Hi-C maps for wt and WAPL/PDS5A/B depleted cells at low resolution (70 Mb) to show effect
of enhancing cohesin activity on compartmentalisation. The Hi-C map generated from WAPL/PDS5A/B
deleted cells (on right) where cohesin activity is enhanced there is little or no compartmentalisation
compared to the Hi-C map from wt cells (on left). Taken and modified from [169], with permission.
(D) A BCP-based model that provides an explanation for the effect of WAPL/PDS5A/B depletion on
compartmentalisation. The same two loops, loops 1 and 2, as seen on the left in (B), where loop
extrusion by chromatin-associated cohesin leaves the larger heterochromatin-like domain/complex in
loop1 intact, but the smaller domain/complex in loop 2 undergoes mixing. As before, in wt cells, loop
1 makes far cis- (not shown) and trans-contacts (red arrows) with other domains/complexes which
result in contact enrichments that emerge in ECDs. Loop 2 makes euchromatic contacts (blue arrows)
that will fall into A-type compartments. In WAPL/PDS5A/B depleted cells the activity of cohesin
is enhanced (thicker green circles at base of loops). The effect on compartmentalisation is striking.
Compartmentalisation is almost completely eliminated. One cause of this loss is that increased loop
extrusion results in dissolution of the larger (loop 1) and smaller (loop 2) domains/complexes (dotted
lines; see key at bottom of the figure) and mixing with euchromatin. If this occurs genome-wide there
would be a loss of compartmentalisation. Moreover, continued loop extrusion leads to collapse of
interphase chromatin organisation, whereupon chromatin takes on condensed mitotic-like chromatin
state termed vermicelli [170]; compartmentalisation would also be affected by this loss of organisation.
The “clutch” diagrams were modified from [43].

Micro-phase separation of a BCP is dependent upon the sign and magnitude of χ i.e.,
the degree of incompatibility of the monomer (“unit of incompatibility”; Box S2; Equation (1))
repeating units that make up the blocks. That BCP theory could provide an explanation for how
cohesin activity might regulate mixing of heterochromatin-like domains/complexes with euchromatin
(Figure 5; [43]) indicates that the same is true for heterochromatin-like and euchromatic “blocks” in
the chromatin fibre. Put another way, there exists a “unit of incompatibility” that is the repeating
unit from which heterochromatin-like and euchromatic “blocks” are assembled and it is the degree
of incompatibility between these heterochromatin-like and euchromatic repeating units, specified by
χ, that drives micro-phase separation of heterochromatin-like domains/complexes from euchromatin.
Notably, virtually all modern theories of micro-phase separation employ this simple one-parameter
thermodynamic description of the driving force for micro-phase separation [181,182]. Fortified by these
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credentials, we move to exploring whether the approach taken for the determination of χ for di-BCPs
can also be used to estimate χ for heterochromatin-like domains/complexes flanked by euchromatin.

6. Di-BCPs, χ and The Monomer as the “Unit of Incompatibility”

For di-BCPs, χ can be described by (1) where interactions between the hydrocarbon monomer
repeating units (see top of Box S2) are dominated by dispersive (van der Waals) interactions. In a
classical thermodynamic approach for determination of χ based on these dispersive interactions,
Bates [183] showed that the contact energy (εij) between i and j segments, each consisting of (dissimilar)
monomer repeating units, could be quantified by the equation:

εi j = −
∑
i, j

3
4

Ii I j

Ii + I j

αiα j

r6
i j

(2)

rij is the segment-segment separation, α and I are the segment polarisability and the first ionisation
potential, respectively. If there is neither a change in volume (Equation (1) assumes an incompressible
lattice; see also Box S2) nor a preference for a particular segment orientation upon mixing, passing the
binary interaction energies (for A-A, B-B and A-B) quantified in Equation (2) through Equation (1)
gives the following result for χ:

χ =
3
8

I
kBT

z
V2

(αA −αB)
2 (3)

[Equation (3), as given in [183], contained a numerical error where the coefficient should be 3/8 (as it is
here). The corrected equation was graciously provided by Professor FS Bates.]

Equation (3) is an approximation for χ owing to a number of assumptions (see [183]). A cubic
lattice is assumed where Ij = Ii ≡ I; the latter is valid to within 10% for most hydrocarbons in a di-BCP.
The volume of the cubic lattice site is also assumed as V, where V = r3 (the r6 term is represented as V2

in (3)). Further, defining the number of segments that interact with each other by the co-ordination
number z places all segments surrounding a particular segment within a single parameter, with an
average interaction given by I and (αA − αB)2. A more rigorous treatment that removes the assumption
of an incompressible (cubic) lattice [162,163] would involve a calculation based upon summation
over all neighbouring segments with the r6 dependence (FS Bates, personal communication). Despite
being an approximation, Equation (3) provides qualitative predictions, for example, for a bulk di-BCP
governed solely by dispersive interactions a value of χ ≥ 0 is obtained indicating that the di-BCP will
have a tendency to phase separate. In this (classical) treatment the magnitude of χ is fundamentally
dependent upon the choice of repeating unit, the monomer. The monomer is the unit of incompatibility
from which the “blocks” or “segments” of a di-BCP are made.

As might be expected, the assumptions required to derive Equation (3) are rarely satisfied in
practice. Because of this, χ is usually determined empirically using a much simpler general formula:

χ = αT−1 + β (4)

χ retains the temperature dependency. α and β are experimentally determined coefficients for
enthalpy and excess entropy for a particular composition of a BCP. We believe that the utility of
Equation (4) can be extended to enable an estimation of χ for a heterochromatin-like domain/complex
vs. euchromatin once the unit of incompatibility has been defined. This is the subject of our next section.

7. The Oligo-Nucleosomal “Clutch” As the “Unit of Incompatibility” of Chromatin

Estimation of χ for heterochromatin-like domains/complexes flanked by euchromatin is likely to
employ a different physics to that which developed for determination ofχ for di-BCPs (Equations (1)–(3)).
An obvious reason for this is that heterochromatin-like domains/complexes are assembled from the
11 nm “beads-on-a-string” nucleosome fibre “polymer” that is the primary structure of chromatin [1].
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The “bead”, or monomer repeating unit, is the nucleosome, a multicomponent structure very different
to the simple hydrocarbon monomer found in BCPs (see top of Box S2). By comparison the nucleosome
is gigantic. The molecular weight of the nucleosome core particle, consisting of 147 bp of DNA that
is wrapped 1.75 times in left-handed super-helical turns around a histone octamer, is over three
orders of magnitude greater (≈200 k Da; [184]) than the hydrocarbon monomers of BCPs (≈100 Da;
top of Box S2). In addition, monomers in BCPs are hydrophobic and dispersive interactions dominate
(Equations (2) and (3)), while the nucleosome is a highly electrostatic multicomponent structure.
A single histone octamer in the nucleosome has ≈220 positively charged lysine and arginine residues
and ≈74 negatively charged aspartic acid and glutamic acid residues. The phosphate backbone of
200 bp of DNA that includes the 147 bp associated with the nucleosome core particle plus linker
DNA adds a further 400 negative charges [185]. Given the obvious differences in physiochemical
properties it is a wonder that BCP theory could be used as an analogy to understand how ECDs
might emerge by micro-phase separation of heterochromatin-like complexes (Figure 5; [43]). This most
likely has deep roots in their shared polymeric nature [186,187] but does not mean that the physics of
micro-phase separation and segregation of heterochromatin-like domains/complexes and BCPs is the
same. Nor may we expect that the degree of incompatibility, as designated by χ, is caused by the same
physiochemical mechanisms.

For di-BCPs the sign and magnitude of χ is determined by the degree of incompatibility of the
two dissimilar monomers; the monomer is the “unit of incompatibility” from which the micro-phase
separated “blocks” or “segments” are composed (Box S2; Equations (1)–(3)). For heterochromatin-
like domains/complexes the sign and magnitude of χ will be determined by the degree of
incompatibility of the domains/complexes with euchromatin. We suggest that incompatibility between
domains/complexes and euchromatin is the result of excess free energy generated by binding of HP1 to
H3K9me3-marked nucleosomes in the 11 nm nucleosome fibre combined with excess entropy that
results from compaction of the nucleosome fibre by the “bridging” effect [29,188,189]. This leads to
an unfavourable enthalpy of mixing of the heterochromatin-like domain/complex with euchromatin.
This begs the question: what is the “unit of incompatibility” for a heterochromatin-like domain/complex?
On the face of it, it would seem that the unit of incompatibility is the H3K9me3-marked nucleosome
monomer in the same way that the hydrocarbon monomer is the unit of incompatibility for di-BCPs.
However, experimental and theoretical work indicates that (i) HP1 proteins drive the incompatibility
rather than the H3K9me3-marked nucleosomes per se and (ii) the unit of incompatibility is a larger than
the mono-nucleosome. For one, recent liquid Hi-C experiments directed towards identifying factors
that generate and maintain compartmental domains indicated that ECDs (B-type compartmental
domains) enriched in HP1α and β were found to be equally stable after chromatin fragmentation
followed by HP1γwith ECDs enriched in the Polycomb CBX8 homologue being the most unstable [190].
K9me3 (to which HP1α and HP1β bind) is essentially indistinguishable compared to K27me3 (to which
Polycomb CBX homologues bind) i.e., K9me3 and K27me3 are unlikely to contribute to differences in
chemical potential between nucleosomes possessing these modifications, especially given the highly
electrostatic environment of the nucleosome (see discussion above). Yet there are great differences
in the dissociation kinetics of ECDs enriched in HP1α and β compared to CBX8 indicating that it is
the “bridging” protein that drives micro-phase separation and generation of ECDs rather than the
histone modifications per se. Second, theoretical work using simple models where binding proteins
(“binders”) cross-link polymer-specific binding sites have been able to recapitulate many features of
Hi-C maps where binders cause folding of the polymer and phase transitions [191,192]. The binding
sites on the polymer are neutral with respect to phase transitions and serve simply as binding sites for
the “binders” that are the actual drivers of the transitions. Polymer simulations using a similar model
have shown that it is HP1 binding to H3K9me3-marked nucleosomes that drives phase separation
with the minimum H3K9me3-marked segment that can be phase separated by HP1 “bridging” being
around 20 kb [193]. Finally, compaction of heterochromatin-like domains/complexes requires at least
two H3K9me3-marked nucleosomes to be “bridged” by HP1 ([189]; Box S1, top row). This indicates
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that the “unit of incompatibility” is more than a single H3K9me3-marked nucleosome, i.e., not a
mono-nucleosome. It is likely to be even larger than two nucleosomes because in vitro studies show
HP1-mediated bridging can compact nucleosome arrays into clusters of nucleosomes [29,188]. Similar
observations have been made with Polycomb CBX proteins where, for example, the CBX2 protein,
as part of the PRC1 complex, has intrinsic chromatin compaction activity where it is able to compact at
least four nucleosomes ([194,195]; Diagram A in Box S1, bottom row). The unit of incompatibility is
most likely a cluster or “clutch” of nucleosomes.

There is a weight of experimental evidence showing that “clutches” of 2–10 nucleosomes
with variable degrees of zig-zag geometry are a ubiquitous motif within interphase chromatin;
this organisation may represent the secondary structure of interphase chromatin [196]. Clear evidence
came from super resolution microscopy, which showed that chromatin outside constitutive
heterochromatin was characterised by the assembly of irregularly folded ‘clutches’ containing
2–10 nucleosomes while the density of larger ‘clutches’ was greater within constitutive
heterochromatin [197]. A variety of electron microscopy approaches have confirmed the presence of
small clumps of 2–10 nucleosomes in vivo without any evidence for longer stretches of an organised
nucleosome fibre [198–201]. Nucleosomes in the “clutches” possess, to a lesser or greater extent, a
local zig-zag organisation. Radiation-induced spatially correlated cleavage of DNA with sequencing
revealed zig-zag geometry of short stretches of the nucleosome that was noticeably enriched in
H3K9me3-marked nucleosome fibres in constitutive heterochromatin [202]. In vivo studies using
controlled DNA breakages [203] or cross-linking of nucleosomes to one another followed by digestion
and electron microscopy [204] have also given results consistent with there being short stretches of
nucleosomes (3–10 nucleosomes) with zig-zag geometry in the nucleus. A substantial number of
in vitro studies using synthetic nucleosomal templates have been confirmatory in nature and revealed
a zig-zag motif for short stretches of (4–12) nucleosomes [205–207]. Notably, it has been shown in a
wide variety of eukaryotes that nucleosomes are connected by linkers biased towards non-integer
DNA double-helical turns (e.g., 0.5, 1.5, 2.5 turns) [208]. Such fibres possess zig-zag nucleosomal
geometry [209] and exhibit enhanced phase separation [210].

Based on the evidence we suggest that the “unit of incompatibility” for chromatin is a dynamic
multi-component structure unlike the indivisible hydrocarbon monomer (top of Box S2) that is the
unit of incompatibility for BCPs. Specifically, for euchromatin the unit of incompatibility consists of
an oligo-nucleosomal “clutch” of 2–10 nucleosomes where the nucleosomes within the “clutch” are
disorganised with weak zig-zag geometry (Figure 6B,C). For heterochromatin-like domains/complexes
the unit of incompatibility is an oligo-nucleosomal “clutch” of 2–10 H3K9me3-marked nucleosomes
“bridged” by HP1 dimers that compact and stabilise the zig-zag geometry of nucleosomes within the
“clutch” (Figure 6B,C). It is the incompatibility between the dissimilar repeating units (euchromatic
“clutch” vs. heterochromatin-like “clutch”) that determines the magnitude of χ. This value will indicate
whether a there is a tendency for a heterochromatin-like domain/complex to micro-phase separate from
the surrounding euchromatin. We now describe a theoretical model for the determination of χ for a
heterochromatin-like “clutch” (HC) vs. euchromatic “clutch” based on Equation (4).
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Figure 6. The oligo-nucleosomal “clutch” as the “unit of incompatibility” of chromatin. (A) Chromatin
loops containing two heterochromatin-like domains/complexes (red line) flanked by euchromatin
(blue line). Heterochromatin-like domains/complexes make cis- (doubled-headed arrow) and
trans- (red arrows) contacts other micro-phase separated heterochromatin-like domains/complexes
(Diagram B in Box S1). The cis- and trans-contacts between micro-phase separated heterochromatin-like
domains/complexes generate contact enrichments seen in ECDs (Diagram C in Box S1). The euchromatic
segments can also make cis- (not shown) and trans- (blue arrow) contacts with other euchromatic
segments that are detected as A-type compartments in Hi-C maps. (B) A region of the loop in (A)
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is magnified (dotted lines) to detail the junction between a heterochromatin-like domain/complex
and a euchromatic segment. The heterochromatin-like domain/complex is made up of “clutches”
(pink circles), where each clutch contains six H3K9me3-marked nucleosomes. The H3K9me3-marked
nucleosomes are “bridged” by HP1 dimers where the nucleosomes have distinct zig-zag geometry;
a clutch so organised is the “unit of incompatibility” of the heterochromatin-like complex. The “unit of
incompatibility” of the euchromatic segment are “clutches” (blue circles) composed of six nucleosomes
where the nucleosomes are more disorganised with only weak zig-zag geometry. (C) Depicts the
theoretical model (see Section 8 and Equation (5)). Absent HP1 the HC containing H3K9me3-marked
nucleosomes is thermodynamically equivalent to the euchromatic clutch. Incompatibility of the HC
vs. euchromatic “clutch” is caused by HP1 bridging of H3K9me3-marked nucleosomes. Monomers
of HP1 dimerise and the dimers “bridge” H3K9me3 marked nucleosomes, which has the effect of
stabilising the zig-zag geometry and compacting the nucleosomes within the HC. “Clutch” diagrams
were modified from [43].

8. Theoretical “Clutch” Model

As shown (Figure 6C) the model consists of the following:

1. A symmetric pair of “clutches”, a euchromatic “clutch” and heterochromatin-like “clutch” (HC)
that are connected by linker DNA. Each clutch contains six nucleosomes, a value that lies in
the middle of the range 2–10. The HC consisting of H3K9me3-marked nucleosomes represents
the repeating unit (“unit of incompatibility”) of a heterochromatin-like domain/complex; likewise,
for the euchromatic clutch and euchromatin. Both clutches are equally miscible in the nucleoplasm
(a concentrated solution of chromatin fibres) reducing the problem to incompatibility between
the clutches.

2. In the absence of HP1, the “clutches” are thermodynamically equivalent. Incompatibility between
the HC and euchromatic “clutch” results from “bridging” of two K9me3 motifs on histone H3
proteins in separate nucleosomes by HP1 dimers; stacked nucleosomes are the preferred HP1
binding site. Bridging is maintained by constant exchange of bound HP1 dimers with free dimers
in the nucleoplasm.

3. HP1 “bridging” stabilises the zig-zag geometry of H3K9me3-marked nucleosomes and leads to
compaction. Nucleosomes in the euchromatic “clutch” are disorganised with limited (unstable)
zig-zag geometry.

Using Equation (4), χ for HC vs. euchromatic “clutch” can be written as:

χHC = [(HCD-H3K9me)HC + (HCSD-CSD)HC − HCOMP − HTL]T−1 + SCOMP (5)

HCD-H3K9me is the free energy contribution from the binding of the HP1 CD to H3K9me3-marked
histone H3. CD-H3K9me3 binding is best understood for HP1β [29,35] (Figure 1). Initial binding is
via a non-specific electrostatic interaction of the N-terminal extension of HP1β with the H3K9me3
tail [29]. This causes the CD N-terminal region to draw upwards and wrap around the peptide and, as
a consequence, an aromatic “cage” is formed from three conserved aromatic residues: Tyr21, Trp42
and Phe45 (Figure 1B). The majority free energy contribution comes from the electrostatic cation–π
interactions where the positively charged (cation) methyl ammonium moiety is attracted to the negative
electrostatic potential of the aromatic groups’ π-system [36]. The HC sub-script indicates that it is the
sum of CD-H3K9me3 interactions that “bridge” different nucleosomes within the clutch that gives the
total free energy contribution.

HCSD-CSD is the free energy contribution from the dimerisation of the HP1 CSD. It is the dimeric
form of HP1 that “bridges” H3K9me3-marked nucleosomes and drives micro-phase separation.
The HP1β CSD forms a tight homodimer and the CSD-CSD interaction is of high affinity with
sedimentation analysis indicating that the upper limit for the dissociation constant as <150 nM [211].
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The HC sub-script indicates that it is the sum of CSD-CSD dimers that mediate “bridging” interactions
between different nucleosomes within the clutch that gives the total free energy contribution.

HCOMP is potential energy owing to (i) elasticity of linker DNA (i.e., resistance to bending,
twisting and stretching deformation) and (ii) steric exclusion between the nucleosomes and linker
DNA [212]. HCOMP is a consequence of the “bridging” of H3K9me3-marked nucleosomes by HP1
dimers, which stabilises the zig-zag geometry and promotes compaction of nucleosomes in the “clutch”.

HTL is elastic potential energy of the terminal linker DNA (i.e., resistance to bending, twisting
and stretching deformation) that connects a heterochromatic-like clutch to a euchromatic clutch. For a
heterochromatin-like domain/complex flanked by euchromatic segments the term would be 2HTL.

SCOMP is the excess entropy given up to the nucleoplasm after “bridging” of H3K9me3-marked
nucleosomes by HP1 dimers, which stabilises the zig-zag geometry and promotes compaction.

Characteristics and Caveats of the Theoretical “Clutch” Model

1. In the form presented the model may not be applicable to macro-phase separation of
cytologically-visible constitutive heterochromatin. There are additional factors that may need to
be included that are together severally necessary and jointly sufficient in causing macro-phase
separation of constitutive heterochromatin. They include repetitive DNAs, ncRNAs, proteins that
bind (modified) DNA/histones [213]. Notably, there is a documented interaction of Swi6HP1 CSD
dimer with the H2Bα1 helix that results in the deformation of the nucleosome core that is thought
to drive phase separation of constitutive heterochromatin in fission yeast [55]. HP1 also binds
to methylated lysine 26 of histone H1.4 (H1.4K26me) in constitutive heterochromatin [51],
which may be significant in the context of the observation that H1-containing chromatin
preferentially phase separates [210]. These factors are not included in our model since we
are concerned with micro-phase separation of heterochromatin-like domains/complexes outside
constitutive heterochromatin.

2. H3K9me3 epigenetic modification acts as an HP1 binding site only. Absent HP1 an
H3K9me3-marked “clutch” is thermodynamically equivalent to the euchromatic “clutch”.
Micro-phase separation results only after HP1 “bridging” between H3K9me3-marked nucleosomes.
Experimentally, a reference “clutch” consisting of six H3K9me3-marked nucleosomes could be
used to measure changes in free energy and excess entropy generated after addition of HP1 to
the system. The H3K9me3-marked clutch would need to be tethered to mimic the connection
through linker DNA to flanking euchromatic “clutches”.

3. HP1 dimer binding is modelled as “bridging” two H3K9-methylated histone H3 molecules in
separate nucleosomes [37]. Accordingly, a nucleosome chain with stacked nucleosomes would be
the preferred HP1 binding sites [214], which would be consistent with HP1 binding to a fibre
with nucleosomes having a zig-zag geometry. Compaction would be promoted by allosteric
cooperativity arising from changes in di-nucleosome conformation after HP1 bridging that would
in turn enhance further HP1 bridging [214]. No direct HP1-HP1 co-operative binding is assumed,
although there is evidence that such cooperative binding might contribute to “spreading” of
the heterochromatic state [215,216]. This has been modelled previously [212] and could be
incorporated as a free energy contribution (HHP1-HP1)HC to Equation (5).

4. Histone acetylation is not included in the model. Histone acetylation is an epigenetic modification
generally associated with euchromatin and is known to neutralise the positive charge on the
histone tails [217]. Inclusion of histone acetylation could affect the incompatibility between
the euchromatic and heterochromatin-like clutches. Our reasoning for not including histone
acetylation is that H3K9me3 and H3K27me3 are truly epigenetic and define ECDs (Box S1).
They are associated with “write-and-read” activities that ensure their inheritance from one cell
generation to the next [218]. Histone acetylation does not possess an analogous write-and-read
activity [218].
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5. The HTL term reduces the magnitude of χ and acts against phase separation. Accordingly,
release of a domain/complex from the constraints of the chromatin fibre by severing linker DNA
that connects the domain/complex to flanking euchromatin would remove the HTL term and
enhance phase separation. Liquid Hi-C experiments have provided evidence that this is the case:
chromatin fragmentation that releases domains/complexes from the chromatin fibre results in
stronger compartmental segregation [190].

Using (5), χ can be calculated for any pair of clutches e.g., a HP1α/β/γ-containing clutch
(H3K9me3-marked nucleosomes) vs. a euchromatic clutch; a Pc-containing clutch (H3K27me3-marked
nucleosomes) vs. a euchromatic clutch; a HP1β-containing clutch vs. a HP1γ-containing clutch,
and any other pair-wise combinations. This is analogous to the approach for BCPs, where it is
the degree of incompatibility between monomers (the “unit of incompatibility”) that determines the
magnitude and sign of χ (Box S2; Equations (1)–(3)). Here, χHC specifies the degree of incompatibility
between a heterochromatin-like clutch and a euchromatic clutch. The magnitude of χ will indicate
whether a heterochromatin-like domain/complex consisting of repeating units of such clutches has
a tendency to micro-phase separate from flanking euchromatin consisting of euchromatic clutches.
The degree of phase separation of the domain/complex from the flanking euchromatin is specified
by the segregation product χN, where N is the number of repeating units, that is: (i) the number
of heterochromatin-like clutches in a heterochromatic-like domain/complex and (ii) the number of
Pc-containing clutches in Pc-G domain/complex. The magnitude for χN will determine the character
of the micro-phase separation actually observed (i.e., wavy, “liquid-like” or discrete, sharp interfaces)
and this is our subject in the next section.

9. χN and the Order–Disorder Transition in Relation to Heterochromatin-Like and
Pc-G Domains/Complexes

The sign and magnitude of χ specifies the degree of incompatibility between dissimilar monomers
that make up the blocks in a symmetrical di-BCP and indicates whether the di-BCP has a tendency to
micro-phase separate. The degree of phase separation of a symmetric di-BCP is specified by the segregation
product χN, where N is the number of repeat units (monomers) that make up the polymer chain [183].
The seminal study that calculated the value of χN at which a bulk di-BCP would phase separate is
that of Leibler [219] using self-consistent field theory (SCFT; [220]), where it was predicted that phase
separation takes place when χN is around 10.5. This was confirmed experimentally [159]. Given that
phase separation of a di-BCP takes place at χN ≈ 10.5, when χN ≈ 10 there is a delicate balance between
energetic and entropic effects on segregation of the blocks (Box S3). When χN is increased there is
a first-order phase transition (analogous to the phase transition from water to ice) that is called the
order–disorder transition (ODT; χNODT ≈ 10.5) where a disordered phase that is entropically favoured
yet energetically costly is replaced by a periodic lamellae mesophase (χN ≥ 10; Box S3). The character
of the mesophase is dependent upon the magnitude of χN. When χN is close to or slightly greater than
χNODT, i.e., χN ≥ 10, the interfaces between the blocks are weak and “wavy” having the appearance of
liquid–liquid phase separation (see φA vs. r⊥ for χN ≥ 10 in Box S3). When χN is much greater than
the χNODT, i.e., χN >> 10, the interfaces are discrete and sharp (see φA vs. r⊥ for χN >> 10 in Box S3).
The evolution of micro-phase separation as the magnitude of χN is varied (Box S3) highlights how
the interface between micro-phase separated “blocks” can change from wavy, “liquid-like”, to sharp
and discrete depending on the magnitude of χN. This is relevant to the character (degree) of the
micro-phase separations observed for heterochromatin-like compared Pc-G domains/complexes in the
interphase nucleus.

The original SCFT approach to micro-phase separation of bulk BCPs treats polymers as flexible
chains that coarse-grain as Gaussian random walks at sufficiently large (infinite) length scales [159,219].
However, the assumption of random-walk conformations of chains does not accurately describe
the behaviour of domains/complexes in the interphase nucleus, where the majority of complexes in
mouse and human are small, in the range of 10–30 kb (Table S1) albeit domains can be over 1 Mb
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in size (Table 1). A more accurate description is that HP1-containing heterochromatin fibres behave
like semi-flexible worm-like chains [193,221]. Semi-flexibility would mean that domains/complexes
have their own values for χNODT distinct from ≈10.5 for bulk di-BCPs that behave as flexible chains
governed by Gaussian statistics [159,222]. Accordingly, for the discussion below, the values for the
order–disorder transition of heterochromatin-like and Pc-G domains/complexes are termed χNODT_HC

and χNODT_PC, respectively.
A bulk symmetric di-BCP is a simple one component system where segregation can be described

analytically ([159,219]; Box S3), whereas segregation of heterochromatin-like domains/complexes
involves a multicomponent system that takes place in the context of a concentrated solution of
chromatin fibres where other domains/complexes roam, to a lesser or greater extent, the nuclear
space as part of those fibres. Segregation of domains/complexes in interphase nuclei will, therefore,
involve a different physics to that which has been described for bulk symmetrical di-BCPs ([159,219];
Box S3). Segregation of domains/complexes takes place in two stages: micro-phase separation then
segregation. The magnitude of χHC—quantified by Equation (5)—will indicate the tendency of a
heterochromatin-like domain/complex to micro-phase separate. The degree of phase separation of the
domain/complex is specified by the product χNHC (where NHC is the number of “clutches” in the
heterochromatin-like domain/complex). When χNHC is greater than χNODT_HC the domain/complex
will be become enriched owing to “bridging” by HP1 of H3K9me3-marked nucleosomes within and
between clutches of the domain/complex (Diagram A in Box S1; top row, “compaction”) resulting in
micro-phase separation from the flanking euchromatin (Diagram B in Box S1). Segregation is mediated
by a like-with-like attraction (binding potential) between micro-phase separated heterochromatin-like
domain/complexes that occurs in cis or trans (Diagrams B and C in Box S1). The binding potential
results from an entropic effect. Since the heterochromatin-like domains/complexes have already
given up entropy as a result of compaction (SCOMP in Equation (5)), they have less entropy to lose
when they come into contact with each other compared to contact with euchromatic segments of
chromatin fibres [221]. Once in contact, HP1 proteins can “bridge” between domains/complexes,
forming inter-fibre bridges, which will stabilise far cis- and trans-contacts that emerge as ECDs is Hi-C
experiments (Diagrams B and C in Box S1). Notably, work in Drosophila and mouse have shown that HP1
proteins form tightly localised domains in interphase nuclei that cannot be explained in terms of “liquid
droplets” that form as a result of liquid–liquid phase separation [43,188,223]. Instead, the character
(degree) of this phase separation is consistent with χNHC >> χNODT_HC, which would result in sharp
interfaces between heterochromatin-like domains/complexes and euchromatin, reminiscent of what
is observed for di-BCPs when χN is much greater than the χNODT (χN >> χNODT; see φA vs. r⊥ for
χN >> 10 in Box S3). Equation (5) also shows how a value for χPC for a Pc-containing clutch can be
quantified. The magnitude of χPC will indicate the tendency of a Pc-G domain/complex to micro-phase
separate; the degree of micro-phase separation will be given by χNPC (where NPC is the number of
“clutches” in the Pc-G domain/complex). Notably, the character of phase separated Pc bodies that
contain Pc-G domains/complexes has been reported to be “liquid-like” [224,225]. It is tempting to
speculate that this is because χNPC ≥ χNODT_PC resulting in wavy, liquid-like, interfaces between the
Pc-G domains/complexes and euchromatin. This would be similar to what is observed for di-BCPs
when χN is close to χNODT (χN ≥ χNODT; see φA vs. r⊥ for χN ≥ 10 in Box S3).

The different degrees of phase separation observed with heterochromatin-like domains/complexes
compared to Pc-G domains/complexes may reflect the finding that the binding affinity of HP1 for
H3K9me3 is much higher than the affinity of Pc CBX homologues for H3K27me3 [226]. Given
Equation (5) the difference in binding affinity would likely give a value of χ for a heterochromatin-like
clutch that is greater than that for a Pc-G clutch (χHC > χPC). This would in turn determine the
magnitude of χNHC and χNPC and thereby the character (degree) of phase separation (sharp interfaces
vs. wavy, “liquid-like”) of the respective domains/complexes.
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10. Conclusions and Perspectives

The hallmarks of constitutive heterochromatin, HP1 and H3K9me3, were present in the common
ancestor of fission yeast and human around one billion years ago [16,17]. Both are enriched at canonical
sites of constitutive heterochromatin, the peri-centric regions, (sub-)telomeres and (peri-)nucleolar
organisers [18–25] and their function at these sites has been the subject of numerous studies in
different organisms [213,227]. Less well studied are heterochromatin-like domains/complexes that
share the hallmarks, HP1 and H3K9me3, with constitutive heterochromatin but lie outside the canonical
constitutively heterochromatic territories [30,65]. Our survey shows that domains/complexes are
likely to be present in most eukaryotic genomes (Figure 2; Table 1). One of the best characterised
heterochromatin-like complexes is that which encompasses the 20 kb donor mating type region in fission
yeast [228], indicating that heterochromatin-like domains/complexes represent an ancient mechanism
for epigenetically regulating chromatin template-dependent processes in euchromatic regions of the
genome outside canonical constitutive heterochromatin [16].

Heterochromatin-like domains/complexes have expanded in mammals where the number in the
human genome is, conservatively, around 163–855 heterochromatin-like domains (>0.1 Mb) and around
18,853–32,292 complexes (<0.1 Mb) (Table 1). How heterochromatin-like domains/complexes domains
are nucleated and assembled at specific sites in the genome has been reviewed recently using as
an exemplar the B4 sub-compartment that is generated by far cis-contacts between the KRAB-ZNF
heterochromatin-like domains [43,70]. Briefly, the KRAB-ZNF heterochromatin-like domains (up to
4 Mb) are nucleated by smaller complexes (≈6 kb) assembled at specific sites within the domains by
sequence specific KRAB-ZFPs, where the density of nucleation sites is around 30 nucleosomes per
200 nucleosomes [43]. Targeting of nucleation sites by KRAB-ZFPs may be a common mechanism for
assembly of larger domains. A recent survey of 222 of the 350 human KRAB-ZFPs showed that the
number of genomic sites bound per protein ranged from more than 10,000 to around 15 [229], indicating
that KRAB-ZFP-directed heterochromatin-like complexes could nucleate larger domains/complexes at
many sites within the genome. A majority, 159 of the 222, of KRAB-ZFPs were found to bind at least one
type of transposable element (TE) and their binding to TEs is thought assemble local heterochromatin-like
complexes that repress transposon expression [229,230]. It is common for TE regulatory sequences to
undergo exaptation and take on new functions [230,231]. It is tempting to speculate that a number of
TE-specific KRAB-ZFP binding sites may have been subject to exaptation and now act as nucleation
sites that assemble larger heterochromatin-like domains. Other genomic sites include imprinted
gDMRs where heterochromatin-like complexes are assembled through binding of ZFP57/445 to their
methylation-sensitive recognition sequences. Assembly of complexes at imprinted gDMRs preserves
parent-of-origin-specific 5mC against the global DNA demethylation that characterises pre-implantation
development in mouse and human (Figure 3) [102,123]. In addition to the heterochromatin-like
domains/complexes, the related Pc-G domains/complexes number in the region of 2000 in mouse
and human genomes [156]. Both heterochromatin-like and Pc-G domains are probably involved in
regulating the phylotypic progression (Figure 4). As explained (Figure 4), during the phylotypic
progression segregation of heterochromatin-like domains/complexes likely contribute cell-type-specific
contact enrichments to ECDs that safeguard cellular identity, while Pc-containing domains/complexes
contribute position-specific contact enrichments. ECDs represent the “epigenetic” component of
cellular identity (Box S1; [43]).

Another aspect of cellular identity is age. In this context, it will be of interest to investigate
the relationship between ECDs (Box S1) and the recently described “epigenetic clock” [232].
For humans, the “clock” is based on age-dependent changes in DNA methylation at 353 ‘clock’
CpGs, where methylation of 193 of the 353 CpGs increase with age while the remaining 160 CpGs
decrease with age. The epigenetic clock has a high ticking rate until adulthood (≈20 years), after which
it slows to a constant, steady, ticking rate that can be used to predict the age (or epigenetic age, eAge)
of multiple tissues with a median error of 3.6 years [232]. It is known that HP1 proteins interact with
DNA methyltransferases [130] and, as explained, HP1 proteins are associated with permissive as well
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as repressive chromosomal regions [72,73] indicating that domains/complexes could regulate both the
increasing (193 CpGs) and decreasing (160 CpGs) methylation changes observed with the 353 “clock”
CpGs. This remains to be tested.

A key question concerns the contribution of DNA methylation to the generation of ECDs.
DNA methylation is an essential epigenetic mechanism that regulates the cell-to-cell inheritance of
gene repression patterns [233]. Its role in folding the genome in the interphase nucleus and the
emergence ECDs detected in Hi-C maps may be indirect through an effect on the distribution of
H3K27me3. DNA hypomethylation can affect the distribution H3K27me3 in the genome [234] most
likely owing to targeting of PRC2 and PRC1 to CGIs [235,236] and the generalised affinity of PRCs
for chromatin [237]. Notably, changing the distribution of H3K27me3 by DNA hypo-methylation
affects compartmentalisation as detected in Hi-C maps; introduction of DNA methyltransferase activity
reconstitutes both H3K27me3 distribution and the Hi-C maps [238].

BCP theory has been used to provide plausible explanations for changes in compartmentalisation
seen in Hi-C maps when chromatin-associated cohesin activity is experimentally manipulated [43,164]
(Figure 5). Implicit in these explanations there is a value ofχ for heterochromatin-like domains/complexes
flanked by euchromatin. A recent attempt at determining the degree of incompatibility between A- and
B-type homo-polymers (euchromatin vs. heterochromatin) estimated χ as 0.03 ± 0.01/nucleosome [190].
This value was thought crude because it was calculated based on phase separation of bulk
homo-polymers [186], contrary to the known nuclear environment of a concentrated solution of
chromatin “polymer” fibres. We suspect that the problem lies at a more fundamental level. As explained,
mean field lattice theory [162,163] used to define χ, assumes the unit of incompatibility to be a monomer
(Box S2; Equations (1)–(3)). Similarly, the seminal exposition on scaling concepts in polymer physics [186]
used to estimate χ above [190] subsumes the monomer into a statistical segment (persistence length,
lp); the fundamental unit remains the monomer nonetheless. Instead, we suggest that the unit of
incompatibility for chromatin is a larger more dynamic structure that probably represents the secondary
structure of chromatin, namely the oligo-nucleosomal “clutch”, where a clutch contains from 2 to
10 nucleosomes (see Section 8 for details; Figure 6). In our “clutch” model incompatibility is due
not to the epigenetic modifications of the nucleosomes per se, rather incompatibility is owing to
proteins that “bridge” nucleosomes within a clutch, examples of which are HP1 and Polycomb CBX
homologues that bridge H3K9me3- and H3K27me3-marked nucleosomes, respectively (Diagram A
in Box S1). Our approach (Section 8; Figure 6; Equation (5)) could be used to quantify χ for both a
heterochromatin-like “clutch” and a Pc-G “clutch”. For large domains/complexes consisting of N number
of clutches the magnitude of χN will determine the character (degree) of phase separation (Section 9
for details). Each type of domain/complex has its own value for the order–disorder transition (χNODT)
and when χN >> χNODT the interfaces between the domain/complex and euchromatin will be sharp
and well-defined as observed for heterochromatin-like complexes [43,188,223]. Where χN ≥ χNODT

the interfaces between the domain/complex and euchromatin will be wavy, “liquid-like”, as observed
for Pc bodies that contain Pc-G domains/complexes [224,225].

The mesoscale organisation of chromatin as oligo-nucleosomal “clutches” containing 2–10
nucleosomes with a variable zig-zag organisation of nucleosomes appears to be a ubiquitous
motif of interphase chromatin [196]. What causes this organisation to emerge from the “sea of
nucleosomes” [196,239,240] that characterises interphase chromatin is not known. Given our “clutch”
model described by Equation (5) the mesoscale organisation could arise from (transient) “bridging” of
nucleosomes by proteins that possess two (or more) chromatin-binding motifs [241,242]. The sum of
competing free energy contributions (for a heterochromatin-like clutch this would be (HCD-H3K9me)HC

and (HCSD-CSD)HC in Equation (5)) and potential energies (HCOMP and HTL in Equation (5)) could
generate, in the dynamic environment of the interphase nucleus, oligo-nucleosomal “clutches” that
vary from 2 to 10 nucleosomes. In this context, a simple application of Equation (5) to constitutive
heterochromatin, where HP1 and H3K9me3-marked nucleosomal fibres are highly enriched [29],
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predicts the formation of larger clutches with more pronounced zig-zag geometry. This is, in fact,
what is observed [197,202].

11. Coda

• The oligo-nucleosomal “clutch” is the “unit of incompatibility” of chromatin.
• When a domain/complex assembles from “clutches” consisting of “bridged” nucleosomes with

zig-zag geometry it will have a tendency, specified by χ, for micro-phase separation from
flanking euchromatin.

• A qualitative prediction of the degree of micro-phase separation (wavy vs. sharp interfaces) is
specified by the magnitude of χN compared to χNODT for a given domain/complex.

• Segregation of micro-phase separated domains/complexes facilitates folding of the genome into
the confines of the nucleus while retaining an environment that enables (regulation of) chromatin
template-dependent processes.
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for human, mouse and D. melanogaster and (ii) 200 bp for S. pombe, (iii) coordinates of all sequences that have
characteristics of constitutive heterochromatin were supplied as a blacklist (–blackListFileName) and were
excluded from the analysis. To define regions with constitutive heterochromatin properties we used ENCODE
blacklists—lists of genome regions that demonstrate anomalous signal in next-generation sequencing mostly due
to repetitive sequences—and matched it with H3K9me3-enrichment binding profile in IGV-browser to obtain
coordinates of pericentromeric and subtelomeric heterochromatin regions [246]. Unplaced scaffolds enriched
with repetitive sequences were also considered as related to constitutive heterochromatin and were excluded
from the analysis. The correlations were visualised using the R package ggpubr.In order to calculate the number
and sizes of heterochromatin-like domains/complexes we determined the number of continuous segments of
genome outside of constitutive heterochromatin regions that were enriched in both H3K9me3 and HP1 isoform (in
human, mouse, D. melanogaster and S. pombe; see Table 1) with ChromHMM tool in 200 bp bins (for all HP1s) [247].
For human data 5-state model, for mouse data 4-state model, and for fly and yeast 2-state models were built.
After coordinates of regions enriched in H3K9me3 and HP1 isoforms were determined we calculated the number
and sizes of domains (>1 Mb and 0.1–1 Mb) and complexes (0.01–0.1 M b) in R.
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